Advertisement

Biofuels Generation Based on Technical Process and Biomass Quality

  • Felipe Lange Shimizu
  • Hernan Dario Zamora Zamora
  • Alison Andrei Schmatz
  • Ranieri Bueno Melati
  • Danilo Bueno
  • Michel BrienzoEmail author
Chapter
  • 16 Downloads
Part of the Clean Energy Production Technologies book series (CEPT)

Abstract

There is a wide variety of biomass types, implicating in biofuels and conversion process differences. Lignocellulosic biomass, for instance, can be converted into biofuels by biotechnology route. There are first-, second-, third-, and fourth-generation biofuels coming from different kinds of biomass and process. Besides biofuels, the carbohydrate and lignin of these biomasses can be used to generate other products of aggregated value. The biomasses have properties that resist the conversion processes, such as crystallinity and lignin contents. These difficulties are fought with genetic engineering and pretreatments to alter the material structure, decreasing the heterogeneity and recalcitrance, improving enzymatic hydrolysis and consequently the conversion into biofuels.

Keywords

Biofuels Biomass Renewable energy Fossil fuels Cellulose Lignin 

Notes

Acknowledgment

Authors are thankful for the support of the Brazilian Council for Research and Development (CNPq, process 401900/2016-9) and São Paulo Research Foundation (FAPESP, process 2017/11345-0).

References

  1. Aguiar MM, Ferreira LFR, Monteiro RTR (2010) Use of vinasse and sugarcane bagasse for the production of enzymes by lignocellulolytic fungi. Braz Arch Biol Technol 53(5):1245–1254CrossRefGoogle Scholar
  2. Alonso DM, Bond JQ, Dumesic JA (2010) Catalytic conversion of biomass to biofuels. Green Chem 12(9):1493–1513CrossRefGoogle Scholar
  3. Allwright MR, Taylor G (2016) Molecular breeding for improved second generation bioenergy crops. Trends Plant Sci 21(1):43–54CrossRefGoogle Scholar
  4. Arantes V, Saddler JN (2010) Access to cellulose limits the efficiency of enzymatic hydrolysis: the role of amorphogenesis. Biotechnol Biofuels 3(1):4CrossRefGoogle Scholar
  5. Asada C, Sasaki C, Suzuki A, Nakamura Y (2018) Total biorefinery process of lignocellulosic waste using steam explosion followed by water and acetone extractions. Waste Biomass Valoriz 9:2423–2432.  https://doi.org/10.1007/s12649-017-0157-x CrossRefGoogle Scholar
  6. Asumadu-Sarkodie S, Owusu PA (2016) Feasibility of biomass heating system in Middle East Technical University, Northern Cyprus Campus. Cogent Eng 3(1):1134304Google Scholar
  7. Atalla RH, Vanderhart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223(4633):283–285CrossRefGoogle Scholar
  8. Benjamin Y, Görgens JF (2015) Improving sugar conversion and bioethanol yield through transgenic sugarcane clone in South Africa. Int J Environ Bioenergy 10(1, October):9–25Google Scholar
  9. Benjamin Y, Cheng H, Görgens JF (2013) Evaluation of bagasse from different varieties of sugarcane by dilute acid pretreatment and enzymatic hydrolysis. Ind Crops Prod Elsevier B.V. 51:7–18.  https://doi.org/10.1016/j.indcrop.2013.08.067 CrossRefGoogle Scholar
  10. Bezerra TL, Ragauskas AJ (2016) A review of sugarcane bagasse for second-generation bioethanol and biopower production. Biofuels Bioprod Biorefin 10(5):634–647CrossRefGoogle Scholar
  11. Bhagwat S, Ratnaparkhe S, Kumar A (2015) Biomass pre-treatment methods and their economic viability for efficient production of biofuel. Br Biotechnol J 8:1–17.  https://doi.org/10.9734/BBJ/2015/18284 CrossRefGoogle Scholar
  12. Bhattacharya AS, Bhattacharya A, Pletschke BI (2015) Synergism of fungal and bacterial cellulases and hemicellulases: a novel perspective for enhanced bio-ethanol production. Biotechnol Lett 37:1117–1129.  https://doi.org/10.1007/s10529-015-1779-3 CrossRefGoogle Scholar
  13. Bian J, Peng F, Peng XP, Xiao X, Peng P, Xu F, Sun RC (2014) Effect of [Emim] ac pretreatment on the structure and enzymatic hydrolysis of sugarcane bagasse cellulose. Carbohydr Polym 100:211–217CrossRefGoogle Scholar
  14. BNDES, National Development Bank (2011) Perspectivas do setor de biomassa de madeira para a geração de energia. https://web.bndes.gov.br/bib/jspui/bitstream/1408/2523/1/A%20BS%2033%20Perspectivas%20do%20setor%20de%20biomassa%20de%20madeira%20para%20a%20gera%C3%A7%C3%A3o%20de%20energia_P.pdf. Accessed 8 Jan 2019.
