Advertisement

GPCR Allosteric Modulator Discovery

  • Yiran Wu
  • Jiahui Tong
  • Kang Ding
  • Qingtong Zhou
  • Suwen ZhaoEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1163)

Abstract

G protein-coupled receptors (GPCRs) influence virtually every aspect of human physiology; about one-third of all marketed drugs target members of this family. GPCR allosteric ligands hold the promise of improved subtype selectivity, spatiotemporal sensitivity, and possible biased property over typical orthosteric ligands. However, only a small number of GPCR allosteric ligands have been approved as drugs or in clinical trials since the discovery process is very challenging. The rapid development of GPCR structural biology leads to the discovery of several allosteric sites and sheds light on understanding the mechanism of GPCR allosteric ligands, which is critical for discovering novel therapeutics. This book chapter summarized different GPCR allosteric modulating mechanisms and discussed validated mechanisms based on allosteric modulator-GPCR complex structures.

Keywords

GPCR allosteric modulator drug discovery membrane protein structures 

Notes

Glossary

Transmembrane domains (TMD)

the core domain that is common to all GPCRs, consisted by seven-transmembrane helices (TM1–7) that are linked by three extracellular loops (ECL1–3) and three intracellular loops (ICL1–3).

Agonist

a molecule that binds to and activates a receptor to increase the receptor signaling over basal levels.

Antagonist

a molecule that binds to a receptor and inhibits agonist signaling.

Positive allosteric modulator (PAM)

an allosteric ligand that potentiates an agonist-mediated receptor response is referred to as a positive allosteric modulator.

Negative allosteric modulator (NAM)

an allosteric ligand that attenuates an agonist-mediated receptor response is referred as a negative allosteric modulator.

Neutral allosteric ligand (NAL)

an allosteric ligand that does not affect receptor or orthosteric ligand activity is referred as a neutral allosteric ligand.

Ago-PAM

an allosteric ligand that is capable of directly activating the receptor from an allosteric site even in the absence of an orthosteric agonist is referred as an ago-PAM.

Bitopic ligand

a hybrid molecule that occupies both orthosteric and allosteric sites to mediate a novel pharmacology.

GPCR generic numbering systems

sequence-based generic GPCR residue numbering systems exist for class A (Ballesteros-Weinstein numbering) [2], class B (Wootten numbering) [20], class C (Pin numbering) [29], and class F (Wang numbering) [61]. A numbering is two numbers separated by a dot. The first number denotes the transmembrane helix (1–7). For the second number, the most conserved position in the helix is assigned as 50. That is, the most conserved residue in a helix x is denoted x 50, while all other residues on the same helix are numbered relative to it. For example, 2.50 denotes the most conserved residue in transmembrane helix 2, while one position after it is 2.51.

Orthosteric binding site

where endogenous ligands bind. For GPCR there are different orthosteric binding site in different classes. In class A and B, the orthosteric site locates among the transmembrane helices close to the extracellular end. In class C and D, the orthosteric site locates in extracellular domain.

Allosteric binding site

sites for ligand binding to a receptor that are remote from the orthosteric binding site.

