Advertisement

Dynamic Protein Allosteric Regulation and Disease

  • Ruth NussinovEmail author
  • Chung-Jung Tsai
  • Hyunbum Jang
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1163)

Abstract

Allostery is largely associated with conformational and functional transitions in individual proteins. All dynamic proteins are allosteric. This concept can be extended to consider the impact of conformational perturbations on cellular function and disease states. In this section, we will illuminate how allostery can control physiological activities and cause disease, aiming to increase the awareness of the linkage between disease symptoms on the cellular level and specific aberrant allosteric actions on the molecular level.

Keywords

Cell organization Cell signaling Signaling pathways Signal transduction Cell structure Signaling modules Diffusion 

Notes

Acknowledgments

This project has been funded in whole or in part with federal funds from the National Cancer Institute, National Institutes of Health, under contract number HHSN261200800001E. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the US government. This research was supported (in part) by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research.

References

  1. 1.
    Alred EJ, Scheele EG, Berhanu WM, Hansmann UH (2014) Stability of Iowa mutant and wild type Abeta-peptide aggregates. J Chem Phys 141(17):175101PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Aoki K, Yamada M, Kunida K, Yasuda S, Matsuda M (2011) Processive phosphorylation of ERK MAP kinase in mammalian cells. Proc Natl Acad Sci U S A 108(31):12675–12680PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Blacklock K, Verkhivker GM (2014) Computational modeling of allosteric regulation in the hsp90 chaperones: a statistical ensemble analysis of protein structure networks and allosteric communications. PLoS Comput Biol 10(6):e1003679PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Boehr DD, Nussinov R, Wright PE (2009) The role of dynamic conformational ensembles in biomolecular recognition. Nat Chem Biol 5(11):789–796PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Bos JL, Rehmann H, Wittinghofer A (2007) GEFs and GAPs: critical elements in the control of small G proteins. Cell 129(5):865–877PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Bozelli JC Jr, Jennings W, Black S, Hou YH, Lameire D, Chatha P, Kimura T, Berno B, Khondker A, Rheinstadter MC, Epand RM (2018) Membrane curvature allosterically regulates the phosphatidylinositol cycle, controlling its rate and acyl-chain composition of its lipid intermediates. J Biol Chem 293(46):17780–17791PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Bradshaw JM (2010) The Src, Syk, and Tec family kinases: distinct types of molecular switches. Cell Signal 22(8):1175–1184PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Bruder JT, Heidecker G, Rapp UR (1992) Serum-, TPA-, and Ras-induced expression from Ap-1/Ets-driven promoters requires Raf-1 kinase. Genes Dev 6(4):545–556PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Buhrman G, Wink G, Mattos C (2007) Transformation efficiency of RasQ61 mutants linked to structural features of the switch regions in the presence of Raf. Structure 15(12):1618–1629PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Chen M, Peters A, Huang T, Nan X (2016) Ras dimer formation as a new signaling mechanism and potential cancer therapeutic target. Mini Rev Med Chem 16(5):391–403PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Cherfils J, Zeghouf M (2013) Regulation of small GTPases by GEFs, GAPs, and GDIs. Physiol Rev 93(1):269–309PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Chong H, Guan KL (2003) Regulation of Raf through phosphorylation and N terminus-C terminus interaction. J Biol Chem 278(38):36269–36276PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Chung I, Akita R, Vandlen R, Toomre D, Schlessinger J, Mellman I (2010) Spatial control of EGF receptor activation by reversible dimerization on living cells. Nature 464(7289):783–787PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Clausen R, Ma B, Nussinov R, Shehu A (2015) Mapping the conformation space of wildtype and mutant H-Ras with a memetic, cellular, and multiscale evolutionary algorithm. PLoS Comput Biol 11(9):e1004470PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Collier G, Ortiz V (2013) Emerging computational approaches for the study of protein allostery. Arch Biochem Biophys 538(1):6–15PubMedCrossRefGoogle Scholar
  16. 16.
    Csermely P, Palotai R, Nussinov R (2010) Induced fit, conformational selection and independent dynamic segments: an extended view of binding events. Trends Biochem Sci 35(10):539–546PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Cutler RE Jr, Stephens RM, Saracino MR, Morrison DK (1998) Autoregulation of the Raf-1 serine/threonine kinase. Proc Natl Acad Sci U S A 95(16):9214–9219PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, Davis N, Dicks E, Ewing R, Floyd Y, Gray K, Hall S, Hawes R, Hughes J, Kosmidou V, Menzies A, Mould C, Parker A, Stevens C, Watt S, Hooper S, Wilson R, Jayatilake H, Gusterson BA, Cooper C, Shipley J, Hargrave D, Pritchard-Jones K, Maitland N, Chenevix-Trench G, Riggins GJ, Bigner DD, Palmieri G, Cossu A, Flanagan A, Nicholson A, Ho JW, Leung SY, Yuen ST, Weber BL, Seigler HF, Darrow TL, Paterson H, Marais R, Marshall CJ, Wooster R, Stratton MR, Futreal PA (2002) Mutations of the BRAF gene in human cancer. Nature 417(6892):949–954CrossRefGoogle Scholar
  19. 19.
