Advertisement

Allosteric Small-Molecule Serine/Threonine Kinase Inhibitors

  • Resmi C. Panicker
  • Souvik Chattopadhaya
  • Anthony G. Coyne
  • Rajavel SrinivasanEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1163)

Abstract

Deregulation of protein kinase activity has been linked to many diseases ranging from cancer to AIDS and neurodegenerative diseases. Not surprisingly, drugging the human kinome – the complete set of kinases encoded by the human genome – has been one of the major drug discovery pipelines. Majority of the approved clinical kinase inhibitors target the ATP binding site of kinases. However, the remarkable sequence and structural similarity of ATP binding pockets of kinases make selective inhibition of kinases a daunting task. To circumvent these issues, allosteric inhibitors that target sites other than the orthosteric ATP binding pocket have been developed. The structural diversity of the allosteric sites allows these inhibitors to have higher selectivity, lower toxicity and improved physiochemical properties and overcome drug resistance associated with the use of conventional kinase inhibitors. In this chapter, we will focus on the allosteric inhibitors of selected serine/threonine kinases, outline the benefits of using these inhibitors and discuss the challenges and future opportunities.

Keywords

Kinase allostery Allosteric inhibitors SMKI FBDD MEK allosteric inhibitors Aurora A kinase Aurora A-TPX2 CK2α CDK Akt 

Notes

Acknowledgements

RS acknowledges the School of Pharmaceutical Science and Technology (SPST), Tianjin University for the funding support and Tianjin municipal government for the Tianjin 1000-Talents (Youth) award. RCP acknowledges the Tianjin University for the Post-Doctoral Fellowship support.

References

  1. 1.
    Adrian FJ, Ding Q, Sim T, Velentza A, Sloan C, Liu Y, Zhang G, Hur W, Ding S, Manley P, Mestan J, Fabbro D, Gray NS (2006) Allosteric inhibitors of Bcr-abl-dependent cell proliferation. Nature Chem Biol 2(2):95–102CrossRefGoogle Scholar
  2. 2.
    Anand S, Penrhyn-Lowe S, Venkitaraman AR (2003) AURORA-A amplification overrides the mitotic spindle assembly checkpoint, inducing resistance to Taxol. Cancer Cell 3(1):51–62PubMedCrossRefGoogle Scholar
  3. 3.
    Anscombe E, Meschini E, Mora-Vidal R, Martin MP, Staunton D, Geitmann M, Danielson U, Stanley WA, Wang LZ, Reuillon T, Golding BT, Cano C, Newell DR, Noble ME, Wedge SR, Endicott JA, Griffin RJ (2015) Identification and characterization of an irreversible inhibitor of CDK2. Chem Biol 22:1159–1164PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Ashwell MA, Lapierre JM, Brassard C, Bresciano K, Bull C, Cornell-Kennon S, Eathiraj S, France DS, Hall T, Hill J, Kelleher E, Khanapurkar S, Kizer D, Koerner S, Link J, Liu Y, Makhija S, Moussa M, Namdev N, Nguyen K, Nicewonger R, Palma R, Szwaya J, Tandon M, Uppalapati U, Vensel D, Volak LP, Volckova E, Westlund N, Wu H, Yang RY, Chan TC (2012) Discovery and optimization of a series of 3-(3-phenyl-3H-imidazo[4,5-b]pyridin-2-yl)pyridin-2-amines: orally bioavailable, selective, and potent ATP-independent Akt inhibitors. J Med Chem 55:5291–5310PubMedCrossRefGoogle Scholar
  5. 5.
    Barr AR, Gergely F (2007) Aurora-A: the maker and breaker of spindle poles. J Cell Sci 120(Pt 17):2987–2996PubMedCrossRefGoogle Scholar
  6. 6.
    Bavetsias V, Linardopoulos S (2015) Aurora kinase inhibitors: current status and outlook. Front Oncol 5:278PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Bayliss R, Sardon T, Vernos I, Conti E (2003) Structural basis of Aurora-A activation by TPX2 at the mitotic spindle. Mol Cell 12(4):851–862CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Bayliss R, Burgess SG, McIntyre PJ (2017) Switching Aurora-A kinase on and off at an allosteric site. FEBS J 284(18):2947–2954PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Bembenek SD, Tounge BA, Reynolds CH (2009) Ligand efficiency and fragment-based drug discovery. Drug Discov Today 14:278–283PubMedCrossRefGoogle Scholar
  10. 10.