References

  1. 1.
    Ankita S, Jason Y, Yoshihiko H, Georgia K, Franz G, Gyorgy S, Weston L, Anthony I, Kathleen A, Jasmine N (2014) High-resolution structure of the human GPR40 receptor bound to allosteric agonist TAK-875. Nature 513(7516):124CrossRefGoogle Scholar
  2. 2.
    Ballesteros JA, Weinstein H (1995) 19F Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. Meth Neurosci 25(5):366–428CrossRefGoogle Scholar
  3. 3.
    Bertekap RL Jr, Burford NT, Li Z, Alt A (2015) High-throughput screening for allosteric modulators of GPCRs. Meth Mol Biol (Clifton, NJ) 1335:223–240CrossRefGoogle Scholar
  4. 4.
    Brodbeck RM, Cortright DN, Kieltyka AP, Yu J, Baltazar CO, Buck ME, Meade R, Maynard GD, Thurkauf A, Chien DS, Hutchison AJ, Krause JE (2008) Identification and characterization of NDT 9513727 [N,N-bis(1,3-benzodioxol-5-ylmethyl)-1-butyl-2,4-diphenyl-1H-imidazole-5-methanam ine], a novel, orally bioavailable C5a receptor inverse agonist. J Pharmacol Exp Ther 327(3):898–909PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Bueno AB, Showalter AD, Wainscott DB, Stutsman C, Marin A, Ficorilli J, Cabrera O, Willard FS, Sloop KW (2016) Positive allosteric modulation of the glucagon-like peptide-1 receptor by diverse electrophiles. J Biol Chem 291(20):10700–10715PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Byrne EF, Sircar R, Miller PS, Hedger G, Luchetti G, Nachtergaele S, Tully MD, Mydock-Mcgrane L, Covey DF, Rambo RP (2016) Structural basis of Smoothened regulation by its extracellular domains. Nature 535(7613):517–522PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Cheng Z, Yoga S, Arlow DH, Juan Jose F, Daniel P, Yaowu Z, Green HF, Anjali P, Dror RO, Shaw DE (2012) High-resolution crystal structure of human protease-activated receptor 1. Nature 492(7429):387–392CrossRefGoogle Scholar
  8. 8.
    Cheng RKY, Fiez-Vandal C, Schlenker O, Edman K, Aggeler B, Brown DG, Brown GA, Cooke RM, Dumelin CE, Dore AS, Geschwindner S, Grebner C, Hermansson NO, Jazayeri A, Johansson P, Leong L, Prihandoko R, Rappas M, Soutter H, Snijder A, Sundstrom L, Tehan B, Thornton P, Troast D, Wiggin G, Zhukov A, Marshall FH, Dekker N (2017) Structural insight into allosteric modulation of protease-activated receptor 2. Nature 545(7652):112–115PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Christopher JA, Aves SJ, Bennett KA, Doré AS, Errey JC, Ali J, Marshall FH, Krzysztof O, Serrano-Vega MJ, Tehan BG (2015) Fragment and structure-based drug discovery for a class C GPCR: discovery of the mGlu5 negative allosteric modulator HTL14242 (3-Chloro-5-[6-(5-fluoropyridin-2-yl)pyrimidin-4-yl]benzonitrile). J Med Chem 58(16):6653–6664PubMedCrossRefGoogle Scholar
  10. 10.
    Christopher JA, Orgován Z, Congreve M, Doré AS, Errey JC, Marshall FH, Mason JS, Okrasa K, Rucktooa P, Serrano-Vega MJ (2018) Structure-based optimization strategies for G Protein-Coupled Receptor (GPCR) allosteric modulators: a case study from analyses of new metabotropic glutamate receptor 5 (mGlu5) X-ray structures. J Med Chem 62(1):207–222PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Christopoulos A (2002) Allosteric binding sites on cell-surface receptors: novel targets for drug discovery. Nat Rev Drug Discov 1(3):198–210PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Dore AS, Okrasa K, Patel JC, Serrano-Vega M, Bennett K, Cooke RM, Errey JC, Jazayeri A, Khan S, Tehan B, Weir M, Wiggin GR, Marshall FH (2014) Structure of class C GPCR metabotropic glutamate receptor 5 transmembrane domain. Nature 511(7511):557–562PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Dore AS, Bortolato A, Hollenstein K, Cheng RKY, Read RJ, Marshall FH (2017) Decoding corticotropin-releasing factor receptor type 1 crystal structures. Curr Mol Pharmacol 10(4):334–344PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Dror RO, Arlow DH, Maragakis P, Mildorf TJ, Pan AC, Xu H, Borhani DW, Shaw DE (2011) Activation mechanism of the beta2-adrenergic receptor. Proc Natl Acad Sci U S A 108(46):18684–18689PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Gentry