    del Sol A, Tsai CJ, Ma B, Nussinov R (2009) The origin of allosteric functional modulation: multiple pre-existing pathways. Structure 17(8):1042–1050PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Di Cristofano A, Pesce B, Cordon-Cardo C, Pandolfi PP (1998) Pten is essential for embryonic development and tumour suppression. Nat Genet 19(4):348–355PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Dixit A, Yi L, Gowthaman R, Torkamani A, Schork NJ, Verkhivker GM (2009) Sequence and structure signatures of cancer mutation hotspots in protein kinases. PLoS One 4(10):e7485PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Dodson CA, Bayliss R (2012) Activation of Aurora-A kinase by protein partner binding and phosphorylation are independent and synergistic. J Biol Chem 287(2):1150–1157PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Endres NF, Engel K, Das R, Kovacs E, Kuriyan J (2011) Regulation of the catalytic activity of the EGF receptor. Curr Opin Struct Biol 21(6):777–784PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Feher VA, Durrant JD, Van Wart AT, Amaro RE (2014) Computational approaches to mapping allosteric pathways. Curr Opin Struct Biol 25:98–103PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Ferreiro DU, Komives EA, Wolynes PG (2018) Frustration, function and folding. Curr Opin Struct Biol 48:68–73PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Fetics SK, Guterres H, Kearney BM, Buhrman G, Ma B, Nussinov R, Mattos C (2015) Allosteric effects of the oncogenic RasQ61L mutant on Raf-RBD. Structure 23(3):505–516PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Ford B, Hornak V, Kleinman H, Nassar N (2006) Structure of a transient intermediate for GTP hydrolysis by ras. Structure 14(3):427–436PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Frauenfelder H, Sligar SG, Wolynes PG (1991) The energy landscapes and motions of proteins. Science 254(5038):1598–1603PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Freeman AK, Ritt DA, Morrison DK (2013) Effects of Raf dimerization and its inhibition on normal and disease-associated Raf signaling. Mol Cell 49(4):751–758PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Fukui M, Yamamoto T, Kawai S, Mitsunobu F, Toyoshima K (1987) Molecular cloning and characterization of an activated human c-raf-1 gene. Mol Cell Biol 7(5):1776–1781PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Fuxreiter M (2018) Towards a stochastic paradigm: from fuzzy ensembles to cellular functions. Molecules 23(11):3008PubMedCentralCrossRefGoogle Scholar
  32. 32.
    Gao J, Chang MT, Johnsen HC, Gao SP, Sylvester BE, Sumer SO, Zhang H, Solit DB, Taylor BS, Schultz N, Sander C (2017) 3D clusters of somatic mutations in cancer reveal numerous rare mutations as functional targets. Genome Med 9(1):4PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Gardino AK, Villali J, Kivenson A, Lei M, Liu CF, Steindel P, Eisenmesser EZ, Labeikovsky W, Wolf-Watz M, Clarkson MW, Kern D (2009) Transient non-native hydrogen bonds promote activation of a signaling protein. Cell 139(6):1109–1118PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Gkeka P, Evangelidis T, Pavlaki M, Lazani V, Christoforidis S, Agianian B, Cournia Z (2014) Investigating the structure and dynamics of the PIK3CA wild-type and H1047R oncogenic mutant. PLoS Comput Biol 10(10):e1003895PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Gorfe AA, Grant BJ, McCammon JA (2008) Mapping the nucleotide and isoform-dependent structural and dynamical features of Ras proteins. Structure 16(6):885–896PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Gulyas G, Radvanszki G, Matuska R, Balla A, Hunyady L, Balla T, Varnai P (2017) Plasma membrane phosphatidylinositol 4-phosphate and 4,5-bisphosphate determine the distribution and function of K-Ras4B but not H-Ras proteins. J Biol Chem 292(46):18862–18877PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Gunasekaran K, Ma B, Nussinov R (2004) Is allostery an intrinsic property of all dynamic proteins? Proteins 57(3):433–443PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Hall BE, Bar-Sagi D, Nassar N (2002) The structural basis for the transition from Ras-GTP to Ras-GDP. Proc Natl Acad Sci U S A 99(19):12138–12142PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Hatzivassiliou G, Song K, Yen I, Brandhuber BJ, Anderson DJ, Alvarado R, Ludlam MJ, Stokoe D, Gloor SL, Vigers G, Morales T, Aliagas I, Liu B, Sideris S, Hoeflich KP, Jaiswal BS, Seshagiri S, Koeppen H, Belvin M, Friedman LS, Malek S (2010) RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature 464(7287):431–435PubMedCrossRefGoogle Scholar
  40. 40.