    Berdnik D, Knoblich JA (2002) Drosophila Aurora-A is required for centrosome maturation and actin-dependent asymmetric protein localization during mitosis. Curr Biol 12(8):640–647PubMedCrossRefGoogle Scholar
  11. 11.
    Bird AW, Hyman AA (2008) Building a spindle of the correct length in human cells requires the interaction between TPX2 and Aurora A. J Cell Biol 182(2):289–300PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Bollag G, Tsai J, Zhang J, Zhang C, Ibrahim P, Nolop K, Hirth P (2012) Vemurafenib: the first drug approved for BRAF-mutant cancer. Nat Rev Drug Discov 11(11):873–886PubMedCrossRefGoogle Scholar
  13. 13.
    Borisa AC, Bhatt HG (2017) A comprehensive review on Aurora kinase: small molecule inhibitors and clinical trial studies. Eur J Med Chem 140:1–19PubMedCrossRefGoogle Scholar
  14. 14.
    Bortolato A, Cozza G, Moro S (2008) Protein kinase CK2 inhibitors: emerging anticancer therapeutic agents? Anticancer Agents Med Chem 7(8):789–806Google Scholar
  15. 15.
    Brear P, De Fusco C, Georgiou KH, Francis-Newton NJ, Stubbs CJ, Sore HF, Venkitaraman AR, Abell C, Spring DR, Hyvönen M (2016) Specific inhibition of CK2α from an anchor outside the active site. Chem Sci 7(11):6839–6845PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Brear P, North A, legre J, Georgiou KH, Lubin A, Carro L, Green W, Sore HF, Hyvönen M, Spring DR (2018) Novel non-ATP competitive small molecules targeting the CK2α/β interface. Bioorg Med Chem 26:3016–3020PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Burotto M, Chiou VL, Lee JM, Kohn EC (2014) The MAPK pathway across different malignancies: a new perspective. Cancer 120(22):3446–3456PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Carmena M, Earnshaw WC (2003) The cellular geography of aurora kinases. Nat Rev Mol Cell Biol 4(11):842–854PubMedCrossRefGoogle Scholar
  19. 19.
    Cohen P, Alessi DR (2013) Kinase drug discovery – what’s next in the field? ACS Chem Biol 8:96–104PubMedCrossRefGoogle Scholar
  20. 20.
    Congreve M, Carr R, Murray C, Jhoti H (2003) A ‘rule of three’ for fragment-based lead discovery? Drug Discov Today 8:876–877PubMedCrossRefGoogle Scholar
  21. 21.
    Conti E, Bayliss R, Schultz C, Vernos I, Sardon T (2006) Crystals of an aurora-A TPX2 complex, TPX2 binding site of aurora-A, aurora-A ligands and their use. WO2005040368Google Scholar
  22. 22.
    Cowan-Jacob SW, Jahnke W, Knapp S (2014) Novel approaches for targeting kinases: allosteric inhibition, allosteric activation and pseudokinases. Future Med Chem 6(5):541–561PubMedCrossRefGoogle Scholar
  23. 23.
    Cowley DO, Rivera-Pérez JA, Schliekelman M, He YJ, Oliver TG, Lu L, O’Quinn R, Salmon ED, Magnuson T, Van Dyke T (2009) Aurora-A kinase is essential for bipolar spindle formation and early development. Mol Cell Biol 29(4):1059–1071PubMedCrossRefGoogle Scholar
  24. 24.
    Coyne AG, Scott DE, Abell C (2010) Drugging challenging targets using fragment-based approaches. Curr Opin Chem Biol. 14(3):299–307PubMedCrossRefGoogle Scholar
  25. 25.
    Cozza G, Pinna LA (2016) Caesin kinases as potential therapeutic targets. Expert Opin Ther Targets 20(3):319–340PubMedCrossRefGoogle Scholar
  26. 26.
    Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, Davis N, Dicks E, Ewing R, Floyd Y, Gray K, Hall S, Hawes R, Hughes J, Kosmidou V, Menzies A, Mould C, Parker A, Stevens C, Watt S, Hooper S, Wilson R, Jayatilake H, Gusterson BA, Cooper C, Shipley J, Hargrave D, Pritchard-Jones K, Maitland N, Chenevix-Trench G, Riggins GJ, Bigner DD, Palmieri G, Cossu A, Flanagan A, Nicholson A, Ho JW, Leung SY, Yuen ST, Weber BL, Seigler HF, Darrow TL, Paterson H, Marais R, Marshall CJ, Wooster R, Stratton MR, Futreal PA (2002) Mutations of the BRAF gene in human cancer. Nature 417(6892):949–954CrossRefGoogle Scholar
  27. 27.
    Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, Pallares G, Hocker M, Treiber DK, Zarrinkar PP (2011) Comprehensive analysis of kinase inhibitor selectivity. Nat Biotechnol 29(11):1046–1051CrossRefGoogle Scholar
  28. 28.
    De Fusco C, Brear P, legre J, Georgiou KH, Sore HF, Hyvönen M, Spring DR (2017) A fragment-based approach leading to the discovery of novel binding site and the selective CK2 inhibitor CAM4066. Biorg Med Chem 25(13):3471–3482CrossRefGoogle Scholar
  29. 29.
    De Luca A, Maiello MR, D’Alessio A, Pergameno M, Normanno N (2012) The RAS/RAF/MEK/ERK and the PI3K/AKT signalling pathways: role in cancer pathogenesis and implications for therapeutic approaches. Expert Opin Ther Targets 16(Suppl 2):S17–S27PubMedCrossRefGoogle Scholar
  30. 30.
    Endicott JA, Noble ME, Johnson LN (2012) The structural basis for control of eukaryotic protein kinases. Annu Rev Biochem 81:587–613PubMedCrossRefGoogle Scholar
  31. 31.
    Erlanson DA, Wells JA, Braisted AC (2004) Tethering: Fragment-based drug discovery. Annu Rev Biophys Biomol Struct 33:199–223PubMedCrossRefGoogle Scholar
  32. 32.
    Erlanson DA, Fesik SW, Hubbard RE, Jahnke W, Jhoti H (2016) Twenty years on: the impact of fragments on drug discovery. Nat Rev Drug Discov 15(9):605–619PubMedCrossRefGoogle Scholar
  33. 33.
    Faghfuri E, Nikfar S, Niaz K, Faramarzi MA, Abdollahi M (2018) Mitogen-activated protein kinase (MEK) inhibitors to treat melanoma alone or in combination with other kinase inhibitors. Expert Opin Drug Metab Toxicol 14(3):317–330PubMedCrossRefGoogle Scholar
  34. 34.
    Fang Z, Grütter C, Rauh D (2013) Strategies for the selective regulation of kinases with allosteric modulators: exploiting exclusive structural features. ACS Chem Biol 8(1):58–70PubMedCrossRefGoogle Scholar
  35. 35.
    Ferguson FM, Gray NS (2018) Kinase inhibitors: the road ahead. Nat Rev Drug Discov 17(5):353–377PubMedCrossRefGoogle Scholar
  36. 36.
    Ficarro SB, McCleland ML, Stukenberg PT, Burke DJ, Ross MM, Shabanowitz J, Hunt DF, White FM (2002) Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat Biotechnol 20(3):301–305PubMedCrossRefGoogle Scholar
  37. 37.
    Fischer PM (2004) The design of drug candidate molecules as selective inhibitors of therapeutically relevant protein kinases. Curr Med Chem 11(12):1563–1583PubMedCrossRefGoogle Scholar
  38. 38.
    Garuti L, Roberti M, Bottegoni G (2010) Non-ATP competitive protein kinase inhibitors. Curr Med Chem 17(25):2804–2821PubMedCrossRefGoogle Scholar
  39. 39.
    Gautschi O, Heighway J, Mack PC, Purnell PR, Lara PN, Jr Gandara DR (2008) Aurora kinases as anticancer drug targets. Clin Cancer Res 14(6):1639–1648PubMedCrossRefGoogle Scholar
  40. 40.
    Gavrin LK, Saiah E (2013) Approaches to discover non-ATP site inhibitors. Med Chem Commun 4:41–51CrossRefGoogle Scholar
  41. 41.
    Getlik M, Simard JR, Termathe M, Grütter C, Rabiller M, van Otterlo WA, Rauh D (2012) Fluorophore labelled kinase detects ligands that bind within the MAPK insert of p38α kinase. PLoS One 7(7):e39713PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Gharwan H, Groninger H (2016) Kinase inhibitors and monoclonal antibodies in oncology: clinical implications. Nat Rev Clin Oncol 13(4):209–227PubMedCrossRefGoogle Scholar
  43. 43.
