Advertisement

Abiotic Stress Tolerance in Plants by Priming and Pretreatments with Ascorbic Acid

  • Sajid AliEmail author
  • Aamir Nawaz
  • Sajjad Hussain
  • Samiya Mahmood Khan
  • Shaghef Ejaz
  • Shakeel AhmadEmail author
Chapter

Abstract

Ascorbic acid (AA) has been found to play several imperative functions in the regulation of various responses of plants or tolerance to different abiotic stresses. The functions of the exogenous application of AA as a pretreatment or priming are well recognized ranging from the germination to accumulation of biomass or yield production under different types of abiotic stress conditions. AA acts as a signaling molecule, positively influencing vegetative growth and development. It also plays a critical role in oxidative stress amelioration by activating different enzymatic and non-enzymatic antioxidants that eventually helps in scavenging of various reactive oxygen species (ROS) produced during abiotic stresses. AA application ameliorates photosynthesis stress inhibition, impedes chlorophyll loss and leaf senescence, and conserves the integrity of cell membranes under abiotic stresses. In addition, it helps to maintain the ionic homeostasis and interacts with certain other phytohormones and metabolites during stress adaptation and regulation of plant growth under abiotic stresses. The present chapter provides a comprehensive overview about the role of AA in various biochemical, physiological, and molecular responses of plants in response to its pretreatments and short gun priming tool under abiotic stressful conditions. The upcoming research in the near future exploring proteomic, transcriptomic, and metabolic profiling would ensure advance insights regulating the possible mechanistic role of AA in the improvement of growth and amelioration of abiotic stresses of plants.

Keywords

Ascorbic acid Antioxidative system Abiotic stresses Photosynthesis Reactive oxygen species Signaling molecule 

Abbreviations

AA

Ascorbic acid (ascorbate)

