Advertisement

Stoichiometric Analysis of Biogas Production from Industrial Residues

  • Selvaraju Sivamani
  • B. S. Naveen Prasad
  • Zahrah Abdullah Khalfan Al-Sharji
  • Khair Abdulhakeem Musallem Al-Rawas
  • Azan Salim Dadin Al-Blowshi
  • Anas Salim Basheer Al-Yafii
  • Mahammad Ali Issa Al-Mashani
  • Humoud Suliman Humoud Al-Mamari
Chapter
  • 31 Downloads
Part of the Clean Energy Production Technologies book series (CEPT)

Abstract

A stoichiometric analysis of biogas production by anaerobic digestion from cassava wastewater, wheat bran, and sewage sludge is proposed. A wide range of methods are available to study stoichiometry of biochemical reactions. This work reported elemental balances method to solve stoichiometric coefficients in biogas production from cassava wastewater, wheat bran, and sewage sludge. The method could be employed for various substrates for biogas production and for other biochemical reactions.

Keywords

Anaerobic digestion Biogas Industrial residues Stoichiometry 

References

  1. An Y, Yang F, Chua HC, Wong FS, Wu B (2008) The integration of methanogenesis with shortcut nitrification and denitrification in a combined UASB with MBR. Bioresour Technol 99(9):3714–3720CrossRefGoogle Scholar
  2. Augenstein DC, Wise DL, Wentworth RL, Cooney CL (1976) Fuel gas recovery from controlled landfill of municipal wastes. Res Recover Conserv 2:103Google Scholar
  3. Bajpai P (2017) Basics of anaerobic digestion process. In: Anaerobic technology in pulp and paper industry. Springer, Singapore, pp 7–12CrossRefGoogle Scholar
  4. Barnett A, Pyle L, Sibramaniam SK (1978) Biogas technology in the third world: a multidisciplinary review. International Development Research Center (IDRC), Ottawa, p 51Google Scholar
  5. Coppinger ER (1979) The operation of a 50,000 gallon anaerobic digester at the Monroe state dairy farm. Ecotope Group, 2332, East Madison/SeattleGoogle Scholar
  6. Dioha IJ, Ikeme CH, Nafi’u T, Soba NI, Yusuf MBS (2013) Effect of carbon to nitrogen ratio on biogas production. Int Res J Nat Sci 1(3):1–10Google Scholar
  7. Fry LJ, Merrill R (1973) Methane digesters for fuel gas and fertilizer. Newsletter No. 3. New Alchemy Institute, Santa CruzGoogle Scholar
  8. Geeta GS, Raghavendra S, Reddy TKR (1986) Increase of biogas production from bovine excreta by addition of various inert materials. Agric Wastes 17(2):153–156CrossRefGoogle Scholar
  9. Gore JA (1981) More gas from gobar gas plants. Indian FarmingGoogle Scholar
  10. Hedge JE, Hofreiter BT, Whistler RL (1962) Carbohydrate chemistry. Academic Press, New York, p 17Google Scholar
  11. Igoni AH, Ayotamuno MJ, Eze CL, Ogaji SOT, Probert SD (2008) Designs of anaerobic digesters for producing biogas from municipal solid-waste. Appl Energy 85(6):430–438CrossRefGoogle Scholar
  12. Kalia VC (2007) Microbial treatment of domestic and industrial wastes for bioenergy production. Appl Microbiol (e-Book). National Science Digital Library NISCAIR, New Delhi, India. http://nsdl.niscair.res.in/bitstream/123456789/650/1/DomesticWaste.pdf
  13. Langrage B (1979) Biomethane 2: principles – technique utilization, EDISUD, La Calade, 13100 Aix-en-Provence, FranceGoogle Scholar
  14. Liu, K., Wei, B., Su, Z., Yan, D., & Qin, X. Simulated Test Studying on CN-Containing Cassava Starch Industry Wastewater Treated by Anaerobic ProcessGoogle Scholar
  15. Madamwar DB, Mithal BM (1986) Effect of pectin on anaerobic digestion of cattle dung. Biotechnol Bioeng 28(4):624–626CrossRefGoogle Scholar
  16. Mahanta P, Dewan A, Saha UK, Kalita P (2004a) Effect of temperature and agitation on the performance of biogas digesters. In: Proceedings of 2nd BSME-ASME international conference on thermal engineering, vol II, Dhaka, pp 871–879Google Scholar
