Advertisement

Recent Trends in Biogas Upgrading Technologies for Biomethane Production

  • B. S. Dhanya
  • Dhruv Singh
  • Asim Kumar Jana
  • Anjani Kumar Dwiwedi
  • Ashok Kumar Sharma
  • Munusamy Chamundeeswari
  • Madan Lal Verma
Chapter
  • 48 Downloads
Part of the Clean Energy Production Technologies book series (CEPT)

Abstract

Biogas, an ultimate renewable energy, is of enormous demand currently, due to increased fuel price and its fluctuations with expansive pollution emission. Biogas is environmentally feasible and viable. Biomethane production is of high impact, and hence the present chapter is concentrated on various biogas upgradation technologies conjugated with carbon dioxide and hydrogen sulphide removal strategies. The upgrading methods such as absorption, adsorption, membrane separation, biological methods, cryogenic technology, hybrid methods, supersonic separation, industrial lung, in situ methane enrichment and chemical dehydrogenation are discussed. High methane purity with minimized methane loss is the key for an effective upgradation method. A comprehensive study of comparison between various biogas upgradation technologies is analysed, showcasing the advantages and disadvantages too. It is concluded that the recently innovated technologies have wide potential advantages than the conventional biogas upgrading technologies. Although innovated technologies are so far better, detailed analysis, research and development is required for acquiring a technology which is economically, environmentally, technologically, operationally and socially feasible and acceptable.

Keywords

Biomethane Upgrading technologies Desulphurization Cryogenic Biological method Scrubbing 

References

  1. Agler MT, Wrenn BA, Zinder SH et al (2011) Waste to bioproduct conversion with undefined mixed cultures: the carboxylate platform. Trends Biotechnol 29:70–78CrossRefGoogle Scholar
  2. Agneessens LM, Ottosen LDM, Voigt NV et al (2017) In-situ biogas upgrading with pulse H2 additions: the relevance of methanogen adaption and inorganic carbon level. Bioresour Technol 233:256–263CrossRefGoogle Scholar
  3. Ahmed I, Yusof ZAM, Beg MDH (2010) Fabrication of polymer based mix matrix membrane-A short review. Int J Basic Appl Sci 10:14–19Google Scholar
  4. Al Mamun MR, Torii S (2015) Enhancement of production and upgradation of biogas using different techniques-a review. Int J Earth Sci Eng 8(2):877–892Google Scholar
  5. Andriani D, Arini W, Tinton DA et al (2014) A review on optimization production and upgrading biogas through CO2 removal using various techniques. Appl Biochem Biotechnol 172:1909–1928CrossRefGoogle Scholar
  6. Angelidaki I, Treua L, Tsapekosa P et al (2018) Biogas upgrading and utilization: Current status and perspectives. Biotechnol Adv 36(2):452–466CrossRefGoogle Scholar
  7. Augelletti R, Conti M, Annesini MC (2017) Pressure swing adsorption for biogas upgrading. A new process configuration for the separation of biomethane and carbon dioxide. J Clean Prod 140:1390–1398CrossRefGoogle Scholar
  8. Awe OW, Zhao Y, Nzihou A et al (2017) A review of biogas utilisation, purification and upgrading technologies. Waste Biomass Valoriz 8:267–283CrossRefGoogle Scholar
  9. Baker RW (2012) Membrane technology and applications, 2nd edn. Wiley, HobokenCrossRefGoogle Scholar
