Protein Allostery in Rational Drug Design

  • Takayoshi KinoshitaEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1163)


This chapter focuses on protein kinases that transfer the phosphate group of ATP to the hydroxyl group of a substrate protein. Five hundred eighteen human protein kinases are classified into serine/threonine kinases and tyrosine kinases and individually or synergistically transduce physiologic stimuli into cell to promote cell proliferation or apoptosis, etc. Protein kinases are identified as drug targets because dysfunction of kinases leads to severe diseases such as cancers and autoimmune diseases. A large number of the crystal structures of the protein kinase inhibitor complex are available in Protein Data Bank and facilitated the drug discovery targeting protein kinases. The protein kinase inhibitors are classified into categories, Type-I, Type-II, Type-III, Type-IV, and Type-V, and as a separate class, covalent-type inhibitors. In any type, a protein kinase inhibitor bound to the allosteric region is advantageous in terms of selectivity compared to the traditional ATP-competitive one. In the following sections, the successful and promising examples of the partially or fully allosteric protein kinase inhibitors are illustrated in the following pages.


Protein kinase Allosteric inhibitor Structure-based drug discovery High selectivity 


  1. 1.
    Akella R, Moon TM, Goldsmith EJ (2008) Unique MAP Kinase binding sites. Biochim Biophys Acta 1784(1):48–55PubMedCrossRefGoogle Scholar
  2. 2.
    Andersen JL, Gesser B, Funder ED, Nielsen CJF, Gotfred-Rasmussen H, Rasmussen MK, Toth R, Gothelf KV, Arthur JSC, Iversen L, Nissen P (2018) Dimethyl fumarate is an allosteric covalent inhibitor of the p90 ribosomal S6 kinases. Nat Commun 9(1):4344PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Atwell S, Adams JM, Badger J, Buchanan MD, Feil IK, Froning KJ, Gao X, Hendle J, Keegan K, Leon BC, Muller-Dieckmann HJ, Nienaber VL, Noland BW, Post K, Rajashankar KR, Ramos A, Russell M, Burley SK, Buchanan SG (2004) A novel mode of Gleevec binding is revealed by the structure of spleen tyrosine kinase. J Biol Chem 279(53):55827–55832PubMedCrossRefGoogle Scholar
  4. 4.
    Ayaz P, Andres D, Kwiatkowski DA, Kolbe CC, Lienau P, Siemeister G, Lucking U, Stegmann CM (2016) Conformational adaption may explain the slow dissociation kinetics of roniciclib (BAY 1000394), a type I CDK inhibitor with kinetic selectivity for CDK2 and CDK9. ACS Chem Biol 11(6):1710–1719PubMedCrossRefGoogle Scholar
  5. 5.
    Betzi S, Alam R, Martin M, Lubbers DJ, Han H, Jakkaraj SR, Georg GI, Schonbrunn E (2011) Discovery of a potential allosteric ligand binding site in CDK2. ACS Chem Biol 6(5):492–501PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Brear P, North A, Iegre J, Hadje Georgiou K, Lubin A, Carro L, Green W, Sore HF, Hyvonen M, Spring DR (2018) Novel non-ATP competitive small molecules targeting the CK2 alpha/beta interface. Bioorg Med Chem 26(11):3016–3020PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    De Vivo M, Masetti M, Bottegoni G, Cavalli A (2016) Role of molecular dynamics and related methods in drug discovery. J Med Chem 59(9):4035–4061PubMedCrossRefGoogle Scholar
  8. 8.
    Fischmann TO, Smith CK, Mayhood TW, Myers JE, Reichert P, Mannarino A, Carr D, Zhu H, Wong J, Yang RS, Le HV, Madison VS (2009) Crystal structures of MEK1 binary and ternary complexes with nucleotides and inhibitors. Biochemistry 48(12):2661–2674PubMedCrossRefGoogle Scholar
  9. 9.
    Furuya N, Momose T, Katsuno K, Fushimi N, Muranaka H, Handa C, Ozawa T, Kinoshita T (2017) The juxtamembrane region of TrkA kinase is critical for inhibitor selectivity. Bioorg Med Chem Lett 27(5):1233–1236PubMedCrossRefGoogle Scholar
  10. 10.