PR, Sexton PM, Christopoulos A (2015) Novel allosteric modulators of G protein-coupled receptors. J Biol Chem 290(32):19478–19488PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Hauser AS, Attwood MM, Rask-Andersen M, Schioth HB, Gloriam DE (2017) Trends in GPCR drug discovery: new agents, targets and indications. Nat Rev Drug Discov 16(12):829–842PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Hauser AS, Chavali S, Masuho I, Jahn LJ, Martemyanov KA, Gloriam DE, Babu MM (2018) Pharmacogenomics of GPCR drug targets. Cell 172(1–2):41–54. e19PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Ho JD, Chau B, Rodgers L, Lu F, Wilbur KL, Otto KA, Chen Y, Song M, Riley JP, Yang HC, Reynolds NA, Kahl SD, Lewis AP, Groshong C, Madsen RE, Conners K, Lineswala JP, Gheyi T, Saflor MD, Lee MR, Benach J, Baker KA, Montrose-Rafizadeh C, Genin MJ, Miller AR, Hamdouchi C (2018) Structural basis for GPR40 allosteric agonism and incretin stimulation. Nat Commun 9(1):1645PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Hollenstein K, Kean J, Bortolato A, Cheng RK, Dore AS, Jazayeri A, Cooke RM, Weir M, Marshall FH (2013) Structure of class B GPCR corticotropin-releasing factor receptor 1. Nature 499(7459):438–443PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Hollenstein K, Graaf CD, Bortolato A, Wang MW, Marshall FH, Stevens RC (2014) Insights into the structure of class B GPCRs. Trends Pharmacol Sci 35(1):12–22PubMedCrossRefGoogle Scholar
  21. 21.
    Hori T, Okuno T, Hirata K, Yamashita K, Kawano Y, Yamamoto M, Hato M, Nakamura M, Shimizu T, Yokomizo T, Miyano M, Yokoyama S (2018) Na(+)-mimicking ligands stabilize the inactive state of leukotriene B4 receptor BLT1. Nat Chem Biol 14(3):262–269PubMedCrossRefGoogle Scholar
  22. 22.
    Huang Z, Zhu L, Cao Y, Wu G, Liu X, Chen Y, Wang Q, Shi T, Zhao Y, Wang Y, Li W, Li Y, Chen H, Chen G, Zhang J (2011) ASD: a comprehensive database of allosteric proteins and modulators. Nucleic Acids Res 39(Database issue):D663–D669PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Huang W, Lu S, Huang Z, Liu X, Mou L, Luo Y, Zhao Y, Liu Y, Chen Z, Hou T, Zhang J (2013) Allosite: a method for predicting allosteric sites. Bioinformatics (Oxford, England) 29(18):2357–2359CrossRefGoogle Scholar
  24. 24.
    Huang XP, Karpiak J, Kroeze WK, Zhu H, Chen X, Moy SS, Saddoris KA, Nikolova VD, Farrell MS, Wang S, Mangano TJ, Deshpande DA, Jiang A, Penn RB, Jin J, Koller BH, Kenakin T, Shoichet BK, Roth BL (2015) Allosteric ligands for the pharmacologically dark receptors GPR68 and GPR65. Nature 527(7579):477–483PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Huang P, Zheng S, Wierbowski BM, Kim Y, Nedelcu D, Aravena L, Liu J, Kruse AC, Salic A (2018) Structural basis of smoothened activation in hedgehog signaling. Cell 174(2):312–324PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Jacoby E, Bouhelal R, Gerspacher M, Seuwen K (2006) The 7 TM G-protein-coupled receptor target family. Chem Med Chem 1(8):761–782PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Janda CY, Waghray D, Levin AM, Thomas C, Garcia KC (2012) Structural basis of Wnt recognition by Frizzled. Science (New York, NY) 337(6090):59–64CrossRefGoogle Scholar
  28. 28.
    Jazayeri A, Doré AS, Lamb D, Krishnamurthy H, Southall SM, Baig AH, Bortolato A, Koglin M, Robertson NJ, Errey JC (2016) Extra-helical binding site of a glucagon receptor antagonist. Nature 533(7602):274PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Jean-Philippe P, Thierry G, Laurent PJ (2003) Evolution, structure, and activation mechanism of family 3/C G-protein-coupled receptors. Pharmacol Ther 98(3):325–354CrossRefGoogle Scholar
  30. 30.