  10. Bassani I, Kougias PG, Treu L et al (2017) Optimization of hydrogen dispersion in thermophilic up-flow reactors for ex situ biogas upgrading. Bioresour Technol 234:310–319CrossRefGoogle Scholar
  11. Batstone DJ, Keller J, Angelidaki I et al (2002) The IWA anaerobic digestion model no 1 (ADM1). Water Sci Technol 45:65–73CrossRefGoogle Scholar
  12. Battino R, Clever HL (1966) The solubility of gases in liquids. Chem Rev 66:395–463CrossRefGoogle Scholar
  13. Bauer F, Hulteberg C, Persson T et al (2013a) Biogas upgrading – review of commercial technologies. SGC Rapp 270Google Scholar
  14. Bauer F, Persson T, Hulteberg C et al (2013b) Biogas upgrading– technology overview, comparison and perspectives for the future. Biofuels Bioprod Biorefin 7:499–511CrossRefGoogle Scholar
  15. Belaissaoui B, Le Moullec Y, Willson D et al (2012) Hybrid membrane cryogenic process for post-combustion CO2 capture. J Membr Sci 415:424–434CrossRefGoogle Scholar
  16. Belmabkhout Y, De Weireld G, Sayari A (2009) Amine-bearing mesoporous silica for CO2 and H2S removal from natural gas and biogas. Langmuir 25(23):13275–13278CrossRefGoogle Scholar
  17. Chen XY, Vinh-Thang H, Ramirez AA (2015) Membrane gas separation technologies for biogas upgrading. RSC Adv 5:24399–24448CrossRefGoogle Scholar
  18. Chen B, Hayat T, Alsaedi A (2017) History of biogas production in China. In: Biogas systems in China. Springer, Berlin/Heidelberg, pp 1–15CrossRefGoogle Scholar
  19. Cheng S, Xing D, Call DF et al (2009) Direct biological conversion of electrical current into methane by electromethanogenesis. Environ Sci Technol 43:3953–3958CrossRefGoogle Scholar
  20. Collet P, Flottes E, Favre A et al (2017) Technoeconomic and life cycle assessment of methane production via biogas upgrading and power to gas technology. Appl Energy 192:282–295CrossRefGoogle Scholar
  21. Cozma P, Ghinea C, Mamaliga I et al (2013) Environmental impact assessment of high pressure water scrubbing biogas upgradation technology. Clean 41:917–927Google Scholar
  22. Deublein D, Steinhauser A (2010) Biogas from waste and renewable resources: an introduction, 2nd edn. Wiley, WeinheimCrossRefGoogle Scholar
  23. Friess K, Lanc M, Pilnacek K et al (2017) CO2/CH4 separation performance of ionic-liquid-based epoxy-amine ion gel membranes under mixed feed conditions relevant to biogas processing. J Membr Sci 528:64–71CrossRefGoogle Scholar
  24. Grande CA (2011) Biogas upgrading by pressure swing adsorption. In: dos Santos Bernardes MA (ed) Biofuel’s engineering process technology. InTech, Oslo, pp 65–84Google Scholar
  25. Guebitz GM, Bauer A, Bochmann G et al (2015) Biogas science and technology. Springer, HannoverCrossRefGoogle Scholar
  26. Horikawa MS, Rossi F, Gimenes ML et al (2004) Chemical absorption of H2S for biogas purification. Braz J Chem Eng 21(3):415–422CrossRefGoogle Scholar
  27. Huttunen S, Kivimaa P, Virkamaki V (2014) The need for policy coherence to trigger a transition to biogas production. Environ Innov Soc Transit 12:14–30CrossRefGoogle Scholar
  28. Hwang H, Yeon YJ, Lee S et al (2015) Electro-biocatalytic production of formate from carbon dioxide using an oxygenstable whole cell biocatalyst. Bioresour Technol 185:35–39CrossRefGoogle Scholar
  29. Jurgensen L, Ehimen EA, Born J et al (2014) Utilization of surplus electricity from wind power for dynamic biogas upgrading: northern Germany case study. Biomass Bioenergy 6:126–132CrossRefGoogle Scholar