    Gibbons DL, Pricl S, Kantarjian H, Cortes J, Quintás-Cardama A (2012) The rise and fall of gatekeeper mutations? The BCR-ABL1 T315I paradigm. Cancer 118(2):293–299PubMedCrossRefGoogle Scholar
  44. 44.
    Giet R, McLean D, Descamps S, Lee MJ, Raff JW, Prigent C, Glover DM (2002) Drosophila Aurora A kinase is required to localize D-TACC to centrosomes and to regulate astral microtubules. J Cell Biol 156(3):437–451PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Gilmartin AG, Bleam MR, Groy A, Moss KG, Minthorn EA, Kulkarni SG, Rominger CM, Erskine S, Fisher KE, Yang J, Zappacosta F, Annan R, Sutton D, Laquerre SG (2011) GSK1120212 (JTP-74057) is an inhibitor of MEK activity and activation with favorable pharmacokinetic properties for sustained in vivo pathway inhibition. Clin Cancer Res 17(5):989–1000PubMedCrossRefGoogle Scholar
  46. 46.
    Goldenson B, Crispino JD (2015) The aurora kinases in cell cycle and leukemia. Oncogene 34:537–545PubMedCrossRefGoogle Scholar
  47. 47.
    Goodwin NC, Cianchetta G, Burgoon HA, Healy J, Mabon R, Strobel ED, Allen J, Wang S, Hamman BD, Rawlins DB (2014) Discovery of a type III inhibitor of LIM knase 2 that binds in a DFG-Out conformation. ACS Med Chem Lett 6(1):53–57PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Hannak E, Kirkham M, Hyman AA, Oegema K (2001) Aurora-A kinase is required for centrosome maturation in Caenorhabditis elegans. J Cell Biol 155(7):1109–1116PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Hatzivassiliou G, Haling JR, Chen H, Song K, Price S, Heald R, Hewitt JF, Zak M, Peck A, Orr C, Merchant M, Hoeflich KP, Chan J, Luoh SM, Anderson DJ, Ludlam MJ, Wiesmann C, Ultsch M, Friedman LS, Malek S, Belvin M (2013) Mechanism of MEK inhibition determines efficacy in mutant KRAS- versus BRAF-driven cancers. Nature 501(7466):232–236PubMedCrossRefGoogle Scholar
  50. 50.
    Heptinstall AB, Adiyasa I, Cano C, Hardcastle IR (2018) Recent advances in CDK inhibitors for cancer therapy. Future Med Chem 10(11):1369–1388PubMedCrossRefGoogle Scholar
  51. 51.
    Hirai H, Sootome H, Nakatsuru Y, Miyama K, Taguichi S, Tsujikoa K, Ueno Y, Hatch H, Majumder PK, Pan B-S, Kotani H (2010) MM-2206, an allosteric Atk inhibitor, enhances antitumor efficacy by standard chemotherapeutic agents or molecular targeted drugs in vitro and in vivo. Mol Cancer Ther 9(7):1956–1967PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Hirota T, Naoko K, Saya H (2003) Aurora-A and an interacting activator, the LIM protein Ajuba, are requiredfor mitotic commitment in human cells. Cell 114(5):585–598PubMedCrossRefGoogle Scholar
  53. 53.
    Holderfield M, Deuker MM, McCormick F, McMahon M (2014) Targeting RAF kinases for cancer therapy: BRAF-mutated melanoma and beyond. Nat Rev Cancer 14(7):455–467PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Hu Y, Li S, Liu F, Geng L, Shu X, Zhang J (2015) Discovery of novel nonpeptide allosteric inhibitors interrupting the interaction of CDK2/cyclin A3 by virtual screening and bioassays. Bioorg Med Chem Lett 25(19):4069–4073PubMedCrossRefGoogle Scholar
  55. 55.