  15. BNDES, National Development Bank (2018) Biogás de resíduos agroindustriais: panorama e perspectivas. https://web.bndes.gov.br/bib/jspui/bitstream/1408/15384/1/BS47__Biogas__FECHADO.pdf. Accessed 29 Jan 2019.
  16. Brazilian Ministry of Mines and Energy (2017) Impactos da participação do biogas e do biometano na matriz brasileira. http://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-244/topico-257/EPE_IV%20FORUM%20BIOGAS_JOSE%20MAURO_2017_1710.pdf. Accessed 10 Jan 2019.
  17. Brienzo M, Siqueira AF, Milagres AMF (2009) Search for optimum conditions of sugarcane bagasse hemicellulose extraction. Biochem Eng J 46(2):199–204CrossRefGoogle Scholar
  18. Brienzo M, Carvalho W, Milagres AM (2010) Xylooligosaccharides production from alkali-pretreated sugarcane bagasse using xylanases from Thermoascus aurantiacus. Appl Biochem Biotechnol 162(4):1195–1205CrossRefGoogle Scholar
  19. Brienzo M, Ferreira S, Vicentim MP, de Souza W, Sant’Anna C (2014) Comparison study on the biomass recalcitrance of different tissue fractions of sugarcane culm. Bioenergy Res 7(4):1454–1465CrossRefGoogle Scholar
  20. Brienzo M, Fikizolo S, Benjamin Y, Tyhoda L, Görgens J (2017) Influence of pretreatment severity on structural changes, lignin content and enzymatic hydrolysis of sugarcane bagasse samples. Renew Energy 104:271–280CrossRefGoogle Scholar
  21. Brillouet JM, Joseleau JP (1987) Investigation of the structure of a heteroxylan from the outer pericarp (beeswing bran) of wheat kernel. Carbohydr Res 159(1):109–126CrossRefGoogle Scholar
  22. Brosse N, El Hage R, Chaouch M, Pétrissans M, Dumarçay S, Gérardin P (2010) Investigation of the chemical modifications of beech wood lignin during heat treatment. Polym Degrad Stab 95(9):1721–1726CrossRefGoogle Scholar
  23. Burton RA, Fincher GB (2014) Plant cell wall engineering: applications in biofuel production and improved human health. Curr Opin Biotechnol 26:79–84CrossRefGoogle Scholar
  24. Campos BB (2015) Produção de etanol em biomassa de capim-elefante por Kluyveromyces marxianus CCT 7735. Dissertation, Federal University of ViçosaGoogle Scholar
  25. Chandra RP, Bura R, Mabee WE, Berlin DA, Pan X, Saddler JN (2007) Substrate pretreatment: The key to effective enzymatic hydrolysis of lignocellulosics? In: Biofuels. Springer, Berlin Heidelberg, pp 67–93CrossRefGoogle Scholar
  26. Chandra RP, Esteghlalian AR, Saddler JN (2008) Assessing substrate accessibility to enzymatic hydrolysis by cellulases. In: Characterization of lignocellulosic materials, pp 60–80.  https://doi.org/10.1002/9781444305425.ch4 CrossRefGoogle Scholar
  27. Chandel AK, Kapoor RK, Singh A, Kuhad RC (2007) Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501. Bioresour Technol 98(10):1947–1950CrossRefGoogle Scholar
  28. Chen JH, Wang K, Xu F, Sun RC (2015) Effect of hemicellulose removal on the structural and mechanical properties of regenerated fibers from bamboo. Cellulose 22(1):63–72CrossRefGoogle Scholar
  29. Chundawat SP, Beckham GT, Himmel ME, Dale BE (2011) Deconstruction of lignocellulosic biomass to fuels and chemicals. Annual Review Chem Biomolecular Eng 2:121–145CrossRefGoogle Scholar
  30. CONAB, National Supply Company (2018) Análise mensal sorgo Março de 2018. https://www.conab.gov.br/info-agro/analises-do-mercadoagropecuarioextrativista/analises-do-mercado/historico-mensal-de-sorgo. Accessed 5 Jan 2019
  31. CONAB, National Supply Company. Produção total de etanol no Brasil bate recorde com 32,3 bilhões de litros (2018). https://www.conab.gov.br/ultimas-noticias/2630-producao-total-de-etanol-no-brasil-bate-recorde-com-32-3-bilhoes-de-litros. Accessed 3 Jan 2019
  32. Cosgrove DJ (2005) Growth of the plant cell wall. Na Rev Mol Cell Biol 6(11):850CrossRefGoogle Scholar