  30. Kadam R, Panwar NL (2017) Recent advancement in biogas enrichment and its applications. Renew Sust Energy Rev 73:892–903CrossRefGoogle Scholar
  31. Kapdi SS, Vijay VK, Rajesh SK et al (2005) Biogas scrubbing, compression and storage: perspective and prospectus in Indian context. Renew Energy 30:1195–1202CrossRefGoogle Scholar
  32. Kapoor R, Subbarao PMV, Vijay VK et al (2017) Factors affecting methane loss from a water scrubbing based biogas upgrading system. Appl Energy 208:1379–1388CrossRefGoogle Scholar
  33. Kennes D, Abubackar HN, Diaz M et al (2016) Bioethanol production from biomass: carbohydrate vs syngas fermentation. J Chem Technol Biotechnol 91:304–317CrossRefGoogle Scholar
  34. Kougias PG, Kotsopoulos TA, Martzopoulos GG (2010) Anaerobic co-digestion of pig waste with olive mill waste water under various mixing conditions. Fresenius Environ Bull 19:1682–1686Google Scholar
  35. Kougias PG, Treu L, Benavente DP et al (2017) Ex situ biogas upgrading and enhancement in different reactor systems. Bioresour Technol 225:429–437CrossRefGoogle Scholar
  36. Latif H, Zeidan AA, Nielsen AT et al (2014) Trash to treasure: production of biofuels and commodity chemicals via syngas fermenting microorganisms. Curr Opin Biotechnol 27:79–87CrossRefGoogle Scholar
  37. Levdansky V, Izak P (2017) Membrane separation of gas mixtures under the influence of resonance radiation. Sep Purif Technol 173:93–98CrossRefGoogle Scholar
  38. Li JR, Sculley J, Zhou HC (2012) Metal-organic frameworks for separations. Chem Rev 112:869–932CrossRefGoogle Scholar
  39. Lima RM, Santos AH, Pereira CR et al (2018) Spatially distributed potential of landfill biogas production and electric power generation in Brazil. Waste Manag 74:323–334CrossRefGoogle Scholar
  40. Lin WC, Chen YP, Tseng CP (2013) Pilot-scale chemical–biological system for efficient H2S removal from biogas. Bioresour Technol 135:283–291CrossRefGoogle Scholar
  41. Lindberg A (2003) Development of in-situ methane enrichment as a method for upgrading biogas to vehicle fuel standard. Licentiate thesis, KTH, Chemical Engineering and Technology, StockholmGoogle Scholar
  42. Liu J, Wei Y, Li P et al (2017) Selective H2S/CO2 Separation by metal organic frameworks based on chemical-physical adsorption. J Phys Chem C121(24):13249–13255Google Scholar
  43. Lovley DR, Nevin KP (2013) Electrobiocommodities: powering microbial production of fuels and commodity chemicals from carbon dioxide with electricity. Curr Opin Biotechnol 24:385–390CrossRefGoogle Scholar
  44. Lu L, Ren ZJ (2016) Microbial electrolysis cells for waste biorefinery: a state of the art review. Bioresour Technol 215:254–264CrossRefGoogle Scholar
  45. Luo G, Angelidaki I (2012) Integrated biogas upgrading and hydrogen utilization in an anaerobic reactor containing enriched hydrogenotrophic methanogenic culture. Biotechnol Bioeng 109:2729–2736CrossRefGoogle Scholar
  46. Luo G, Angelidaki I (2013) Co-digestion of manure and whey for in situ biogas upgrading by the addition of H2: process performance and microbial insights. Appl Microbiol Biotechnol 97:1373–1381CrossRefGoogle Scholar
  47. Luo G, Wang W, Angelidaki I (2014) A new degassing membrane coupled upflow anaerobic sludge blanket (UASB) reactor to achieve in-situ biogas upgrading and recovery of dissolved CH4 from the anaerobic effluent. Appl Energy 132:536–542CrossRefGoogle Scholar