    Huang W, Lu S, Huang Z, Liu X, Mou L, Luo Y, Zhao Y, Liu Y, Chen Z, Hou T, Zhang J (2013) Allosite: a method for predicting allosteric sites. Bioinformatics 29:2357–2359PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Huang Z, Mou L, Shen Q, Lu S, Li C, Liu X, Wang G, Li S, Geng L, Chen G, Zhang J (2014) ASD v2.0: updated content and novel features focusing on allosteric regulation. Nucleic Acids Res 42:D510–D516PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Hutterer A, Berdnik D, Wirtz-Peitz F, Zigman M, Schleiffer A, Knoblich JA (2006) Mitotic activation of the kinase Aurora-A requires its binding partner Bora. Dev Cell 11(2):147–157PubMedCrossRefGoogle Scholar
  58. 58.
    Janeček M, Rossmann M, Sharma P, Emery A, Huggins DJ, Stockwell SR, Stokes JE, Tan YS, Almeida EG, Hardwick B, Narvaez AJ, Hyvönen M, Spring DR, McKenzie GJ, Venkitaraman AR (2016) Allosteric modulation of AURKA kinase activity by a small-molecule inhibitor of its protein-protein interaction with TPX2. Sci Rep 6:28528PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Jeong W, Doroshow JH, Kummar S (2013) US FDA approved oral kinase inhibitors for the treatment of malignancies. Curr Probl Cancer 37(3):110–144PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Johnson LN, Lewis RJ (2001) Structural basis for control by phosphorylation. Chem Rev 101(8):2209–2242PubMedCrossRefGoogle Scholar
  61. 61.
    Jokinen E, Koivunen JP (2015) MEK and PI3K inhibition in solid tumours: rationale and evidence to date. Ther Adv Med Oncol 7:170–180PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Jorda R, Hendrychová D, Voller J, Řezníčková E, Gucký T, Kryštof V (2018) How selective are pharmacological inhibitors of cell-cycle-regulating cyclin-dependent kinases? J Med Chem 61(20):9105–9120PubMedCrossRefGoogle Scholar
  63. 63.
    Kalesh KA, Liu K, Yao SQ (2009) Rapid synthesis of Abelson tyrosine kinase inhibitors using click chemistry. Org Biomol Chem 7(24):5129–5136PubMedCrossRefGoogle Scholar
  64. 64.
    Karpov AS, Amiri P, Bellamacina C, Bellance MH, Breitenstein W, Daniel D, Denay R, Fabbro D, Fernandez C, Galuba I, Guerro-Lagasse S, Gutmann S, Hinh L, Jahnke W, Klopp J, Lai A, Lindvall MK, Ma S, Mobitz H, Pecchi S, Rummel G, Shoemaker K, Trappe J, Voliva C, Cowan-Jacob SW, Marzinzik AL (2015) Optimization of a dibenzodiazepine hit to a potent and selective allosteric PAK1 inhibitor. ACS Med Chem Lett 6(7):776–781PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Koelblinger P, Dornbierer J, Dummer R (2017) A review of binimetinib for the treatment of mutant cutaneous melanoma. Future Oncol 13(20):1755–1766PubMedCrossRefGoogle Scholar
  66. 66.
    Kolb HC, Sharpless KB (2003) The growing impact of click chemistry on drug discovery. Drug Discov Today 8(24):1128–1137PubMedCrossRefGoogle Scholar
  67. 67.
    Krimm I, Lancelin JM, Praly JP (2012) Binding evaluation of fragment-based scaffolds for probing allosteric enzymes. J Med Chem 55(3):1287–1295PubMedCrossRefGoogle Scholar
  68. 68.
    Kufer TA, Silljé HH, Körner R, Gruss OJ, Meraldi P, Nigg EA (2002) Human TPX2 is required for targeting Aurora-A kinase to the spindle. J Cell Biol 158(4):617–623PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Lamba V, Ghosh I (2012) New directions in targeting protein kinases: focusing upon true allosteric and bivalent inhibitors. Curr Pharm Des 18:2936–2945PubMedCrossRefGoogle Scholar
  70. 70.
    Law ME, Corsino PE, Narayan S, Law BK (2015) Cyclin-dependent kinase inhibitors as anticancer therapeutics. Mol Pharmacol 88(5):846–852PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    legre J, Braer P, De Fusco C, Yoshida M, Mitchell SL, Rossmann M, Carro L, Sore HF, Hyvönen M, Spring DR (2018) Second-generation CK2α inhibitors targeting the αD pocket. Chem Sci 9(11):3041–3049CrossRefGoogle Scholar
  72. 72.
    Lewis J (2007) Aurora Kinase Inhibitors. WO2007115805Google Scholar
  73. 73.