    Justus CR, Dong L, Yang LV (2013) Acidic tumor microenvironment and pH-sensing G protein-coupled receptors. Front Physiol 4:354PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Katritch V, Fenalti G, Abola EE, Roth BL, Cherezov V, Stevens RC (2014) Allosteric sodium in class A GPCR signaling. Trends Biochem Sci 39(5):233–244PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Kobilka BK (2007) G protein coupled receptor structure and activation. Biochim Biophys Acta 1768(4):794–807PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Kruse AC, Ring AM, Manglik A, Hu J, Hu K, Eitel K, Hubner H, Pardon E, Valant C, Sexton PM, Christopoulos A, Felder CC, Gmeiner P, Steyaert J, Weis WI, Garcia KC, Wess J, Kobilka BK (2013) Activation and allosteric modulation of a muscarinic acetylcholine receptor. Nature 504(7478):101–106PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Latorraca NR, Venkatakrishnan AJ, Dror RO (2017) GPCR Dynamics: Structures in Motion. Chem Rev 117(1):139–155PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Liu JJ, Horst R, Katritch V, Stevens RC, Wuthrich K (2012) Biased signaling pathways in beta2-adrenergic receptor characterized by 19F-NMR. Science (New York, NY) 335(6072):1106–1110CrossRefGoogle Scholar
  36. 36.
    Liu X, Ahn S, Kahsai AW, Meng KC, Latorraca NR, Pani B, Venkatakrishnan AJ, Masoudi A, Weis WI, Dror RO (2017) Mechanism of intracellular allosteric β2AR antagonist revealed by X-ray crystal structure. Nature 548(7668):480–484PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Liu H, Kim HR, Deepak R, Wang L, Chung KY, Fan H, Wei Z, Zhang C (2018) Orthosteric and allosteric action of the C5a receptor antagonists. Nat Struct Mol Biol 25(6):472–481PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Lu J, Byrne N, Wang J, Bricogne G, Brown FK, Chobanian HR, Colletti SL, Di Salvo J, Thomas-Fowlkes B, Guo Y, Hall DL, Hadix J, Hastings NB, Hermes JD, Ho T, Howard AD, Josien H, Kornienko M, Lumb KJ, Miller MW, Patel SB, Pio B, Plummer CW, Sherborne BS, Sheth P, Souza S, Tummala S, Vonrhein C, Webb M, Allen SJ, Johnston JM, Weinglass AB, Sharma S, Soisson SM (2017) Structural basis for the cooperative allosteric activation of the free fatty acid receptor GPR40. Nat Struct Mol Biol 24(7):570–577PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Masureel M, Zou Y, Picard LP, van der Westhuizen E, Mahoney JP, Rodrigues J, Mildorf TJ, Dror RO, Shaw DE, Bouvier M, Pardon E, Steyaert J, Sunahara RK, Weis WI, Zhang C, Kobilka BK (2018) Structural insights into binding specificity, efficacy and bias of a beta2AR partial agonist. Nat Chem Biol 14(11):1059–1066PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    May LT, Leach K, Sexton PM, Christopoulos A (2007) Allosteric modulation of G protein-coupled receptors. Annu Rev Pharmacol Toxicol 47:1–51PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Miao Y, Nichols SE, McCammon JA (2014) Mapping of allosteric druggable sites in activation-associated conformers of the M2 muscarinic receptor. Chem Biol Drug Des 83(2):237–246PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Miao Y, Goldfeld DA, Moo EV, Sexton PM, Christopoulos A, McCammon JA, Valant C (2016) Accelerated structure-based design of chemically diverse allosteric modulators of a muscarinic G protein-coupled receptor. Proc Natl Acad Sci U S A 113(38):E5675–E5684PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Mohebbi N, Benabbas C, Vidal S, Daryadel A, Bourgeois S, Velic A, Ludwig MG, Seuwen K, Wagner CA (2012) The proton-activated G protein coupled receptor OGR1 acutely regulates the activity of epithelial proton transport proteins. Cell Physiol Biochem 29(3-4):313–324PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Ngan CH, Bohnuud T, Mottarella SE, Beglov D, Villar EA, Hall DR, Kozakov D, Vajda S (2012) FTMAP: extended protein mapping with user-selected probe molecules. Nucleic acids research. Nucleic Acids Res 40(Web Server issue):W271–W275PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Noblin DJ, Bertekap RL Jr, Burford NT, Hendricson A, Zhang L, Knox R, Banks M, O’Connell J, Alt A (2012) Development of a high-throughput calcium flux assay for identification of all ligand types including positive, negative, and silent allosteric modulators for G protein-coupled receptors. Assay Drug Dev Technol 10(5):457–467PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Nolte