  33. Crowe JD, Zarger RA, Hodge DB (2017) Relating nanoscale accessibility within plant cell walls to improved enzyme hydrolysis yields in corn stover subjected to diverse pretreatments. J Agric Food Chem 65(39):8652–8662CrossRefGoogle Scholar
  34. De Bhowmick G, Sarmah AK, Sen R (2018) Lignocellulosic biorefinery as a model for sustainable development of biofuels and value added products. Bioresour Technol 247:1144–1154.  https://doi.org/10.1016/j.biortech.2017.09.163 CrossRefGoogle Scholar
  35. Defanti LS, Siqueira NS, Linhares PC (2010) Produção de biocombustíveis a partir de algas fotossintetizantes. Bolsista de Valor 1:11–21Google Scholar
  36. Demirbas A (2009) Progress and recent trends in biodiesel fuels. Energy Convers Manag 50(1):14–34CrossRefGoogle Scholar
  37. Demirbas A (2011) Competitive liquid biofuels from biomass. Appl Energy 88(1):17–28CrossRefGoogle Scholar
  38. Dotsenko AS, Gusakov AV, Rozhkova AM et al (2018) Enzymatic hydrolysis of cellulose using mixes of mutant forms of cellulases from Penicillium verruculosum. Moscow Univ Chem Bull 73:58–62.  https://doi.org/10.3103/S0027131418020037 CrossRefGoogle Scholar
  39. du Preez JC (2016) Editorial: chemicals and bioproducts from biomass. Biotechnol Biofuels 9:233.  https://doi.org/10.1186/s13068-016-0637-4 CrossRefGoogle Scholar
  40. EMBRAPA, Brazilian Agricultural Research Corporation (2015) Pesquisa investe em capim como fonte de energia. https://www.embrapa.br/busca-de-noticias/-/noticia/2422024/pesquisa-investe-em-capim-como-fonte-de-energia. Accessed 5 Feb 2019
  41. EMBRAPA, Brazilian Agricultural Research Corporation (2018) Embrapa soja. https://www.embrapa.br/soja/cultivos/soja1/dados-economicos. Accessed 19 Jan 2019
  42. Espinosa L, Tapanes NLCOM, Aranda DAG, Cruz YR (2014) As microalgas como fonte de produção de biodiesel: discussão de sua viabilidade. Acta Sci Techn 2(1):1–10Google Scholar
  43. Fengel D, Wegener G (1984) Wood: Chemistry, Ultrastructure, React 613:1960–1982Google Scholar
  44. Flores RA et al (2012) Yield and quality of elephant grass biomass produced in the cerrados region for bioenergy. Eng. Agríc 32(5):831–839CrossRefGoogle Scholar
  45. Franco ALC (2013) Biodiesel de microalgas: avanços e desafios. Química Nova 36(3):437–448CrossRefGoogle Scholar
  46. Freudenberg K (1965) Lignin: its constitution and formation from p-hydroxycinnamyl alcohols. Science 148(3670):595–600CrossRefGoogle Scholar
  47. Furtado A et al (2014) Modifying plants for biofuel and biomaterial production. Plant Biotechnol J 12:1246–1258.  https://doi.org/10.1111/pbi.12300 CrossRefGoogle Scholar
  48. Gao J, Chen L, Yuan K, Huang H, Yan Z (2013) Ionic liquid pretreatment to enhance the anaerobic digestion of lignocellulosic biomass. Bioresour Technol 150:352–358CrossRefGoogle Scholar
  49. Gill JR et al (2014) Yield Results and Stability Analysis from the Sorghum Regional Biomass Feedstock Trial. Bioenerg. Res 7(3):1026–1034.  https://doi.org/10.1007/s12155-014-9445-5 CrossRefGoogle Scholar
  50. Goh CS, Tan KT, Lee KT, Bhatia S (2010) Bio-ethanol from lignocellulose: status, perspectives and challenges in Malaysia. Bioresour Technol 101(13):4834–4841CrossRefGoogle Scholar
  51. Goufo ED, Mugisha S (2018) Complex harmonic poles in the evolution of macromolecules depolymerization. J Comput Anal Appl 18:1490Google Scholar
  52. Gouveia L, Oliveira AC (2009) Microalgae as a raw material for biofuels production. J Ind Microbiol Biotechnol 36(2):269–274CrossRefGoogle Scholar
  53. Guimarães CC (2009) Experimentação no ensino de química: caminhos e descaminhos rumo à aprendizagem significativa. Química nova na escola 31(3):198–202Google Scholar