    Lim HY, Merle P, Weiss KH, Yau T, Ross P, Mazzaferro V, Blanc JF, Ma YT, Yen CJ, Kocsis J, Choo SP, Sukeepaisarnjaroen W, Gérolami R, Dufour JF, Gane EJ, Ryoo BY, Peck-Radosavljevic M, Dao T, Yeo W, Lamlertthon W, Thongsawat S, Teufel M, Roth K, Reis D, Childs BH, Krissel H, Llovet JM (2018) Phase II studies with refametinib or refametinib plus sorafenib in patients with RAS-mutated hepatocellular carcinoma. Clin Cancer Res 24(19):4650–4661PubMedCrossRefGoogle Scholar
  74. 74.
    Lin S, Yang X, Jia S, Weeks AM, Hornsby M, Lee PS, Nichiporuk RV, Iavarone AT, Wells JA, Toste FD, Chang CJ (2017) Redox-based reagents for chemoselective methionine bioconjugation. Science 355:597–602PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Liu Q, Kaneko S, Yang L, Feldman RI, Nicosia SV, Chen J, Cheng JQ (2004) Aurora-A abrogation of p53 DNA binding and transactivation activity by phosphorylation of serine 215. J Biol Chem 279(50):52175–52182PubMedCrossRefGoogle Scholar
  76. 76.
    Lu S, Li S, Zhang J (2014) Harnessing allostery: a novel approach to drug discovery. Med Res Rev 34(6):1242–1285PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Luke JL, Ott PA, Shapiro GI (2014) The biology and clinical development of MEK inhibitors for cancer. Drugs 74:2111–2128PubMedCrossRefGoogle Scholar
  78. 78.
    Lynce F, Shajahan-Haq AN, Swain SM (2018) CDK4/6 inhibitors in breast cancer therapy: Current practice and future opportunities. Pharmacol Ther 191:65–73PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Malumbres M (2014) Cyclin-dependent kinases. Genome Biol 15(6):122PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Manning G, Whyte DB, Martinez R, Hunter T, Sundarsanam S (2002) The protein kinase complement of the human genome. Science 298(5600):1912–1934PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Mobitz H, Jahnke W, Cowan-Jacob SW (2017) Expanding the opportunities for modulating kinase targets with allosteric approaches. Curr Top Med Chem 17(1):59–70PubMedCrossRefGoogle Scholar
  82. 82.
    Modesti M (2018) Fluorescent Labelling of Proteins. Methods Mol Biol 1665:115–134PubMedCrossRefGoogle Scholar
  83. 83.
    Murray CW, Rees DC (2009) The rise of fragment-based drug discovery. Nat Chem 1(3):187–192CrossRefGoogle Scholar
  84. 84.
    Ni D, Lu S, Zhang J (2018) Methods applied for the allosteric site revelation. Encyclopedia of Analytical Chemistry. Wiley.Google Scholar
  85. 85.
    Nussinov R, Tsai CJ, Liu J (2014) Principles of allosteric interactions in cell signaling. J Am Chem Soc 136(51):17692–17701PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Otto T, Horn S, Brockmann M, Eilers U, Schüttrumpf L, Popov N, Kenney AM, Schulte JH, Beijersbergen R, Christiansen H, Berwanger B, Eilers M (2009) Stabilization of N-Myc is a critical function of Aurora A in human neuroblastoma. Cancer Cell 15(1):67–78PubMedCrossRefGoogle Scholar
  87. 87.
    Panicker RC, Coyne AG, Srinivasan R (2017) Allosteric targeting of Aurora A kinase using small molecules: a step forward towards next generation medicines? Curr Med Chem doi.  https://doi.org/10.2174/0929867324666170727120315PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Panjkovich A, Daura X (2014) PARS: a web server for the prediction of protein allosteric and regulatory sites. Bioinformatics 30(9):1314–1315CrossRefGoogle Scholar
  89. 89.
    Pargellis C, Tong L, Churchill L, Cirillo PF, Gilmore T, Graham AG, Grob PM, Hickey ER, Moss N, Pav S, Regan J (2002) Inhibition of p38 MAP kinase by utilizing a novel allosteric binding site. Nat Struct Biol 9(4):268–272PubMedCrossRefGoogle Scholar
  90. 90.