WM, Fortin JP, Stevens BD, Aspnes GE, Griffith DA, Hoth LR, Ruggeri RB, Mathiowetz AM, Limberakis C, Hepworth D, Carpino PA (2014) A potentiator of orthosteric ligand activity at GLP-1R acts via covalent modification. Nat Chem Biol 10(8):629–631PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Oswald C, Rappas M, Kean J, Doré AS, Errey JC, Bennett K, Deflorian F, Christopher JA, Jazayeri A, Mason JS (2016) Intracellular allosteric antagonism of the CCR9 receptor. Nature 540(7633):462PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Peng P, Chen H, Zhu Y, Wang Z, Li J, Luo RH, Wang J, Chen L, Yang LM, Jiang H, Xie X, Wu B, Zheng YT, Liu H (2018) Structure-based design of 1-heteroaryl-1,3-propanediamine derivatives as a novel series of CC-chemokine receptor 5 antagonists. J Med Chem 61(21):9621–9636PubMedCrossRefGoogle Scholar
  49. 49.
    Price MR, Baillie GL, Thomas A, Stevenson LA, Easson M, Goodwin R, McLean A, McIntosh L, Goodwin G, Walker G, Westwood P, Marrs J, Thomson F, Cowley P, Christopoulos A, Pertwee RG, Ross RA (2005) Allosteric modulation of the cannabinoid CB1 receptor. Mol Pharmacol 68(5):1484–1495PubMedCrossRefGoogle Scholar
  50. 50.
    Robertson N, Rappas M, Dore AS, Brown J, Bottegoni G, Koglin M, Cansfield J, Jazayeri A, Cooke RM, Marshall FH (2018) Structure of the complement C5a receptor bound to the extra-helical antagonist NDT9513727. Nature 553(7686):111–114PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Rodriguez AL, Grier MD, Jones CK, Herman EJ, Kane AS, Smith RL, Williams R, Zhou Y, Marlo JE, Days EL, Blatt TN, Jadhav S, Menon UN, Vinson PN, Rook JM, Stauffer SR, Niswender CM, Lindsley CW, Weaver CD, Conn PJ (2010) Discovery of novel allosteric modulators of metabotropic glutamate receptor subtype 5 reveals chemical and functional diversity and in vivo activity in rat behavioral models of anxiolytic and antipsychotic activity. Mol Pharmacol 78(6):1105–1123PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Santos R, Ursu O, Gaulton A, Bento AP, Donadi RS, Bologa CG, Karlsson A, Al-Lazikani B, Hersey A, Oprea TI, Overington JP (2017) A comprehensive map of molecular drug targets. Nat Rev Drug Discov 16(1):19–34PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Shore DM, Baillie GL, Hurst DH, Navas F 3rd, Seltzman HH, Marcu JP, Abood ME, Ross RA, Reggio PH (2014) Allosteric modulation of a cannabinoid G protein-coupled receptor: binding site elucidation and relationship to G protein signaling. J Biol Chem 289(9):5828–5845PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Song G, Yang D, Wang Y, de Graaf C, Zhou Q, Jiang S, Liu K, Cai X, Dai A, Lin G, Liu D, Wu F, Wu Y, Zhao S, Ye L, Han GW, Lau J, Wu B, Hanson MA, Liu ZJ, Wang MW, Stevens RC (2017) Human GLP-1 receptor transmembrane domain structure in complex with allosteric modulators. Nature 546(7657):312–315PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Stornaiuolo M, Bruno A, Botta L, La Regina G, Cosconati S, Silvestri R, Marinelli L, Novellino E (2015) Endogenous vs Exogenous Allosteric Modulators in GPCRs: a dispute for shuttling CB1 among different membrane microenvironments. Sci Rep 5:15453PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Suno R, Kimura KT, Nakane T, Yamashita K, Wang J, Fujiwara T, Yamanaka Y, Im D, Horita S, Tsujimoto H, Tawaramoto MS, Hirokawa T, Nango E, Tono K, Kameshima T, Hatsui T, Joti Y, Yabashi M, Shimamoto K, Yamamoto M, Rosenbaum DM, Iwata S, Shimamura T, Kobayashi T (2018) Crystal structures of human Orexin 2 receptor bound to the subtype-selective antagonist EMPA. Structure 26(1):7–19. e15PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Tan QX, Zhu Y, Li J, Chen ZX, Han GW, Kufareva I, Li TT, Ma LM, Fenalti G, Li J, Zhang WR, Xie X, Yang HY, Jiang HL, Cherezov V, Liu H, Stevens RC, Zhao Q, Wu BL (2013) Structure of the CCR5 chemokine receptor-HIV entry inhibitor maraviroc complex. Science (New York, NY) 341(6152):1387–1390CrossRefGoogle Scholar
  58. 58.