  54. Han Y, Xu J, Zhao Z, Zhao J (2018) Analysis of enzymolysis process kinetics and estimation of the resource conversion efficiency to corn cobs with alkali soaking, water and acid steam explosion pretreatments. Bioresour Technol 264:391–394.  https://doi.org/10.1016/j.biortech.2018.06.045 CrossRefGoogle Scholar
  55. Harmoko C, Sucipto KI, Retnoningtyas ES, Hartono SB (2016) Vinyl functionalized cubic mesoporous silica nanoparticles as supporting material to enhance cellulase enzyme stability. ARPN J Eng Appl Sci 11:2981–2992Google Scholar
  56. Hartono CD, Marlie KJ, Putro JN et al (2016) Levulinic acid from corncob by subcritical water process. Int J Ind Chem 7:401–409.  https://doi.org/10.1007/s40090-016-0086-8 CrossRefGoogle Scholar
  57. Hideno A, Inoue H, Tsukahara K, Fujimoto S, Minowa T, Inoue S, Sawayama S (2009) Wet disk milling pretreatment without sulfuric acid for enzymatic hydrolysis of rice straw. Bioresour Technol 100(10):2706–2711CrossRefGoogle Scholar
  58. Hoang NV et al (2015) Potential for genetic improvement of sugarcane as a source of biomass for biofuels. Front Bioeng Biotechnol 3(November):1–15.  https://doi.org/10.3389/fbioe.2015.00182 CrossRefGoogle Scholar
  59. Howard RL, Abotsi ELJR, Van Rensburg EJ, Howard S (2003) Lignocellulose biotechnology: issues of bioconversion and enzyme production. Afr J Biotechnol 2(12):602–619CrossRefGoogle Scholar
  60. Hsu T-A (1996) Pretreatment of biomass. In: Wyman CE (ed) Handbook on bioethanol production and utilization. Applied Energy Technology Series. Taylor & Francis, Washington DC, Chapter 10Google Scholar
  61. IBÁ, Brazilian Industry of Trees (2018) Sumário executivo 2018. https://iba.org/datafiles/publicacoes/relatorios/digital-sumarioexecutivo-2018.pdf. Accessed 17 Jan 2019
  62. IBGE, Geographic Statistical Brazilian Institute (2017) Produção da Extração Vegetal e da Silvicultura 2017. https://agenciadenoticias.ibge.gov.br/media/com_mediaibge/arquivos/15f538e9095614fc3204f828b22fa714.pdf. Accessed 20 Dec 2019
  63. IPEF, Institute for Research and Forest Studies (2018) Programa cooperativo sobre produtividade potencial do Pinus no Brasil. https://www.ipef.br/pppib/. Accessed 10 Jan 2019
  64. Iroegbu AO, Hlangothi SP (2018) Furfuryl alcohol a versatile, eco-sustainable compound in perspective. Chem Africa.  https://doi.org/10.1007/s42250-018-00036-9
  65. Jørgensen H, Kristensen JB, Felby C (2007) Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels Bioprod Biorefin 1(2):119–134CrossRefGoogle Scholar
  66. Jung JH et al (2012) RNAi suppression of lignin biosynthesis in sugarcane reduces recalcitrance for biofuel production from lignocellulosic biomass. Plant Biotechnol J 10(9):1067–1076.  https://doi.org/10.1111/j.1467-7652.2012.00734.x CrossRefGoogle Scholar
  67. Kamm B, Kamm M (2007) Biorefineries–multi product processes. In: White biotechnology. Springer, Berlin Heidelberg, pp 175–204CrossRefGoogle Scholar
  68. Kamm B (2012) Introduction of biomass and biorefineries. In: The role of green chemistry in biomass processing and conversion. Wiley, Chapter 1, pp 1–26Google Scholar
  69. Karapatsia A, Pappas I, Penloglou G et al (2017) Optimization of dilute acid pretreatment and enzymatic hydrolysis of Phalaris aquatica L. lignocellulosic biomass in batch and fed-batch processes. BioEnergy Res 10:225–236.  https://doi.org/10.1007/s12155-016-9793-4 CrossRefGoogle Scholar
  70. Karimi K, Taherzadeh MJ (2016) A critical review on analysis in pretreatment of lignocelluloses: degree of polymerization, adsorption/desorption, and accessibility. Bioresour Technol 203:348–356CrossRefGoogle Scholar