    Griffith J, Black J, Faerman C, Swenson L, Wynn M, Lu F, Lippke J, Saxena K (2004) The structural basis for autoinhibition of FLT3 by the juxtamembrane domain. Mol Cell 13(2):169–178PubMedCrossRefGoogle Scholar
  11. 11.
    Hanks SK, Hunter T (1995) Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB J 9(8):576–596PubMedCrossRefGoogle Scholar
  12. 12.
    Heinrich T, Gradler U, Bottcher H, Blaukat A, Shutes A (2010) Allosteric IGF-1R inhibitors. ACS Med Chem Lett 1(5):199–203PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Herrero A, Pinto A, Colon-Bolea P, Casar B, Jones M, Agudo-Ibanez L, Vidal R, Tenbaum SP, Nuciforo P, Valdizan EM, Horvath Z, Orfi L, Pineda-Lucena A, Bony E, Keri G, Rivas G, Pazos A, Gozalbes R, Palmer HG, Hurlstone A, Crespo P (2015) Small molecule inhibition of ERK dimerization prevents tumorigenesis by RAS-ERK pathway oncogenes. Cancer Cell 28(2):170–182PubMedCrossRefGoogle Scholar
  14. 14.
    Iegre J, Brear P, De Fusco C, Yoshida M, Mitchell SL, Rossmann M, Carro L, Sore HF, Hyvonen M, Spring DR (2018) Second-generation CK2alpha inhibitors targeting the alphaD pocket. Chem Sci 9(11):3041–3049PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Kinoshita T, Doi K, Sugiyama H, Kinoshita S, Wada M, Naruto S, Tomonaga A (2011a) Knowledge-based identification of the ERK2/STAT3 signal pathway as a therapeutic target for type 2 diabetes and drug discovery. Chem Biol Drug Des 78(3):471–476PubMedCrossRefGoogle Scholar
  16. 16.
    Kinoshita T, Hashimoto T, Sogabe Y, Fukada H, Matsumoto T, Sawa M (2017) High-resolution structure discloses the potential for allosteric regulation of mitogen-activated protein kinase kinase 7. Biochem Biophys Res Commun 493(1):313–317PubMedCrossRefGoogle Scholar
  17. 17.
    Kinoshita T, Nakaniwa T, Sekiguchi Y, Sogabe Y, Sakurai A, Nakamura S, Nakanishi I (2013) Crystal structure of human CK2alpha at 1.06 A resolution. J Synchrotron Radiat 20(Pt 6):974–979PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Kinoshita T, Sekiguchi Y, Fukada H, Nakaniwa T, Tada T, Nakamura S, Kitaura K, Ohno H, Suzuki Y, Hirasawa A, Nakanishi I, Tsujimoto G (2011b) A detailed thermodynamic profile of cyclopentyl and isopropyl derivatives binding to CK2 kinase. Mol Cell Biochem 356(1-2):97–105PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Kinoshita T, Sugiyama H, Mori Y, Takahashi N, Tomonaga A (2016) Identification of allosteric ERK2 inhibitors through in silico biased screening and competitive binding assay. Bioorg Med Chem Lett 26(3):955–958PubMedCrossRefGoogle Scholar
  20. 20.
    Lechtenberg BC, Mace PD, Sessions EH, Williamson R, Stalder R, Wallez Y, Roth GP, Riedl SJ, Pasquale EB (2017) Structure-guided strategy for the development of potent bivalent ERK inhibitors. ACS Med Chem Lett 8(7):726–731PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Liao JJ (2007) Molecular recognition of protein kinase binding pockets for design of potent and selective kinase inhibitors. J Med Chem 50(3):409–424PubMedCrossRefGoogle Scholar
  22. 22.
    Liu Q, Sabnis Y, Zhao Z, Zhang T, Buhrlage SJ, Jones LH, Gray NS (2013) Developing irreversible inhibitors of the protein kinase cysteinome. Chem Biol 20(2):146–159PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298(5600):1912–1934PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Marcie AG, Gregory DC, Min L, Brittany D, Kenneth A, Ross LS, Kenneth SK (2007) New approaches to the discovery of cdk5 inhibitors. Current Alzheimer Research 4(5):547–549CrossRefGoogle Scholar
  25. 25.