    Prudent R, Cochet C (2009) New protein kinase CK2 inhibitors: jumping out of the catalytic box. Chem Biol 16(2):112–120PubMedCrossRefGoogle Scholar
  91. 91.
    Rastelli G, Anighoro A, Chripkova M, Carrassa L, Broggini M (2014) Structure-based discovery of the first allosteric inhibitors of cyclin-dependent kinase 2. Cell Cycle 13(14):2296–2305PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Rauch J, Volinsky N, Romano D, Kolch W (2011) The secret life of kinases: functions beyond catalysis. Cell Commun Signal. 9(1):23PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Rennie YK, McIntyre PJ, Akindele T, Bayliss R, Jamieson AG (2016) A TPX2 Proteomimetic has enhanced affinity for Aurora-A due to hydrocarbon stapling of a helix. ACS Chem Biol 11(12):3383–3390PubMedCrossRefGoogle Scholar
  94. 94.
    Rice KD, Aay N, Anand NK, Blazey CM, Bowles OJ, Bussenius J, Costanzo S, Curtis JK, Defina SC, Dubenko L, Engst S, Joshi AA, Kennedy AR, Kim AI, Koltun ES, Lougheed JC, Manalo JC, Martini JF, Nuss JM, Peto CJ, Tsang TH, Yu P, Johnston S (2013) Novel Carboxamide-Based Allosteric MEK Inhibitors: Discovery and Optimization Efforts toward XL518 (GDC-0973). ACS Med Chem Lett 3(5):416–421CrossRefGoogle Scholar
  95. 95.
    Roberts PJ, Der CJ (2007) Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 26(22):3291–3310PubMedCrossRefGoogle Scholar
  96. 96.
    Roskoski R Jr (2016) Classification of small molecule protein kinase inhibitors based upon the structures of their drug-enzyme complexes. Pharmacol Res 103:26–48PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Sadowsky JD, Burlingame MA, Wolan DW, McClendon CL, Jacobson MP, Wells JA (2011) Turning a protein kinase on or off from a single allosteric site via disulfide trapping. Proc Natl Acad Sci USA 108(15):6056–6061PubMedCrossRefGoogle Scholar
  98. 98.
    Sánchez-Martínez C, Gelbert LM, Lallena MJ, de Dios A (2015) Cyclin dependent kinase (CDK) inhibitors as anticancer drugs. Bioorg Med Chem Lett 25(17):3420–3435PubMedCrossRefGoogle Scholar
  99. 99.
    Schneider R, Becker C, Simard JR, Cetlik M, Bohlke N, Janning P, Rauh D (2012) Direct binding assay for the detection of type IV allosteric inhibitors of Abl. J Am Chem Soc 134:9138–9141PubMedCrossRefGoogle Scholar
  100. 100.
    Shang J, Lu S, Jiang Y, Zhang J (2016) Allosteric modulators of MEK1: drug design and discovery. Allosteric modulators of MEK1: drug design and discovery. Chem Biol Drug Des 88(4):485–497PubMedCrossRefGoogle Scholar
  101. 101.
    Siddiqui-Jain A, Drygin D, Streiner N, Chua P, Pierre F, O’Brien SE, Bilesath J, Omori M, Huser M, Huser N, Ho C, Proffitt C, Schwaebe MK, Ryckman DM, Rice WG, Anderes K (2010) CX-4945, an orally bioavailable selective inhibitor of protein kinase CK2, inhibits prosurvival and angiogenic signalling and exhibits antitumor efficacy. Cancer Res 70(24):10288–10298PubMedCrossRefGoogle Scholar
  102. 102.
    Simard JR, Getlik M, Grutter C, Pawar V, Wulfert S, Rabiller M, Rauth D (2009) Development of a fluorescent-tagged kinase assay system for the detection and characterization of allosteric kinase inhibitors. J Am Chem Soc 131:13286–13296PubMedCrossRefGoogle Scholar
  103. 103.
    Song K, Liu X, Huang W, Lu S, Shen Q, Zhang L, Zhang J (2017) Improved method for the identification and validation of allosteric site. J Chem Inf Model 57(9):2358–2363PubMedPubMedCentralGoogle Scholar
  104. 104.
    Srinivasan R, Uttamchandani M, Yao SQ (2006) Rapid assembly and in situ screening of bidentate inhibitors of protein tyrosine phosphatases. Org Lett 8(4):713–716PubMedCrossRefGoogle Scholar
  105. 105.