    Heidecker G, Huleihel M, Cleveland JL, Kolch W, Beck TW, Lloyd P, Pawson T, Rapp UR (1990) Mutational activation of c-raf-1 and definition of the minimal transforming sequence. Mol Cell Biol 10(6):2503–2512PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Heidorn SJ, Milagre C, Whittaker S, Nourry A, Niculescu-Duvas I, Dhomen N, Hussain J, Reis-Filho JS, Springer CJ, Pritchard C, Marais R (2010) Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell 140(2):209–221PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Hu J, Stites EC, Yu H, Germino EA, Meharena HS, Stork PJS, Kornev AP, Taylor SS, Shaw AS (2013) Allosteric activation of functionally asymmetric RAF kinase dimers. Cell 154(5):1036–1046PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Huang L, Hofer F, Martin GS, Kim SH (1998) Structural basis for the interaction of Ras with RalGDS. Nat Struct Biol 5(6):422–426PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Huang CH, Mandelker D, Gabelli SB, Amzel LM (2008) Insights into the oncogenic effects of PIK3CA mutations from the structure of p110alpha/p85alpha. Cell Cycle 7(9):1151–1156PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Huang W, Wang G, Shen Q, Liu X, Lu S, Geng L, Huang Z, Zhang J (2015) ASBench: benchmarking sets for allosteric discovery. Bioinformatics 31(15):2598–2600PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Huang M, Song K, Liu X, Lu S, Shen Q, Wang R, Gao J, Hong Y, Li Q, Ni D, Xu J, Chen G, Zhang J (2018) AlloFinder: a strategy for allosteric modulator discovery and allosterome analyses. Nucleic Acids Res 46(W1):W451–W458PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Huse M, Kuriyan J (2002) The conformational plasticity of protein kinases. Cell 109(3):275–282PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Hynes NE, MacDonald G (2009) ErbB receptors and signaling pathways in cancer. Curr Opin Cell Biol 21(2):177–184PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Invernizzi G, Tiberti M, Lambrughi M, Lindorff-Larsen K, Papaleo E (2014) Communication routes in ARID domains between distal residues in helix 5 and the DNA-binding loops. PLoS Comput Biol 10(9):e1003744PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Ishikawa F, Takaku F, Hayashi K, Nagao M, Sugimura T (1986) Activation of rat c-raf during transfection of hepatocellular carcinoma DNA. Proc Natl Acad Sci U S A 83(10):3209–3212PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Ishikawa F, Sakai R, Ochiai M, Takaku F, Sugimura T, Nagao M (1988) Identification of a transforming activity suppressing sequence in the c-raf oncogene. Oncogene 3(6):653–658PubMedPubMedCentralGoogle Scholar
  52. 52.
    Jambrina PG, Bohuszewicz O, Buchete NV, Kolch W, Rosta E (2014) Molecular mechanisms of asymmetric RAF dimer activation. Biochem Soc Trans 42(4):784–790PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Jambrina PG, Rauch N, Pilkington R, Rybakova K, Nguyen LK, Kholodenko BN, Buchete NV, Kolch W, Rosta E (2016) Phosphorylation of RAF kinase dimers drives conformational changes that facilitate transactivation. Angew Chem Int Ed Engl 55(3):983–986PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Jang H, Banerjee A, Chavan TS, Lu S, Zhang J, Gaponenko V, Nussinov R (2016a) The higher level of complexity of K-Ras4B activation at the membrane. FASEB J 30(4):1643–1655PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Jang H, Muratcioglu S, Gursoy A, Keskin O, Nussinov R (2016b) Membrane-associated Ras dimers are isoform-specific: K-Ras dimers differ from H-Ras dimers. Biochem J 473(12):1719–1732PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Jura N, Endres NF, Engel K, Deindl S, Das R, Lamers MH, Wemmer DE, Zhang X, Kuriyan J (2009) Mechanism for activation of the EGF receptor catalytic domain by the juxtamembrane segment. Cell 137(7):1293–1307PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Jura N, Zhang X, Endres NF, Seeliger MA, Schindler T, Kuriyan J (2011) Catalytic control in the EGF receptor and its connection to general kinase regulatory mechanisms. Mol Cell 42(1):9–22PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Kapoor A, Travesset A (2015) Differential dynamics of RAS isoforms in GDP- and GTP-bound states. Proteins 83(6):1091–1106PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Kar G, Keskin O, Gursoy A, Nussinov R (2010) Allostery and population shift in drug discovery. Curr Opin Pharmacol 10(6):715–722PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Karakas B, Bachman KE, Park BH (2006) Mutation of the PIK3CA oncogene in human cancers. Br J Cancer 94(4):455–459PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Keskin O, Ma B, Nussinov R (2005) Hot regions in protein--protein interactions: the organization and contribution of structurally conserved hot spot