AAO

Ascorbic acid oxidase

ABA

Abscisic acid

APX

Ascorbate peroxidase

CAT

Catalase

Cu

Copper

Cd

Cadmium

DHA

Dehydroascorbic acid

DHAR

Dehydroascorbate reductase

EPR

Electron paramagnetic resonance spectroscopy

Fe

Iron

GSH

Glutathione

GR

Glutathione reductase

GSSG

Glutathione disulfide

GPX

Glutathione peroxidase

ET

Ethylene

H2O2

Hydrogen peroxide

JA

Jasmonic acid

GA

Gibberellins

MAPK

Mitogen-activated protein kinase

MDHAR

Monodehydroascorbate reductase

MDA

Malondialdehyde

Mn

Manganese

NADPH

Nicotinamide adenine dinucleotide phosphate

Ni

Nickel

Pb

Lead

POD

Peroxidase

ROS

Reactive oxygen species

SA

Salicylic acid

SOD

Superoxide dismutase

sAPX

Stromal ascorbate peroxidase

tAPX

Thylakoid-bounded ascorbate peroxidase

Zn

Zinc

References

  1. Afzal I, Basra SM, Farooq M, Nawaz A (2006) Alleviation of salinity stress in spring wheat by hormonal priming with ABA, salicylic acid and ascorbic acid. Int J Agric Biol 8(1):23–28Google Scholar
  2. Ahmad I, Basra SMA, Wahid A (2014) Exogenous application of ascorbic acid, salicylic acid and hydrogen peroxide improves the productivity of hybrid maize under at low temperature stress. Int J Agric Biol 16:825–830Google Scholar
  3. Akram NA, Shafiq F, Ashraf M (2017) Ascorbic acid-a potential oxidant scavenger and its role in plant development and abiotic stress tolerance. Front Plant Sci 8:613.  https://doi.org/10.3389/fpls.2017.00613CrossRefPubMedPubMedCentralGoogle Scholar
  4. Alhasnawi AN, Kadhimi AA, Isahak A, Mohamad A, Yusoff WMW, Zain CRCM (2015) Exogenous application of ascorbic acid ameliorates detrimental effects of salt stress in rice (MRQ74 and MR269) seedlings. Asian J Crop Sci 7(3):186–196CrossRefGoogle Scholar
  5. AL-Mayahi AMW (2016) Influence of salicylic acid (SA) and ascorbic acid (ASA) on in vitro propagation and salt tolerance of date palm (Phoenix dactylifera L.) cv. ‘Nersy’. Aust J Crop Sci 10:969–976CrossRefGoogle Scholar
  6. Amjad M, Ziaf K, Iqbal Q, Ahmad I, Riaz MA, Saqib ZA (2007) Effect of seed priming on seed vigour and salt tolerance in hot pepper. Pak J Agric Sci 44(3):408–416Google Scholar
  7. Anjum NA, Gill SS, Gill R, Hasanuzzaman M, Duarte AC, Pereira E, Ahmad I, Tuteja R, Tuteja N (2014) Metal/metalloid stress tolerance in plants: role of ascorbate, its redox couple, and associated enzymes. Protoplasma 251:1265–1283PubMedCrossRefPubMedCentralGoogle Scholar
  8. Arefi F, Ganjali HR, Rad MRN (2016) Influence of drought stress and ascorbic acid on some characteristics of sorghum. Int J Agric Biosci 5(3):113–115Google Scholar
  9. Awad J, Stotz HU, Fekete A, Krischke M, Engert C, Havaux M, Berger S, Mueller MJ (2015) 2-cysteine peroxiredoxins and thylakoid ascorbate peroxidase create a water-water cycle that is essential to protect the photosynthetic apparatus under high light stress conditions. Plant Physiol 167:1592–1603PubMedPubMedCentralCrossRefGoogle Scholar
  10. Azooz MM, Alzahrani AM, Youssef MM (2013) The potential role of seed priming with ascorbic acid and nicotinamide and their interactions to enhance salt tolerance in broad bean (Vicia faba L.). Aust J Crop Sci 7(13):2091–2100Google Scholar
  11. Baldet P, Bres C, Okabe Y, Mauxion JP, Just D, Bournonville C, Ferrand C, Mori K, Ezure H, Rothan C (2013) Investigating the role of vitamin C in tomato through TILLING identification of ascorbate-deficient tomato mutants. Plant Biotechnol 30:308–314CrossRefGoogle Scholar
  12. Ballaré CL, Caldwell MM, Flint SD, Robinson SA, Bornman JF (2011) Effects of solar ultra-violet radiation on terrestrial ecosystems. Patterns, mechanisms, and interactions with climate change. Photochem Photobiol Sci 10:226–241PubMedCrossRefPubMedCentralGoogle Scholar
  13. Balliu A, Sallaku G, Nasto T (2014) The effects of some osmoprotectant compounds on growth parameters of pea plants (Pisum sativum) under saline conditions. Acta Hortic 1142:377–382Google Scholar
  14. Bánhegyi G, Loewus FA (2004) Ascorbic acid catabolism: breakdown pathways in animals and plants. In: Asard H, May JM, Smirnoff N (eds) Vitamin C: functions and biochemistry in animals and plants. BIOS Scientific Publishers Ltd, Oxford, pp 31–48Google Scholar
  15. Barnes JD, Zheng Y, Lyons TM (2002) Plant resistance to ozone: the role of ascorbate. In: OmAA K, Saji H, Youssefian S, Kondo N (eds) Air pollution and plant biotechnology. Springer, Tokyo, pp 235–254CrossRefGoogle Scholar