  71. Kenney WA, Sennerby-Forsse L, Layton P (1990) A review of biomass quality research relevant to the use of poplar and willow for energy conversion. Biomass 21(3):163–188CrossRefGoogle Scholar
  72. Kim M, Day DF (2011) Composition of sugar cane, energy cane, and sweet sorghum suitable for ethanol production at Louisiana sugar mills. J Ind Microbiol Biotechnol 38(7):803–807CrossRefGoogle Scholar
  73. Kim S, Dale BE (2004) Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy 26(4):361–375CrossRefGoogle Scholar
  74. Kole C (2010) Genetics, genomics and breeding of sugarcane. In: Henry RJ, Kole C (eds) , 1st edn. Science Publishers, Enfield, New HampshireGoogle Scholar
  75. Kuhad RC, Singh A (1993) Lignocellulose biotechnology: current and future prospects. Crit Rev Biotechnol 13(2):151–172CrossRefGoogle Scholar
  76. Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48(8):3713–3729CrossRefGoogle Scholar
  77. Kumar R, Tabatabaei M, Karimi K, Sárvári Horváth I (2016) Recent updates on lignocellulosic biomass derived ethanol-a review. Biofuel Res J 3(1):347–356CrossRefGoogle Scholar
  78. Kumar AK, Sharma S (2017) Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresour Bioprocess 4:7.  https://doi.org/10.1186/s40643-017-0137-9 CrossRefGoogle Scholar
  79. Kumar M, Oyedun AO, Kumar A (2018) A review on the current status of various hydrothermal technologies on biomass feedstock. Renew Sust Energ Rev 81:1742–1770CrossRefGoogle Scholar
  80. Li J, Wei X, Wang Q, Chen J, Chang G, Kong L, Liu Y (2012) Homogeneous isolation of nanocellulose from sugarcane bagasse by high pressure homogenization. Carbohydr Polym 90(4):1609–1613CrossRefGoogle Scholar
  81. Limayem A, Ricke SC (2012) Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog Energy Combust Sci 38(4):449–467CrossRefGoogle Scholar
  82. Loow Y-L, Wu TY, Md Jahim J et al (2016) Typical conversion of lignocellulosic biomass into reducing sugars using dilute acid hydrolysis and alkaline pretreatment. Cellulose 23:1491–1520.  https://doi.org/10.1007/s10570-016-0936-8 CrossRefGoogle Scholar
  83. Lü J, Sheahan C, Fu P (2011) Metabolic engineering of algae for fourth generation biofuels production. Energy Environ Sci 4(7):2451–2466CrossRefGoogle Scholar
  84. Ludueña L, Fasce D, Alvarez VA, Stefani PM (2011) Nanocellulose from rice husk following alkaline treatment to remove silica. Bioresources 6(2):1440–1453Google Scholar
  85. Luo X, Zhu JY (2011) Effects of drying-induced fiber hornification on enzymatic saccharification of lignocelluloses. Enzyme Microb Technol 48(1):92–99CrossRefGoogle Scholar
  86. Macgregor AW, Fincher GB (1993) Carbohydrates of the barley grain. In: Macgregor AW, Bhatty RS (eds) Barley: chemistry and technology. American Association of Cereal ChemistsGoogle Scholar
  87. Martino DC, Colodette JL, Chandra R, Saddler J (2017) Steam explosion pretreatment used to remove hemicellulose to enhance the production of a eucalyptus organosolv dissolving pulp. Wood Sci Technol 51:557–569.  https://doi.org/10.1007/s00226-016-0889-y CrossRefGoogle Scholar
  88. Matsuoka S et al (2014) Energy cane : its concept, development, characteristics, and prospects. Adv Bot 2014.  https://doi.org/10.1155/2014/597275
  89. McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Bioresour Technol 83(1):37–46CrossRefGoogle Scholar
  90. Medina DP, Colorado AA (2006) Ethanol producction of banana shell and cassava starch. Dyna 73(150):21–27Google Scholar
  91. Melati RB, Shimizu FL, Oliveira G, Pagnocca FC, de Souza W, Sant’Anna C, Brienzo M (2019) Key factors affecting the recalcitrance and conversion process of biomass. Bioenergy Res 12(1):1–20CrossRefGoogle Scholar
  92. Morais RFD, Souza BJD, Leite JM, Soares LHDB, Alves BJR, Boddey RM, Urquiaga S (2009) Elephant grass genotypes for bioenergy production by direct biomass combustion. Pesquisa Agropecuária Brasileira 44(2):133–140CrossRefGoogle Scholar