residues. J Mol Biol 345(5):1281–1294PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Keskin O, Gursoy A, Ma B, Nussinov R (2008) Principles of protein-protein interactions: what are the preferred ways for proteins to interact? Chem Rev 108(4):1225–1244PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Khrenova MG, Mironov VA, Grigorenko BL, Nemukhin AV (2014) Modeling the role of G12V and G13V Ras mutations in the Ras-GAP-catalyzed hydrolysis reaction of guanosine triphosphate. Biochemistry 53(45):7093–7099PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Kim E, Ilic N, Shrestha Y, Zou L, Kamburov A, Zhu C, Yang X, Lubonja R, Tran N, Nguyen C, Lawrence MS, Piccioni F, Bagul M, Doench JG, Chouinard CR, Wu X, Hogstrom L, Natoli T, Tamayo P, Horn H, Corsello SM, Lage K, Root DE, Subramanian A, Golub TR, Getz G, Boehm JS, Hahn WC (2016) Systematic functional interrogation of rare cancer variants identifies oncogenic alleles. Cancer Discov 6(7):714–726PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Kumar S, Ma B, Tsai CJ, Sinha N, Nussinov R (2000) Folding and binding cascades: dynamic landscapes and population shifts. Protein Sci 9(1):10–19PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Kumar A, Glembo TJ, Ozkan SB (2015) The role of conformational dynamics and allostery in the disease development of human ferritin. Biophys J 109(6):1273–1281PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Lackmann M, Boyd AW (2008) Eph, a protein family coming of age: more confusion, insight, or complexity? Sci Signal 1(15):re2PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Lavoie H, Therrien M (2015) Regulation of RAF protein kinases in ERK signalling. Nat Rev Mol Cell Biol 16(5):281–298PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Lavoie H, Thevakumaran N, Gavory G, Li JJ, Padeganeh A, Guiral S, Duchaine J, Mao DY, Bouvier M, Sicheri F, Therrien M (2013) Inhibitors that stabilize a closed RAF kinase domain conformation induce dimerization. Nat Chem Biol 9(7):428–436PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Lemmon MA, Schlessinger J (2010) Cell signaling by receptor tyrosine kinases. Cell 141(7):1117–1134PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Li S, Shen Q, Su M, Liu X, Lu S, Chen Z, Wang R, Zhang J (2016) Alloscore: a method for predicting allosteric ligand-protein interactions. Bioinformatics 32(10):1574–1576PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Li S, Jang H, Zhang J, Nussinov R (2018a) Raf-1 cysteine-rich domain increases the affinity of K-Ras/Raf at the membrane, promoting MAPK signaling. Structure 26(3):513–525. e512PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Li ZL, Prakash P, Buck M (2018b) A “Tug of War” maintains a dynamic protein-membrane complex: molecular dynamics simulations of C-Raf RBD-CRD bound to K-Ras4B at an anionic membrane. ACS Cent Sci 4(2):298–305PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Liao TJ, Jang H, Fushman D, Nussinov R (2018) Allosteric KRas4B can modulate SOS1 fast and slow ras activation cycles. Biophys J 115(4):629–641PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Liu J, Nussinov R (2008) Allosteric effects in the marginally stable von Hippel-Lindau tumor suppressor protein and allostery-based rescue mutant design. Proc Natl Acad Sci U S A 105(3):901–906PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Liu JY, Chen XE, Zhang YL (2015) Insights into the key interactions between human protein phosphatase 5 and cantharidin using molecular dynamics and site-directed mutagenesis bioassays. Sci Rep 5:12359PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Lu S, Li S, Zhang J (2014) Harnessing allostery: a novel approach to drug discovery. Med Res Rev 34(6):1242–1285PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Lu S, Deng R, Jiang H, Song H, Li S, Shen Q, Huang W, Nussinov R, Yu J, Zhang J (2015) The mechanism of ATP-dependent allosteric protection of Akt kinase phosphorylation. Structure 23(9):1725–1734PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Lu S, Jang H, Muratcioglu S, Gursoy A, Keskin O, Nussinov R, Zhang J (2016a) Ras conformational ensembles, allostery, and signaling. Chem Rev 116(11):6607–6665PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Lu S, Jang H, Nussinov R, Zhang J (2016b) The structural basis of oncogenic mutations G12, G13 and Q61 in small GTPase K-Ras4B. Sci Rep 6:21949PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Lukman S, Grant BJ, Gorfe AA, Grant GH, McCammon JA (2010) The distinct conformational dynamics of K-Ras and H-Ras A59G. PLoS Comput Biol 6(9):e1000922PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Ma J, Karplus M (1997) Molecular switch in signal transduction: reaction paths of the conformational changes in ras p21. Proc Natl Acad Sci U S A 