  17. Mahanta P, Dewan A, Saha UK, Kalita P (2004b) Influence of temperature and total solid concentration on the gas production rate of biogas digester. J Energy South Afr 15(4):112–117Google Scholar
  18. Mahanta P, Saha UK, Dewan A, Kalita P, Buragohain B (2005) Biogas digester: a discussion on factors affecting biogas production and field investigation of a novel duplex digester. J Sol Energy Soc India 15(2):1–12Google Scholar
  19. Moharao GJ (1974) Scientific aspects of cow dung digestion. Khadi Gramodyog 20(7):340–347Google Scholar
  20. Moharao GJ (1975) Aspects of night soil digestion, sewage farming and fish culture. A working paper. All India Institute of Hygiene and Public HealthGoogle Scholar
  21. NAS (1977) Methane generation from human, animal and agricultural wastes, report of an AdHoc panel of the Advisory Committee on Technology Innovation. National Academy of Sciences, Washington, DCGoogle Scholar
  22. Parawira W, Murto M, Read JS, Mattiasson B (2004) Volatile fatty acid production during anaerobic mesophilic digestion of solid potato waste. J Chem Technol Biotechnol 79(7):673–677CrossRefGoogle Scholar
  23. Pellet PL, Young VR (1980) Nutritional evaluation of protein foods. In: Food and nutrition, vol 4. United Nations UniversityGoogle Scholar
  24. Prasad CR (1985) Utilisation of organic wastes in biogas plant. Khadi Gramodyog:514–518Google Scholar
  25. Report No. ETSU B 1118 (1986) Research into the development of prototype units for the production of biogas methane from farm wastes and energy crops. Department of Microbiology, University College, CardiffGoogle Scholar
  26. Saim NA, Dean JR, Abdullah MP, Zakaria Z (1997) Extraction of polycyclic aromatic hydrocarbons from contaminated soil using Soxhlet extraction, pressurised and atmospheric microwave-assisted extraction, supercritical fluid extraction and accelerated solvent extraction. J Chromatogr A 791(1–2):361–366CrossRefGoogle Scholar
  27. Singh RB (1974) Biogas plant: generation of methane from organic wastes. Gobar gas research station, Ajitmal/Etawah, p 33Google Scholar
  28. Sivamani S, Chandrasekaran AP, Balajii M, Shanmugaprakash M, Hosseini-Bandegharaei A, Baskar R (2018) Evaluation of the potential of cassava-based residues for biofuels production. Rev Environ Sci Biotechnol:1–18Google Scholar
  29. Smith PH, Frank JR, Smith WH, Strub A, Charter P, Schleser G (1982) Biomass feedstocks for methane production. In: Proceedings of 2nd E.C. conference. Applied Science Publishers, New York, pp 122–126Google Scholar
  30. SPOBD (1979) Biogas technology and utilization. Chengdu seminar. Sichuan Provincial Office of Biogas Development, Sichuan, People’s Republic of ChinaGoogle Scholar
  31. Tchobanoglous G, Burton FL, Stensel HD (1991) Wastewater engineering. Management 7:1–4Google Scholar
  32. TERI (1987) Fixed dome biogas plants: a design, construction and operation manual. TERI, New Delhi, p 3Google Scholar
  33. UN Guidebook on Biogas Development (1980) United Nations, New York, p 99Google Scholar
  34. Weiland P (2010) Biogas production: current state and perspectives. Appl Microbiol Biotechnol 85(4):849–860CrossRefGoogle Scholar
  35. Wise DL (1987) Global bioconversions, vol IV. CRC Press, Boca Raton, pp 178–189Google Scholar
  36. Ziemiński K, Frąc M (2012) Methane fermentation process as anaerobic digestion of biomass: Transformations, stages and microorganisms. Afr J Biotechnol 11(18):4127–4139Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Selvaraju Sivamani
    • 1
  • B. S. Naveen Prasad
    • 1
  • Zahrah Abdullah Khalfan Al-Sharji
    • 1
  • Khair Abdulhakeem Musallem Al-Rawas
    • 1
  • Azan Salim Dadin Al-Blowshi
    • 1
  • Anas Salim Basheer Al-Yafii
    • 1
  • Mahammad Ali Issa Al-Mashani
    • 1
  • Humoud Suliman Humoud Al-Mamari
    • 1
  1. 1.Chemical Engineering Section, Engineering DepartmentSalalah College of TechnologySalalahSultanate of Oman

Personalised recommendations