    Matsumoto T, Kinoshita T, Kirii Y, Yokota K, Hamada K, Tada T (2010) Crystal structures of MKK4 kinase domain reveal that substrate peptide binds to an allosteric site and induces an auto-inhibition state. Biochem Biophys Res Commun 400(3):369–373PubMedCrossRefGoogle Scholar
  26. 26.
    Matsumoto T, Kinoshita T, Matsuzaka H, Nakai R, Kirii Y, Yokota K, Tada T (2012) Crystal structure of non-phosphorylated MAP 2K6 in a putative auto-inhibition state. J Biochem 151(5):541–549PubMedCrossRefGoogle Scholar
  27. 27.
    Niefind K, Putter M, Guerra B, Issinger OG, Schomburg D (1999) GTP plus water mimic ATP in the active site of protein kinase CK2. Nat Struct Biol 6(12):1100–1103PubMedCrossRefGoogle Scholar
  28. 28.
    Nishiyama A, Yamada T, Kita K, Wang R, Arai S, Fukuda K, Tanimoto A, Takeuchi S, Tange S, Tajima A, Furuya N, Kinoshita T, Yano S (2018) Foretinib overcomes entrectinib resistance associated with the NTRK1 G667C mutation in NTRK1 fusion-positive tumor cells in a brain metastasis model. Clin Cancer Res 24(10):2357–2369PubMedCrossRefGoogle Scholar
  29. 29.
    Ohori M, Kinoshita T, Okubo M, Sato K, Yamazaki A, Arakawa H, Nishimura S, Inamura N, Nakajima H, Neya M, Miyake H, Fujii T (2005) Identification of a selective ERK inhibitor and structural determination of the inhibitor-ERK2 complex. Biochem Biophys Res Commun 336(1):357–363PubMedCrossRefGoogle Scholar
  30. 30.
    Ohren JF, Chen H, Pavlovsky A, Whitehead C, Zhang E, Kuffa P, Yan C, McConnell P, Spessard C, Banotai C, Mueller WT, Delaney A, Omer C, Sebolt-Leopold J, Dudley DT, Leung IK, Flamme C, Warmus J, Kaufman M, Barrett S, Tecle H, Hasemann CA (2004) Structures of human MAP kinase kinase 1 (MEK1) and MEK2 describe novel noncompetitive kinase inhibition. Nat Struct Mol Biol 11(12):1192–1197PubMedCrossRefGoogle Scholar
  31. 31.
    Parang K, Till JH, Ablooglu AJ, Kohanski RA, Hubbard SR, Cole PA (2001) Mechanism-based design of a protein kinase inhibitor. Nat Struct Biol 8(1):37–41PubMedCrossRefGoogle Scholar
  32. 32.
    Park JH, Liu Y, Lemmon MA, Radhakrishnan R (2012) Erlotinib binds both inactive and active conformations of the EGFR tyrosine kinase domain. Biochem J 448(3):417–423PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Raaf J, Brunstein E, Issinger OG, Niefind K (2008) The CK2 alpha/CK2 beta interface of human protein kinase CK2 harbors a binding pocket for small molecules. Chem Biol 15(2):111–117PubMedCrossRefGoogle Scholar
  34. 34.
    Rettenmaier TJ, Sadowsky JD, Thomsen ND, Chen SC, Doak AK, Arkin MR, Wells JA (2014) A small-molecule mimic of a peptide docking motif inhibits the protein kinase PDK1. Proc Natl Acad Sci U S A 111(52):18590–18595PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Schindler T, Bornmann W, Pellicena P, Miller WT, Clarkson B, Kuriyan J (2000) Structural mechanism for STI-571 inhibition of abelson tyrosine kinase. Science 289(5486):1938–1942PubMedCrossRefGoogle Scholar
  36. 36.
    Sogabe Y, Hashimoto T, Matsumoto T, Kirii Y, Sawa M, Kinoshita T (2016) A crucial role of Cys218 in configuring an unprecedented auto-inhibition form of MAP 2K7. Biochem Biophys Res Commun 473(2):476–481PubMedCrossRefGoogle Scholar
  37. 37.