94(22):11905–11910PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Ma B, Kumar S, Tsai CJ, Nussinov R (1999) Folding funnels and binding mechanisms. Protein Eng 12(9):713–720PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Ma B, Shatsky M, Wolfson HJ, Nussinov R (2002) Multiple diverse ligands binding at a single protein site: a matter of pre-existing populations. Protein Sci 11(2):184–197PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298(5600):1912–1934PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Matsumoto S, Hiraga T, Hayashi Y, Yoshikawa Y, Tsuda C, Araki M, Neya M, Shima F, Kataoka T (2018) Molecular basis for allosteric inhibition of GTP-bound H-Ras protein by a small-molecule compound carrying a naphthalene ring. Biochemistry 57(36):5350–5358PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    McClendon CL, Friedland G, Mobley DL, Amirkhani H, Jacobson MP (2009) Quantifying correlations between allosteric sites in thermodynamic ensembles. J Chem Theory Comput 5(9):2486–2502PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Mi LZ, Lu C, Li Z, Nishida N, Walz T, Springer TA (2011) Simultaneous visualization of the extracellular and cytoplasmic domains of the epidermal growth factor receptor. Nat Struct Mol Biol 18(9):984–989PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Michael JV, Goldfinger LE (2017) Concepts and advances in cancer therapeutic vulnerabilities in RAS membrane targeting. Semin Cancer Biol 54:121–130PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Milburn MV, Tong L, deVos AM, Brunger A, Yamaizumi Z, Nishimura S, Kim SH (1990) Molecular switch for signal transduction: structural differences between active and inactive forms of protooncogenic ras proteins. Science 247(4945):939–945PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Miskei M, Gregus A, Sharma R, Duro N, Zsolyomi F, Fuxreiter M (2017) Fuzziness enables context dependence of protein interactions. FEBS Lett 591(17):2682–2695PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Molders H, Defesche J, Muller D, Bonner TI, Rapp UR, Muller R (1985) Integration of transfected LTR sequences into the c-raf proto-oncogene: activation by promoter insertion. EMBO J 4(3):693–698PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Morra G, Verkhivker G, Colombo G (2009) Modeling signal propagation mechanisms and ligand-based conformational dynamics of the Hsp90 molecular chaperone full-length dimer. PLoS Comput Biol 5(3):e1000323PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Muratcioglu S, Chavan TS, Freed BC, Jang H, Khavrutskii L, Freed RN, Dyba MA, Stefanisko K, Tarasov SG, Gursoy A, Keskin O, Tarasova NI, Gaponenko V, Nussinov R (2015) GTP-dependent K-Ras dimerization. Structure 23(7):1325–1335PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Nan X, Collisson EA, Lewis S, Huang J, Tamguney TM, Liphardt JT, McCormick F, Gray JW, Chu S (2013) Single-molecule superresolution imaging allows quantitative analysis of RAF multimer formation and signaling. Proc Natl Acad Sci U S A 110(46):18519–18524PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Nan X, Tamguney TM, Collisson EA, Lin LJ, Pitt C, Galeas J, Lewis S, Gray JW, McCormick F, Chu S (2015) Ras-GTP dimers activate the Mitogen-Activated Protein Kinase (MAPK) pathway. Proc Natl Acad Sci U S A 112(26):7996–8001PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Nassar N, Horn G, Herrmann C, Block C, Janknecht R, Wittinghofer A (1996) Ras/Rap effector specificity determined by charge reversal. Nat Struct Biol 3(8):723–729PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Nolen B, Taylor S, Ghosh G (2004) Regulation of protein kinases; controlling activity through activation segment conformation. Mol Cell 15(5):661–675PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Nussinov R, Ma B (2012) Protein dynamics and conformational selection in bidirectional signal transduction. BMC Biol 10:2PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Nussinov R, Tsai CJ (2012) The different ways through which specificity works in orthosteric and allosteric drugs. Curr Pharm Des 18(9):1311–1316PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Nussinov R, Tsai CJ (2013) Allostery in disease and in drug discovery. Cell 153(2):293–305PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Nussinov R, Tsai CJ (2014a) Free energy diagrams for protein function. Chem Biol 21(3):311–318PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Nussinov R, Tsai CJ (2014b) Unraveling structural mechanisms of allosteric drug action. Trends Pharmacol Sci 35(5):256–264PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Nussinov R, Tsai CJ (2015a) Allostery without a conformational change? Revisiting the paradigm. Curr Opin Struct Biol 30:17–24PubMedCrossRefGoogle Scholar
  105. 105.