  48. Makaruk A, Miltner M, Harasek M (2010) Membrane biogas upgrading processes for the production of natural gas substitute. Sep Purif Technol 74:83–92CrossRefGoogle Scholar
  49. Mallada R, Menendez M (2008) Inorganic membranes: synthesis, characterization and applications: synthesis, characterization and applications. Membrane science and technology, vol 13, 2nd edn. Elsevier ScienceGoogle Scholar
  50. Martin ME, Richter H, Saha S et al (2016) Traits of selected Clostridium strains for syngas fermentation to ethanol. Biotechnol Bioeng 113:531–539CrossRefGoogle Scholar
  51. Mattiasson B (2005) Ekologisklunga for biogas upgrading. Nationellt Samverkans projekt Biogas iFordonGoogle Scholar
  52. Micoli L, Bagnasco G, Turco M (2014) H2S removal from biogas for fuelling MCFCs: new adsorbing materials. Int J of Hydrogen Energy 39(4):1783–1787CrossRefGoogle Scholar
  53. Moraes BS, Petersen SO, Zaiat M et al (2017) Reduction in greenhouse gas emissions from vinasse through anaerobic digestion. Appl Energy 189:21–30CrossRefGoogle Scholar
  54. Mulat DG, Mosbek F, Ward AJ et al (2017) Exogenous addition of H2 for an in situ biogas upgrading through biological reduction of carbon dioxide into methane. Waste Manag 68:146–156CrossRefGoogle Scholar
  55. Munoz R, Meier L, Diaz I et al (2015) A review on the state-of-the-art of physical/chemical and biological technologies for biogas upgrading. Rev Environ Sci Biotechnol 14:727–759CrossRefGoogle Scholar
  56. Nevin KP, Woodard TL, Franks AE et al (2010) Microbial electrosynthesis: feeding microbe’s electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. MBio 1:e00103–e00110CrossRefGoogle Scholar
  57. Nordberg A, Edstrom M, Uusi-Pentilla M et al (2005) Process intern metananrikning. JTI rapport Kretslopp & Avfall 33Google Scholar
  58. Owusu PA, Banadda N (2017) Livestock waste-to-bioenergy generation potential in Uganda: a review. Environ Res Eng Manag 73:45–53CrossRefGoogle Scholar
  59. Ozekmekci M, Salkic G, Fellah MF (2015) Use of zeolites for the removal of H2S: a mini-review. Fuel Process Technol 139:49–60CrossRefGoogle Scholar
  60. Park A, Kim YM, Kim JF et al (2017) Biogas upgrading using membrane contactor process: pressure-cascaded stripping configuration. Sep Purif Technol 183:358–365CrossRefGoogle Scholar
  61. Patterson T, Esteves S, Dinsdale R et al (2011) An evaluation of the policy and techno-economic factors affecting the potential for biogas upgradation for transport fuel use in the UK. Energ Policy 39:1806–1816CrossRefGoogle Scholar
  62. Persson M (2003) Evaluation of upgrading techniques for biogas. Rep SGC 142Google Scholar
  63. Petersson A, Wellinger A (2009) Biogas upgrading technologies–developments and innovations. IEA Bioenergy 20:1–19Google Scholar
  64. Pinghai S, Dal-Cin M, Kumar A et al (2012) Design and economics of a hybrid membrane–temperature swing adsorption process for upgrading biogas. J Membr Sci 413:17–28Google Scholar
  65. Pipatmanomai S, Kaewluan S, Vitidsant T (2009) Economic assessment of biogas-to-electricity generation system with H2S removal by activated carbon in small pig farm. Appl Energy 86(5):669–674CrossRefGoogle Scholar
  66. Porpatham E, Ramesh A, Nagalingam B (2018) Experimental studies on the effects of enhancing the concentration of oxygen in the inducted charge of a biogas fuelled spark ignition engine. Energy 142:303–312CrossRefGoogle Scholar
  67. Report (2012) Biogas to biomethane technology review. Vienna University of Technology Austria, pp 1–15Google Scholar