  93. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96(6):673–686CrossRefGoogle Scholar
  94. Müller-Langer F, Kaltschmitt M (2015) Biofuels from lignocellulosic biomass – a multi-criteria approach for comparing overall concepts. Biomass Convers Bioref 5:43–61.  https://doi.org/10.1007/s13399-014-0125-7 CrossRefGoogle Scholar
  95. Nakamura A, Watanabe H, Ishida T, Uchihashi T, Wada M, Ando T et al (2014) Trade-off between processivity and hydrolytic velocity of cellobiohydrolases at the surface of crystalline cellulose. J Am Chem Soc 136(12):4584–4592CrossRefGoogle Scholar
  96. Nigam JN (2002) Bioconversion of water-hyacinth (Eichhornia crassipes) hemicellulose acid hydrolysate to motor fuel ethanol by xylose–fermenting yeast. J Biotechnol 97(2):107–116CrossRefGoogle Scholar
  97. Olsson L, Hahn-Hägerdal B (1996) Fermentation of lignocellulosic hydrolysates for ethanol production. Enzym Microb Technol 18(5):312–331CrossRefGoogle Scholar
  98. Paszner L (1988) Salt catalyzed wood bonding with hemicellulose. Holzforschung-International J Biol Chem Phys Technol Wood 42(1):11–20Google Scholar
  99. Peng XUE (2009) Growth and biomass of six-year-old Eucalyptus urophylla plantation in Leizhou forestry bureau. Eucalypt Sci Technol 1(9)Google Scholar
  100. Pielhop T, Amgarten J, von Rohr PR, Studer MH (2016) Steam explosion pretreatment of softwood: the effect of the explosive decompression on enzymatic digestibility. Biotechnol Biofuels 9:152.  https://doi.org/10.1186/s13068-016-0567-1 CrossRefGoogle Scholar
  101. Prasad S, Singh A, Joshi HC (2007) Ethanol as an alternative fuel from agricultural, industrial and urban residues. Resour Conserv Recycl 50(1):1–39CrossRefGoogle Scholar
  102. Pu Y, Zhang D, Singh PM, Ragauskas AJ (2008) The new forestry biofuels sector. Biofuels Bioprod Biorefin 2:58–73CrossRefGoogle Scholar
  103. Quiroz-Castañeda RE, Folch-Mallol JL (2011) Plant cell wall degrading and remodeling proteins: current perspectives. Biotecnol Appl 28:205–215Google Scholar
  104. Ramos RLB et al (2001) Sugarcane expressed sequences tags (ESTs) encoding enzymes involved in lignin biosynthesis pathways. Genet Mol Biol 24(1–4):235–241.  https://doi.org/10.1590/S1415-47572001000100031 CrossRefGoogle Scholar
  105. Reddy N, Yang Y (2005) Biofibers from agricultural byproducts for industrial applications. Trends Biotechnol 23(1):22–27CrossRefGoogle Scholar
  106. REUTERS (2017) Usinas de cana da Índia devem mais do que dobrar oferta de etanol para mistura à gasoline. https://br.reuters.com/article/businessNews/idBRKBN1EE1L4-OBRBS. Accessed 10 Jan 2019
  107. Rocha GJM, Gonçalves AR, Oliveira BR et al (2012) Steam explosion pretreatment reproduction and alkaline delignification reactions performed on a pilot scale with sugarcane bagasse for bioethanol production. Ind Crops Prod 35:274–279.  https://doi.org/10.1016/j.indcrop.2011.07.010 CrossRefGoogle Scholar
  108. Rocha JR d AS d C et al (2017) Bioenergetic potential and genetic diversity of elephant grass via morpho-agronomic and biomass quality traits. Ind\ Crops Prod. Elsevier B.V. 95:485–492.  https://doi.org/10.1016/j.indcrop.2016.10.060 CrossRefGoogle Scholar
  109. Saini JK, Saini R, Tewari L (2015) Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. Biotech 5(4):337–353Google Scholar
  110. Sánchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27(2):185–194CrossRefGoogle Scholar
  111. Sannigrahi P, Ragauskas AJ (2010) Poplar as a feedstock for biofuels : A review of compositional characteristics. Biofuels Bioprod Bioref 4:209–226.  https://doi.org/10.1002/bbb CrossRefGoogle Scholar