    Thal DM, Sun B, Feng D, Nawaratne V, Leach K, Felder CC, Bures MG, Evans DA, Weis WI, Bachhawat P, Kobilka TS, Sexton PM, Kobilka BK, Christopoulos A (2016) Crystal structures of the M1 and M4 muscarinic acetylcholine receptors. Nature 531(7594):335–340PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Tobo A, Tobo M, Nakakura T, Ebara M, Tomura H, Mogi C, Im DS, Murata N, Kuwabara A, Ito S, Fukuda H, Arisawa M, Shuto S, Nakaya M, Kurose H, Sato K, Okajima F (2015) Characterization of imidazopyridine compounds as negative allosteric modulators of proton-sensing GPR4 in extracellular acidification-induced responses. PLoS One 10(6):e0129334PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Venkatakrishnan AJ, Deupi X, Lebon G, Heydenreich FM, Flock T, Miljus T, Balaji S, Bouvier M, Veprintsev DB, Tate CG, Schertler GF, Babu MM (2016) Diverse activation pathways in class A GPCRs converge near the G-protein-coupling region. Nature 536(7617):484–487PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Wang C, Wu H, Evron T, Vardy E, Han GW, Huang XP, Hufeisen SJ, Mangano TJ, Dan JU, Katritch V (2014) Structural basis for Smoothened receptor modulation and chemoresistance to anticancer drugs. Nat Commun 5(5):4355PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Wei L, Eugene C, Thompson AA, Pavel C, Fei X, Vsevolod K, Gye Won H, Roth CB, Heitman LH, Ijzerman AP (2012) Structural basis for allosteric regulation of GPCRs by sodium ions. Science 337(6091):232CrossRefGoogle Scholar
  63. 63.
    Weierstall U, James D, Wang C, White TA, Wang D, Liu W, Spence JC, Bruce DR, Nelson G, Fromme P (2014) Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography. Nat Commun 5(1):3309PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Wu H, Wang C, Gregory KJ, Han GW, Cho HP, Xia Y, Niswender CM, Katritch V, Meiler J, Cherezov V, Conn PJ, Stevens RC (2014) Structure of a class C GPCR metabotropic glutamate receptor 1 bound to an allosteric modulator. Science (New York, NY) 344(6179):58–64CrossRefGoogle Scholar
  65. 65.
    Xiao X, Tang JJ, Peng C, Wang Y, Fu L, Qiu ZP, Xiong Y, Yang LF, Cui HW, He XL, Yin L, Qi W, Wong CC, Zhao Y, Li BL, Qiu WW, Song BL (2017) Cholesterol modification of smoothened is required for hedgehog signaling. Mol Cell 66(1):154–162.e110PubMedCrossRefGoogle Scholar
  66. 66.
    Yang S, Wu Y, Xu TH, de Waal PW, He Y, Pu M, Chen Y, DeBruine ZJ, Zhang B, Zaidi SA, Popov P, Guo Y, Han GW, Lu Y, Suino-Powell K, Dong S, Harikumar KG, Miller LJ, Katritch V, Xu HE, Shui W, Stevens RC, Melcher K, Zhao S, Xu F (2018) Crystal structure of the Frizzled 4 receptor in a ligand-free state. Nature 560(7720):666–670PubMedCrossRefGoogle Scholar
  67. 67.
    Zhang D, Gao ZG, Zhang K, Kiselev E, Crane S, Wang J, Paoletta S, Yi C, Ma L, Zhang W, Han GW, Liu H, Cherezov V, Katritch V, Jiang H, Stevens RC, Jacobson KA, Zhao Q, Wu B (2015) Two disparate ligand-binding sites in the human P2Y1 receptor. Nature 520(7547):317–321PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Zhang H, Qiao A, Yang D, Yang L, Dai A, Graaf CD, Reedtzrunge S, Dharmarajan V, Zhang H, Han GW (2017a) Structure of the full-length glucagon class B G-protein-coupled receptor. Nature 546(7657):259PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Zhang X, Zhao F, Wu Y, Yang J, Han GW, Zhao S, Ishchenko A, Ye L, Lin X, Ding K (2017b) Crystal structure of a multi-domain human smoothened receptor in complex with a super stabilizing ligand. Nat Commun 8:15383PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Zheng Y, Qin L, Zacarías NV, De VH, Han GW, Gustavsson M, Dabros M, Zhao C, Cherney RJ, Carter PJN (2016) Structure of CC chemokine receptor 2 with orthosteric and allosteric antagonists. Nature 540(7633):458–461PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Yiran Wu
    • 1
  • Jiahui Tong
    • 1
    • 2
  • Kang Ding
    • 1
  • Qingtong Zhou
    • 1
  • Suwen Zhao
    • 1
    • 2
    Email author
  1. 1.iHuman InstituteShanghaiTech UniversityShanghaiChina
  2. 2.School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina

Personalised recommendations