  68. Ryckebosch E, Drouillon M, Vervaeren H (2011) Techniques for transformation of biogas to biomethane. Biomass Bioenergy 35:1633–1645CrossRefGoogle Scholar
  69. Sadhukhan J, Lloyd JR, Scott K et al (2016) A critical review of integration analysis of microbial electrosynthesis (MES) systems with waste biorefineries for the production of biofuel and chemical from reuse of CO2. Renew Sust Energ Rev 56:116–132CrossRefGoogle Scholar
  70. Sahota S, Shah G, Ghosh P et al (2018) Review of trends in biogas upgradation technologies and future perspectives. Bioresour Technol Rep 1:79–88CrossRefGoogle Scholar
  71. Schiel-Bengelsdorf B, Durre P (2012) Pathway engineering and synthetic biology using acetogens. FEBS Lett 586:2191–2198CrossRefGoogle Scholar
  72. Scholwin F, Held J, Kaltschmitt M et al (2013) Biomethane from anaerobic processes. In: Renewable energy systems. Springer, New York, pp 656–664CrossRefGoogle Scholar
  73. Scholz M, Melin T, Wessling M (2013) Transforming biogas into biomethane using membrane technology. Renew Sust Energ Rev 17:199–212CrossRefGoogle Scholar
  74. Siefers A, Wang N, Sindt A et al (2010) A novel and cost-effective hydrogen sulfide removal technology using tire derived rubber particles. Proc Water Environ Fed 12:4597–4622CrossRefGoogle Scholar
  75. Singhal S, Agarwal S, Arora S et al (2017) Upgrading techniques for transformation of biogas to bio-CNG: a review. Int J Energy Res 41(12):1657–1669CrossRefGoogle Scholar
  76. Song C, Liu Q, Ji N et al (2017) Reducing the energy consumption of membrane-cryogenic hybrid CO2 capture by process optimization. Energy 124:29–39CrossRefGoogle Scholar
  77. Soreanu G, Beland M, Falletta P et al (2008) Laboratory pilot scale study for H2S removal from biogas in an anoxic biotrickling filter. Water Sci Technol 57(2):201–207CrossRefGoogle Scholar
  78. Stams AJM, Plugge CM (2009) Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat Rev Microbiol 7:568–577CrossRefGoogle Scholar
  79. Sun Q, Li H, Yan J et al (2015) Selection of appropriate biogas upgrading technology-a review of biogas cleaning, upgrading and utilisation. Renew Sust Energ Rev 51:521–532CrossRefGoogle Scholar
  80. Thran D, Billig E, Persson T et al (2014) Biomethane—status and factors affecting market development and trade. IEA Task 40 and Task 37 Joint StudyGoogle Scholar
  81. Toledo-Cervantes A, Estrada JM, Lebrero R et al (2017) A comparative analysis of biogas upgrading technologies: photosynthetic vs physical/chemical processes. Algal Res 25:237–243CrossRefGoogle Scholar
  82. Tomas M, Fortuny M, Lao C et al (2009) Technical and economical study of a full-scale biotrickling filter for H2S removal from biogas. Water Pract Tech 4(2):1–545CrossRefGoogle Scholar
  83. Tuinier MJ, Van SintAnnaland M (2012) Biogas purification using cryogenic packed bed technology. Ind Eng Chem Res 51:5552–5558CrossRefGoogle Scholar
  84. Van Eerten-Jansen MCAA, Ter Heijne A, Buisman CJN et al (2012) Microbial electrolysis cells for production of methane from CO2: long-term performance and perspectives. Int J Energy Res 36:809–819CrossRefGoogle Scholar
  85. Verma P, Samanta SK (2016) Overview of biogas reforming technologies for hydrogen production: advantages and challenges. In: Proceedings of the first international conference on recent advances in bioenergy research. Springer, New Dehli, pp 227–243CrossRefGoogle Scholar