    Nussinov R, Tsai CJ (2015b) ‘Latent drivers’ expand the cancer mutational landscape. Curr Opin Struct Biol 32:25–32PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Nussinov R, Wolynes PG (2014) A second molecular biology revolution? The energy landscapes of biomolecular function. Phys Chem Chem Phys 16(14):6321–6322PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Nussinov R, Tsai CJ, Xin F, Radivojac P (2012) Allosteric post-translational modification codes. Trends Biochem Sci 37(10):447–455PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Nussinov R, Ma B, Tsai CJ, Csermely P (2013a) Allosteric conformational barcodes direct signaling in the cell. Structure 21(9):1509–1521PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Nussinov R, Tsai CJ, Ma B (2013b) The underappreciated role of allostery in the cellular network. Annu Rev Biophys 42:169–189PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Nussinov R, Jang H, Tsai CJ (2014) The structural basis for cancer treatment decisions. Oncotarget 5(17):7285–7302PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Nussinov R, Tsai CJ, Jang H (2018a) Oncogenic Ras Isoforms signaling specificity at the membrane. Cancer Res 78(3):593–602PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Nussinov R, Zhang M, Tsai CJ, Liao TJ, Fushman D, Jang H (2018b) Autoinhibition in Ras effectors Raf, PI3Kalpha, and RASSF5: a comprehensive review underscoring the challenges in pharmacological intervention. Biophys Rev 10(5):1263–1282PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Pacold ME, Suire S, Perisic O, Lara-Gonzalez S, Davis CT, Walker EH, Hawkins PT, Stephens L, Eccleston JF, Williams RL (2000) Crystal structure and functional analysis of Ras binding to its effector phosphoinositide 3-kinase gamma. Cell 103(6):931–943PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Park MJ, Shen H, Spaeth JM, Tolvanen JH, Failor C, Knudtson JF, McLaughlin J, Halder SK, Yang Q, Bulun SE, Al-Hendy A, Schenken RS, Aaltonen LA, Boyer TG (2018) Oncogenic exon 2 mutations in Mediator subunit MED12 disrupt allosteric activation of cyclin C-CDK8/19. J Biol Chem 293(13):4870–4882PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Parker JA, Mattos C (2018) The K-Ras, N-Ras, and H-Ras isoforms: unique conformational preferences and implications for targeting oncogenic mutants. Cold Spring Harb Perspect Med 8(8):a031427PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Parra RG, Schafer NP, Radusky LG, Tsai MY, Guzovsky AB, Wolynes PG, Ferreiro DU (2016) Protein frustratometer 2: a tool to localize energetic frustration in protein molecules, now with electrostatics. Nucleic Acids Res 44(W1):W356–W360PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Poulikakos PI, Zhang C, Bollag G, Shokat KM, Rosen N (2010) RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature 464(7287):427–430PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Qin H, Lim L, Song J (2012) Protein dynamics at Eph receptor-ligand interfaces as revealed by crystallography, NMR and MD simulations. BMC Biophys 5:2PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Raimondi F, Portella G, Orozco M, Fanelli F (2011) Nucleotide binding switches the information flow in ras GTPases. PLoS Comput Biol 7(3):e1001098PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Rajakulendran T, Sahmi M, Lefrancois M, Sicheri F, Therrien M (2009) A dimerization-dependent mechanism drives RAF catalytic activation. Nature 461(7263):542–545PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Red Brewer M, Choi SH, Alvarado D, Moravcevic K, Pozzi A, Lemmon MA, Carpenter G (2009) The juxtamembrane region of the EGF receptor functions as an activation domain. Mol Cell 34(6):641–651PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Scarabelli G, Grant BJ (2014) Kinesin-5 allosteric inhibitors uncouple the dynamics of nucleotide, microtubule, and neck-linker binding sites. Biophys J 107(9):2204–2213PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Schultz AM, Copeland T, Oroszlan S, Rapp UR (1988) Identification and characterization of c-raf phosphoproteins in transformed murine cells. Oncogene 2(2):187–193PubMedPubMedCentralGoogle Scholar
  124. 124.
    Shan Y, Seeliger MA, Eastwood MP, Frank F, Xu H, Jensen MO, Dror RO, Kuriyan J, Shaw DE (2009) A conserved protonation-dependent switch controls drug binding in the Abl kinase. Proc Natl Acad Sci U S A 106(1):139–144PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Shan Y, Eastwood MP, Zhang X, Kim ET, Arkhipov A, Dror RO, Jumper J, Kuriyan J, Shaw DE (2012) Oncogenic mutations counteract intrinsic disorder in the EGFR kinase and promote receptor dimerization. Cell 149(4):860–870PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Shen Q, Cheng F, Song H, Lu W, Zhao J, An X, Liu M, Chen G, Zhao Z, Zhang J (2017) Proteome-scale investigation of protein allosteric regulation perturbed by somatic mutations in 7,000 cancer genomes. Am J Hum Genet 100(1):5–20PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Sondermann H, Soisson SM, Boykevisch S, Yang SS, Bar-Sagi D, Kuriyan J (2004) Structural analysis of autoinhibition in the Ras activator Son of sevenless. Cell 119(3):393–405PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Song K, Liu X, Huang W, Lu S, Shen Q, Zhang L, Zhang J (2017) Improved method for the identification and validation of allosteric sites. J Chem Inf Model 57(9):2358–2363PubMedCrossRefGoogle Scholar
  129. 129.