    Solca F, Dahl G, Zoephel A, Bader G, Sanderson M, Klein C, Kraemer O, Himmelsbach F, Haaksma E, Adolf GR (2012) Target binding properties and cellular activity of afatinib (BIBW 2992), an irreversible ErbB family blocker. J Pharmacol Exp Ther 343(2):342–350PubMedCrossRefGoogle Scholar
  38. 38.
    Su HP, Rickert K, Burlein C, Narayan K, Bukhtiyarova M, Hurzy DM, Stump CA, Zhang X, Reid J, Krasowska-Zoladek A, Tummala S, Shipman JM, Kornienko M, Lemaire PA, Krosky D, Heller A, Achab A, Chamberlin C, Saradjian P, Sauvagnat B, Yang X, Ziebell MR, Nickbarg E, Sanders JM, Bilodeau MT, Carroll SS, Lumb KJ, Soisson SM, Henze DA, Cooke AJ (2017) Structural characterization of nonactive site, TrkA-selective kinase inhibitors. Proc Natl Acad Sci U S A 114(3):E297–E306PubMedCrossRefGoogle Scholar
  39. 39.
    Tong M, Seeliger MA (2015) Targeting conformational plasticity of protein kinases. ACS Chem Biol 10(1):190–200PubMedCrossRefGoogle Scholar
  40. 40.
    Uitdehaag JC, de Roos JA, van Doornmalen AM, Prinsen MB, de Man J, Tanizawa Y, Kawase Y, Yoshino K, Buijsman RC, Zaman GJ (2014) Comparison of the cancer gene targeting and biochemical selectivities of all targeted kinase inhibitors approved for clinical use. PLoS One 9(3):e92146PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Walter NM, Wentsch HK, Buhrmann M, Bauer SM, Doring E, Mayer-Wrangowski S, Sievers-Engler A, Willemsen-Seegers N, Zaman G, Buijsman R, Lammerhofer M, Rauh D, Laufer SA (2017) Design, synthesis, and biological evaluation of novel type I(1)/2 p38alpha MAP kinase inhibitors with excellent selectivity, high potency, and prolonged target residence time by interfering with the R-Spine. J Med Chem 60(19):8027–8054PubMedCrossRefGoogle Scholar
  42. 42.
    Ward RA, Colclough N, Challinor M, Debreczeni JE, Eckersley K, Fairley G, Feron L, Flemington V, Graham MA, Greenwood R, Hopcroft P, Howard TD, James M, Jones CD, Jones CR, Renshaw J, Roberts K, Snow L, Tonge M, Yeung K (2015) Structure-guided design of highly selective and potent covalent inhibitors of ERK1/2. J Med Chem 58(11):4790–4801PubMedCrossRefGoogle Scholar
  43. 43.
    Wu P, Nielsen TE, Clausen MH (2016) Small-molecule kinase inhibitors: an analysis of FDA-approved drugs. Drug Discov Today 21(1):5–10PubMedCrossRefGoogle Scholar
  44. 44.
    Yamada K, Zhang JH, Xie X, Reinhardt J, Xie AQ, LaSala D, Kohls D, Yowe D, Burdick D, Yoshisue H, Wakai H, Schmidt I, Gunawan J, Yasoshima K, Yue QK, Kato M, Mogi M, Idamakanti N, Kreder N, Drueckes P, Pandey P, Kawanami T, Huang W, Yagi YI, Deng Z, Park HM (2016) Discovery and characterization of allosteric WNK kinase inhibitors. ACS Chem Biol 11(12):3338–3346PubMedCrossRefGoogle Scholar
  45. 45.
    Zhou W, Ercan D, Chen L, Yun CH, Li D, Capelletti M, Cortot AB, Chirieac L, Iacob RE, Padera R, Engen JR, Wong KK, Eck MJ, Gray NS, Janne PA (2009) Novel mutant-selective EGFR kinase inhibitors against EGFR T790M. Nature 462(7276):1070–1074PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Zuccotto F, Ardini E, Casale E, Angiolini M (2010) Through the “Gatekeeper Door”: exploiting the active kinase conformation. J Med Chem 53(7):2681–2694PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Graduate School of ScienceOsaka Prefecture UniversitySakai, OsakaJapan

Personalised recommendations