  86. Villano M, Aulenta F, Ciucci C et al (2010) Bioelectrochemical reduction of CO2 to CH4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture. Bioresour Technol 101:3085–3090CrossRefGoogle Scholar
  87. Vrbova V, Karel C (2017) Upgrading biogas to biomethane using membrane separation. Energy Fuel 31:9393–9401CrossRefGoogle Scholar
  88. Wang H, Ren ZJ (2013) A comprehensive review of microbial electrochemical systems as a platform technology. Biotechnol Adv 31:1796–1807CrossRefGoogle Scholar
  89. Xia A, Cheng J, Murphy JD (2016) Innovation in biological production and upgrading of methane and hydrogen for use as gaseous transport biofuel. Biotechnol Adv 34:451–472CrossRefGoogle Scholar
  90. Xu H, Wang K, Holmes DE (2014) Bioelectrochemical removal of carbon dioxide (CO2): an innovative method for biogas upgrading. Bioresour Technol 173:392–398CrossRefGoogle Scholar
  91. Yoo M, Sang-Jun H, Jung-Ho W (2013) Carbon dioxide capture capacity of sodium hydroxide aqueous solution. J Environ Manag 114:512–519CrossRefGoogle Scholar
  92. Zeppilli M, Lai A, Villano M et al (2016) Anion vs cation exchange membrane strongly affect mechanisms and yield of CO2 fixation in a microbial electrolysis cell. Chem Eng J 304:10–19CrossRefGoogle Scholar
  93. Zhang Y, Angelidaki I (2014) Microbial electrolysis cells turning to be versatile technology: recent advances and future challenges. Water Res 56:11–25CrossRefGoogle Scholar
  94. Zhang S, Yaping L, Jianfeng T et al (2006) Operation appraisal and parameter optimization of imported skid-mounted natural gas dehydration unit. Nat Gas Ind 26:128–130Google Scholar
  95. Zhang Y, Sunarso J, Liu S et al (2013) Current status and development of membranes for CO2/CH4 separation: a review. Int J Greenh Gas Control 12:84–107CrossRefGoogle Scholar
  96. Zhao Q, Leonhardt E, MacConnell C et al (2010) Purification technologies for biogas generated by anaerobic digestion. Compressed Biomethane, CSANR Research report, pp 1–24Google Scholar
  97. Zhao H, Zhang Y, Zhao B et al (2012) Electrochemical reduction of carbon dioxide in an MFC-MEC system with a layer-by-layer self-assembly carbon nanotube/ cobalt phthalocyanine modified electrode. Environ Sci Technol 46:5198–5204CrossRefGoogle Scholar
  98. Zicari SM (2003) Removal of hydrogen sulfide from biogas using cow-manure compost. Doctoral dissertation, Cornell UniversityGoogle Scholar
  99. Zulkefli NN, Masdar MS, Isahak WNRW et al (2019) Removal of hydrogen sulfide from a biogas mimic by using impregnated activated carbon adsorbent. PLoS One 14(2):e0211713CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • B. S. Dhanya
    • 1
  • Dhruv Singh
    • 2
  • Asim Kumar Jana
    • 3
  • Anjani Kumar Dwiwedi
    • 2
  • Ashok Kumar Sharma
    • 2
  • Munusamy Chamundeeswari
    • 1
    • 4
  • Madan Lal Verma
    • 5
    • 6
  1. 1.Department of BiotechnologyUdaya School of EngineeringNagercoilIndia
  2. 2.Department of Chemical EngineeringUjjain Engineering CollegeUjjainIndia
  3. 3.Department of BiotechnologyNational Institute of TechnologyJalandharIndia
  4. 4.Department of BiotechnologySt. Joseph’s College of EngineeringChennaiIndia
  5. 5.Centre for Chemistry and BiotechnologyDeakin UniversityGeelongAustralia
  6. 6.Department of BiotechnologyDr Y. S. Parmar University of Horticulture and ForestryHamirpurIndia

Personalised recommendations