    Sperlich B, Kapoor S, Waldmann H, Winter R, Weise K (2016) Regulation of K-Ras4B membrane binding by calmodulin. Biophys J 111(1):113–122PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Stanton VP Jr, Cooper GM (1987) Activation of human raf transforming genes by deletion of normal amino-terminal coding sequences. Mol Cell Biol 7(3):1171–1179PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Stanton VP Jr, Nichols DW, Laudano AP, Cooper GM (1989) Definition of the human raf amino-terminal regulatory region by deletion mutagenesis. Mol Cell Biol 9(2):639–647PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Steklov M, Pandolfi S, Baietti MF, Batiuk A, Carai P, Najm P, Zhang M, Jang H, Renzi F, Cai Y, Abbasi Asbagh L, Pastor T, De Troyer M, Simicek M, Radaelli E, Brems H, Legius E, Tavernier J, Gevaert K, Impens F, Messiaen L, Nussinov R, Heymans S, Eyckerman S, Sablina AA (2018) Mutations in LZTR1 drive human disease by dysregulating RAS ubiquitination. Science 362(6419):1177–1182PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Sun H, Li Y, Tian S, Wang J, Hou T (2014) P-loop conformation governed crizotinib resistance in G2032R-mutated ROS1 tyrosine kinase: clues from free energy landscape. PLoS Comput Biol 10(7):e1003729PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Sun H, Tian S, Zhou S, Li Y, Li D, Xu L, Shen M, Pan P, Hou T (2015) Revealing the favorable dissociation pathway of type II kinase inhibitors via enhanced sampling simulations and two-end-state calculations. Sci Rep 5:8457PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Taylor SS, Kornev AP (2011) Protein kinases: evolution of dynamic regulatory proteins. Trends Biochem Sci 36(2):65–77PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Tehver R, Chen J, Thirumalai D (2009) Allostery wiring diagrams in the transitions that drive the GroEL reaction cycle. J Mol Biol 387(2):390–406PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Terrell EM, Morrison DK (2018) Ras-mediated activation of the Raf family kinases. Cold Spring Harb Perspect Med 9:a033746CrossRefGoogle Scholar
  138. 138.
    Thevakumaran N, Lavoie H, Critton DA, Tebben A, Marinier A, Sicheri F, Therrien M (2015) Crystal structure of a BRAF kinase domain monomer explains basis for allosteric regulation. Nat Struct Mol Biol 22(1):37–43PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Tran NH, Frost JA (2003) Phosphorylation of Raf-1 by p21-activated kinase 1 and Src regulates Raf-1 autoinhibition. J Biol Chem 278(13):11221–11226PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Tran NH, Wu X, Frost JA (2005) B-Raf and Raf-1 are regulated by distinct autoregulatory mechanisms. J Biol Chem 280(16):16244–16253PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Travers T, Lopez CA, Van QN, Neale C, Tonelli M, Stephen AG, Gnanakaran S (2018) Molecular recognition of RAS/RAF complex at the membrane: role of RAF cysteine-rich domain. Sci Rep 8(1):8461PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Tsai CJ, Nussinov R (2013) The molecular basis of targeting protein kinases in cancer therapeutics. Semin Cancer Biol 23(4):235–242PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Tsai CJ, Nussinov R (2014a) The free energy landscape in translational science: how can somatic mutations result in constitutive oncogenic activation? Phys Chem Chem Phys 16(14):6332–6341PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Tsai CJ, Nussinov R (2014b) A unified view of "how allostery works". PLoS Comput Biol 10(2):e1003394PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Tsai CJ, Nussinov R (2017) Allostery modulates the beat rate of a cardiac pacemaker. J Biol Chem 292(15):6429–6430PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Tsai CJ, Nussinov R (2018) Allosteric activation of RAF in the MAPK signaling pathway. Curr Opin Struct Biol 53:100–106PubMedCrossRefPubMedCentralGoogle Scholar
  147. 147.