  112. Santos FA, Queiróz JH, Colodette JG, Fernandes SA, Guimarães VM, Rezende ST (2012) Potencial da palha de cana-de-açúcar para produção de etanol. Química Nova 35(5):1–7CrossRefGoogle Scholar
  113. Santos FA, Queiroz JH, Colodette JL, Manfredi M, Queiroz MELR, Caldas CS, Soares FEF (2013) Otimização do pré-tratamento hidrotérmico da palha de cana-de-açúcar visando à produção de etanol celulósico. Química Nova 37(1):56–62CrossRefGoogle Scholar
  114. Sant’Anna C, De Souza W, Brienzo M (2014) The influence of the heterogeneity, physicochemical and structural properties on the recalcitrance and conversion of sugarcane bagasse. Sugarcane: Production, Consumption and Agricultural Management Systems, Nova Science Publishers, pp 1–34Google Scholar
  115. Sarkar N, Ghosh SK, Bannerjee S, Aikat K (2012) Bioethanol production from agricultural wastes: an overview. Renew Energy 37(1):19–27CrossRefGoogle Scholar
  116. Saxena RC, Adhikari DK, Goyal HB (2009) Biomass-based energy fuel through biochemical routes: a review. Renew Sust Energ Rev 13(1):167–178CrossRefGoogle Scholar
  117. Schmitt-Harsh M, Evans TP, Castellanos E, Randolph JC (2012) Carbon stocks in coffee agroforests and mixed dry tropical forests in the western highlands of Guatemala. Agrofor Syst 86(2):141–157CrossRefGoogle Scholar
  118. Sharma S, Kuila A, Sharma V (2017) Enzymatic hydrolysis of thermochemically pretreated biomass using a mixture of cellulolytic enzymes produced from different fungal sources. Clean Technol Environ Policy 19:1577–1584.  https://doi.org/10.1007/s10098-017-1346-9 CrossRefGoogle Scholar
  119. Shen H et al (2013) Enhanced characteristics of genetically modified switchgrass (Panicum virgatum L.) for high biofuel production. Biotechnol Biofuels 6(71):1–15Google Scholar
  120. Silva TAL, Zamora HDZ, Varão LHR et al (2018) Effect of steam explosion pretreatment catalysed by organic acid and alkali on chemical and structural properties and enzymatic hydrolysis of sugarcane bagasse. Waste Biomass Valoriz 9:2191–2201.  https://doi.org/10.1007/s12649-017-9989-7 CrossRefGoogle Scholar
  121. Sims RE, Mabee W, Saddler JN, Taylor M (2010) An overview of second generation biofuel technologies. Bioresour Technol 101(6):1570–1580CrossRefGoogle Scholar
  122. Solomon BD, Banerjee A, Acevedo A et al (2015) Policies for the sustainable development of biofuels in the Pan American region: a review and synthesis of five countries. Environ Manage 56:1276–1294.  https://doi.org/10.1007/s00267-014-0424-6 CrossRefGoogle Scholar
  123. Steinbach D, Kruse A, Sauer J (2017) Pretreatment technologies of lignocellulosic biomass in water in view of furfural and 5-hydroxymethylfurfural production- a review. Biomass Convers Biorefinery 7:247–274.  https://doi.org/10.1007/s13399-017-0243-0 CrossRefGoogle Scholar
  124. Sticklen MB (2008) Plant genetic engineering for biofuel production : towards affordable cellulosic ethanol. Nat Publish Group 9(6):433–443.  https://doi.org/10.1038/nrg2336 CrossRefGoogle Scholar
  125. Sun S, Cai Y, Liu H (2001) Biomass allocation of Scirpus mariqueter along an elevational gradient in a salt marsh of the Yangtse River estuary. Acta Bot Sin 43(2):178–185Google Scholar
  126. Sun G, Ranson KJ, Kharuk VI (2002) Radiometric slope correction for forest biomass estimation from SAR data in the Western Sayani Mountains, Siberia. Remote Sens Environ 79(2–3):279–287CrossRefGoogle Scholar
  127. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83(1):1–11CrossRefGoogle Scholar
  128. Timell TE (1964) Wood hemicelluloses: part I. In: Advances in carbohydrate chemistry. Academic press, vol 19, pp 247–302Google Scholar