    Srinivasan R, Li J, Ng SL, Kalesh KA, Yao SQ (2007) Methods of using click chemistry in the discovery of enzyme inhibitors. Nat Protoc 2(11):2655–2664PubMedCrossRefGoogle Scholar
  106. 106.
    Ward RA, Goldberg FW (2018) Kinase drug discovery: modern approaches. Royal Society of Chemistry, CambridgeCrossRefGoogle Scholar
  107. 107.
    Weisner J, Gontla R, van den Westhuizen L, Oeck S, Ketzer J, Janning P, Richters A, Mühlenberg T, Fang Z, Taher A, Jendrossek V, Pelly SC, Bauer S, van Otterlo WAL, Rauh D (2015) Covalent-allosteric kinase inhibitors. Angew Chem Int Ed 54(35):10313–10316CrossRefGoogle Scholar
  108. 108.
    Wilhelm S, Carter C, Lynch M, Lowinger T, Dumas J, Smith RA, Schwartz B, Simantov R, Kelley S (2016) Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nat Rev Drug Discov 5:835–844CrossRefGoogle Scholar
  109. 109.
    Wisinski KB, Tevaarwerk AJ, Burkard ME, Rampurwala M, Eickhoff J, Bell M, Kolesar JM, Flynn C, Liu G (2016) Phase 1 study of an AKT-inhibitor (MK-2206) combined with lapatinib in adult solid tumours followed by dose-expansion in advanced HER2+ breast cancer. Clin Cancer Res 22:2659–2667PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Wu P, Clausen MH, Nielsen TE (2015) Allosteric small-molecule kinase inhibitors. Pharmacol Ther 156:59–68PubMedCrossRefGoogle Scholar
  111. 111.
    Xu Y, Wang S, Hu Q, Gao S, Ma X, Zhang W, Shen Y, Chen F, Lai L, Pei J (2018) CavityPlus: a web server for protein cavity detection with pharmacophore modelling, allosteric site identification and covalent ligand binding ability prediction. Nucleic Acids Res 46(W1):W374–W379PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Yeh TC, Marsh V, Bernat BA, Ballard J, Colwell H, Evans RJ, Parry J, Smith D, Brandhuber BJ, Gross S, Marlow A, Hurley B, Lyssikatos J, Lee PA, Winkler JD, Koch K, Wallace E (2007) Biological characterization of ARRY-142886 (AZD6244), a potent, highly selective mitogen-activated protein kinase kinase 1/2 inhibitor. Clin Cancer Res 13(5):1576–1583PubMedCrossRefGoogle Scholar
  113. 113.
    Zhang J, Adrian FJ, Jahnke W, Cowan-Jacob SW, Li AG, Iacob RE, Sim T, Powers J, Dierks C, Sun F, Guo GR, Ding Q, Okram B, Choi Y, Wojciechowski A, Deng X, Liu G, Fendrich G, Strauss A, Vajpai N, Grzesiek S, Tuntland T, Liu Y, Bursulaya B, Azam M, Manley PW, Engen JR, Daley GQ, Warmuth M, Gray NS (2010) Targeting Bcr-Abl by combining allosteric with ATP-binding site inhibitors. Nature 463(7280):501–506PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Zhao Z, Xie L, Bourne PE (2017) Insights into the binding mode of MEK type-III inhibitors. A step towards discovering and designing allosteric kinase inhibitors across the human kinome. PLoS ONE 12(6):e0179936PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Zheng Z, Bourne PE (2018) Progress with covalent small molecule kinase inhibitors. Drug Discov Today 23(3):727–735CrossRefGoogle Scholar
  116. 116.
    Zuccotto F, Ardini E, Casale E, Angiolini M (2010) Through the gatekeeper door: exploiting the active kinase conformation. J Med Chem 53:2681–2694CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Resmi C. Panicker
    • 1
  • Souvik Chattopadhaya
    • 2
  • Anthony G. Coyne
    • 3
  • Rajavel Srinivasan
    • 1
    Email author
  1. 1.School of Pharmaceutical Science and TechnologyTianjin UniversityTianjinPeople’s Republic of China
  2. 2.School of Applied SciencesRepublic PolytechnicSingaporeSingapore
  3. 3.University Chemical LaboratoryUniversity of CambridgeCambridgeUK

Personalised recommendations