    Tsai CJ, Kumar S, Ma B, Nussinov R (1999a) Folding funnels, binding funnels, and protein function. Protein Sci 8(6):1181–1190PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Tsai CJ, Ma B, Nussinov R (1999b) Folding and binding cascades: shifts in energy landscapes. Proc Natl Acad Sci U S A 96(18):9970–9972PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Tsai CJ, Ma B, Sham YY, Kumar S, Nussinov R (2001) Structured disorder and conformational selection. Proteins 44(4):418–427PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Tsai CJ, Ma B, Nussinov R (2009) Protein-protein interaction networks: how can a hub protein bind so many different partners? Trends Biochem Sci 34(12):594–600PubMedCrossRefPubMedCentralGoogle Scholar
  151. 151.
    Wan PT, Garnett MJ, Roe SM, Lee S, Niculescu-Duvaz D, Good VM, Jones CM, Marshall CJ, Springer CJ, Barford D, Marais R, Cancer Genome P (2004) Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 116(6):855–867PubMedCrossRefPubMedCentralGoogle Scholar
  152. 152.
    Wang Z, Longo PA, Tarrant MK, Kim K, Head S, Leahy DJ, Cole PA (2011) Mechanistic insights into the activation of oncogenic forms of EGF receptor. Nat Struct Mol Biol 18(12):1388–1393PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Wei G, Xi W, Nussinov R, Ma B (2016) Protein ensembles: how does nature harness thermodynamic fluctuations for life? The Diverse functional roles of conformational ensembles in the cell. Chem Rev 116(11):6516–6551PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Weikl TR, von Deuster C (2009) Selected-fit versus induced-fit protein binding: kinetic differences and mutational analysis. Proteins 75(1):104–110PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    Weinkam P, Pons J, Sali A (2012) Structure-based model of allostery predicts coupling between distant sites. Proc Natl Acad Sci U S A 109(13):4875–4880PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Wright LP, Philips MR (2006) Thematic review series: lipid posttranslational modifications. CAAX modification and membrane targeting of Ras. J Lipid Res 47(5):883–891PubMedCrossRefPubMedCentralGoogle Scholar
  157. 157.
    Xu Q, Tang Q, Katsonis P, Lichtarge O, Jones D, Bovo S, Babbi G, Martelli PL, Casadio R, Lee GR, Seok C, Fenton AW, Dunbrack RL Jr (2017) Benchmarking predictions of allostery in liver pyruvate kinase in CAGI4. Hum Mutat 38(9):1123–1131PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Yarden Y, Schlessinger J (1987a) Epidermal growth factor induces rapid, reversible aggregation of the purified epidermal growth factor receptor. Biochemistry 26(5):1443–1451PubMedCrossRefPubMedCentralGoogle Scholar
  159. 159.
    Yarden Y, Schlessinger J (1987b) Self-phosphorylation of epidermal growth factor receptor: evidence for a model of intermolecular allosteric activation. Biochemistry 26(5):1434–1442PubMedCrossRefPubMedCentralGoogle Scholar
  160. 160.
    Yarden Y, Sliwkowski MX (2001) Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2(2):127–137PubMedCrossRefPubMedCentralGoogle Scholar
  161. 161.
    Yun CH, Boggon TJ, Li Y, Woo MS, Greulich H, Meyerson M, Eck MJ (2007) Structures of lung cancer-derived EGFR mutants and inhibitor complexes: mechanism of activation and insights into differential inhibitor sensitivity. Cancer Cell 11(3):217–227PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Yun CH, Mengwasser KE, Toms AV, Woo MS, Greulich H, Wong KK, Meyerson M, Eck MJ (2008) The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc Natl Acad Sci U S A 105(6):2070–2075PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Zhan C, Qi R, Wei G, Guven-Maiorov E, Nussinov R, Ma B (2016) Conformational dynamics of cancer-associated MyD88-TIR domain mutant L252P (L265P) allosterically tilts the landscape toward homo-dimerization. Protein Eng Des Sel 29(9):347–354PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Zhang BH, Guan KL (2000) Activation of B-Raf kinase requires phosphorylation of the conserved residues Thr598 and Ser601. EMBO J 19(20):5429–5439PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Zhang BH, Guan KL (2001) Regulation of the Raf kinase by phosphorylation. Exp Lung Res 27(3):269–295PubMedCrossRefPubMedCentralGoogle Scholar
  166. 166.
    Zhang X, Gureasko J, Shen K, Cole PA, Kuriyan J (2006) An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor. Cell 125(6):1137–1149PubMedCrossRefPubMedCentralGoogle Scholar
  167. 167.
    Zhou Y, Prakash P, Liang H, Cho KJ, Gorfe AA, Hancock JF (2017) Lipid-sorting specificity encoded in K-Ras membrane anchor regulates signal output. Cell 168(1–2):239–251. e216PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer ResearchNational Cancer InstituteFrederickUSA
  2. 2.Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of MedicineTel Aviv UniversityTel AvivIsrael

Personalised recommendations