  129. UBRABIO, Brazilian Union of Biodiesel and Bioquerosene (2017). https://www.ubrabio.com.br/sites/1800/1891/PDFs/Apresentacoes/20171101FArumAeroespacial2017.pdf. Accessed 9 Jan 2019
  130. Urbanowicz BR, Peña MJ, Ratnaparkhe S, Avci U, Backe J, Steet HF, Darvill AG (2012) 4-O-methylation of glucuronic acid in Arabidopsis glucuronoxylan is catalyzed by a domain of unknown function family 579 protein. Proc Natl Acad Sci 109(35):14253–14258CrossRefGoogle Scholar
  131. Wang L, Liu Y, Chen H (2018) A steam-explosion-based hydrolysis and acidification technology for cornstalk bioconversion. BioEnergy Res.  https://doi.org/10.1007/s12155-018-9945-9
  132. Werpy T, Petersen G, Aden A, Bozell J, Holladay J, White J, Jones S (2004) Top value added chemicals from biomass. In: Results of screening for potential candidates from sugars and synthesis gas, vol 1, pp 26–28Google Scholar
  133. Xie G, Peng L (2011) Genetic engineering of energy crops : a strategy for biofuel production in China. J Integ Plant Biol 53(2):143–150.  https://doi.org/10.1111/j.1744-7909.2010.01022.x CrossRefGoogle Scholar
  134. Ximenes E, Kim Y, Mosier N, Dien B, Ladisch M (2011) Deactivation of cellulases by phenols. Enzy Microb Technol 48(1):54–60CrossRefGoogle Scholar
  135. Yang Q, Pan X (2016) Correlation between lignin physicochemical properties and inhibition to enzymatic hydrolysis of cellulose. Biotechnol Bioeng 113(6):1213–1224CrossRefGoogle Scholar
  136. York WS, O’Neill MA (2008) Biochemical control of xylan biosynthesis - which end is up? Curr Opin Plant Biol 11(3):258–265CrossRefGoogle Scholar
  137. Yücel Y, Göycıncık S (2015) Optimization and modelling of process conditions using response surface methodology (RSM) for enzymatic saccharification of spent tea waste (STW). Waste Biomass Valoriz 6(6):1077–1084CrossRefGoogle Scholar
  138. Yung MM (2016) Catalytic conversion of biomass to fuels and chemicals. Top Catal 59(1).  https://doi.org/10.1007/s11244-015-0511-9
  139. Zakzeski J, Bruijnincx PC, Jongerius AL, Weckhuysen BM (2010) The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev 110(6):3552–3599CrossRefGoogle Scholar
  140. Zheng Y, Tang Q, Wang T, Liao Y, Wang J (2013) Synthesis of a green fuel additive over cation resins. Chem Eng Technol 36(11):1951–1956CrossRefGoogle Scholar
  141. Zhao X, Zhang L, Liu D (2012) Biomass recalcitrance. Part I: the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuels Bioprod Bioref 6(4):465–482CrossRefGoogle Scholar
  142. Zhao H et al (2014) Genotypic variation of cell wall composition and its conversion efficiency in Miscanthus sinensis, a potential biomass feedstock crop in China. GCB Bioenergy 6:768–776.  https://doi.org/10.1111/gcbb.12115 CrossRefGoogle Scholar
  143. Zhao X, Li S, Wu R, Liu D (2017) Organosolv fractionating pre-treatment of lignocellulosic biomass for efficient enzymatic saccharification: chemistry, kinetics, and substrate structures. Biofuels Bioprod Bioref 12(5):834–845Google Scholar
  144. Zhu S, Wu Y, Yu Z, Zhang X, Wang C, Yu F, Xue Y (2005) Simultaneous saccharification and fermentation of microwave/alkali pre-treated rice straw to ethanol. Biosyst Eng 92(2):229–235CrossRefGoogle Scholar
  145. Zhu JY, Pan X, Zalesny RS (2010) Pretreatment of woody biomass for biofuel production: energy efficiency, technologies, and recalcitrance. Appl Microbiol Biotechnol 87(3):847–857CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Felipe Lange Shimizu
    • 1
  • Hernan Dario Zamora Zamora
    • 1
  • Alison Andrei Schmatz
    • 1
  • Ranieri Bueno Melati
    • 1
  • Danilo Bueno
    • 1
  • Michel Brienzo
    • 1
    Email author
  1. 1.Institute for Research in Bioenergy (IPBEN)São Paulo State University (Unesp)Rio ClaroBrazil

Personalised recommendations