  16. Barth C, De Tullio M, Conklin PL (2006) The role of ascorbic acid in the control of flowering time and the onset of senescence. J Exp Bot 57:1657–1665PubMedCrossRefPubMedCentralGoogle Scholar
  17. Bastam N, Banin AAb B, Ghobadi C (2013) Interactive effects of ascorbic acid and salinity stress on the growth and photosynthetic capacity of pistachio (Pistacia vera L.) seedlings. J Hortic Sci Biotechnol 88(5):610–616CrossRefGoogle Scholar
  18. Behn H, Albert A, Marx F, Noga G, Ulbrich A (2010) Ultraviolet-B and photosynthetically active radiation interactively affect yield and pattern of monoterpenes in leaves of peppermint (Mentha × piperita L.). J Agric Food Chem 58:7361–7367PubMedCrossRefPubMedCentralGoogle Scholar
  19. Bienert GP, Chaumont F (2014) Aquaporin-facilitated transmembrane diffusion of hydrogen peroxide. Biochim Biophys Acta 1840:1596–1604PubMedCrossRefPubMedCentralGoogle Scholar
  20. Brown BA, Cloix C, Jiang GH, Kaiserli E, Herzyk P, Kliebenstein DJ, Jenkins GI (2005) A UV-B-specific signaling component orchestrates plant UV protection. Proc Natl Acad Sci USA 102:18225–18230PubMedCrossRefPubMedCentralGoogle Scholar
  21. Chandna R, Azooz MM, Ahmad P (2013) Recent advances of metabolomics to reveal plant response during salt stress. In: Ahmad P, Azooz MM, Prasad MNV (eds) Signaling, omics and adaptations. Springer, New York, pp 1–14Google Scholar
  22. Chao YY, Hong CY, Kao CH (2010) The decline in ascorbic acid content is associated with cadmium toxicity of rice seedlings. Plant Physiol Biochem 48:374–381PubMedCrossRefPubMedCentralGoogle Scholar
  23. Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought-from genes to the whole plant. Funct Plant Biol 30:239–264CrossRefGoogle Scholar
  24. Cheeseman JM (2006) Hydrogen peroxide concentrations in leaves under natural conditions. J Exp Bot 57:2435–2444PubMedCrossRefPubMedCentralGoogle Scholar
  25. Cheeseman JM (2007) Hydrogen peroxide and plant stress: a challenging relationship. Plant Stress 1:4–15Google Scholar
  26. Chen SX, Schopfer P (1999) Hydroxyl-radical production in physiological reactions. FEBS J 260:726–735Google Scholar
  27. Chen C, Letnik I, Hacham Y, Dobrev P, Ben-Daniel BH, Vanková R (2014) Ascorbate peroxidase protects Arabidopsis desiccating and germinating seeds from stress and mediates cross talk between reactive oxygen species, abscisic acid, and auxin. Plant Physiol 166:370–383PubMedPubMedCentralCrossRefGoogle Scholar
  28. Citterio S, Sgorbati S, Scippa S, Sparvoli E (1994) Ascorbic acid effect on the onset of cell proliferation in pea root. Physiol Plant 92:601–607CrossRefGoogle Scholar
  29. Clifton IJ, McDonough MA, Ehrismann D (2006) Structural studies on 2-oxoglutarate oxygenases and related double-stranded B-helix fold proteins. J Inorg Biochem 100:644–669PubMedCrossRefPubMedCentralGoogle Scholar
  30. Coles JP, Phillips AL, Croker SJ, Garcia-Lepe R, Lewis MJ, Hedden P (1999) Modification of gibberellin production and plant development in Arabidopsis by sense and antisense expression of gibberellin 20-oxidase genes. Plant J 17:547–556PubMedCrossRefPubMedCentralGoogle Scholar
  31. Conklin PL, Barth C (2004) Ascorbic acid, a familiar small molecule intertwined in the response of plants to ozone, pathogens, and the onset of senescence. Plant Cell Environ 27:959–970CrossRefGoogle Scholar
  32. Conklin PL, Pallanca JE, Last RL, Smirnoff N (1997) L-ascorbic acid metabolism in the ascorbate-deficient arabidopsis mutant vtc1. Plant Physiol 115:1277–1285PubMedPubMedCentralCrossRefGoogle Scholar
  33. Conklin PL, Norris SR, Wheeler GL, Williams EH, Smirnoff N, Last RL (1999) Genetic evidence for the role of GDP-mannose in plant ascorbic acid (vitamin C) biosynthesis. Proc Natl Acad Sci U S A 96:4198–4203PubMedPubMedCentralCrossRefGoogle Scholar
  34. Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K (2011) Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol 11:163PubMedPubMedCentralCrossRefGoogle Scholar
  35. Currey CJ, Lopez RG, Rapaka VK, Faust JE, Runkle ES (2013) Exogenous applications of benzyladenine and gibberellic acid inhibit lower-leaf senescence of geraniums during propagation. Hortic Sci 48:1352–1357Google Scholar
  36. Davey MW, Van Montagu M, Inze D, Sanmartin M, Kanellis A, Smirnoff N, Benzie IJJ, Strain JJ, Favell D, Fletcher J (2000) Plant l – ascorbic acid: chemistry, function, metabolism, bioavailability and effects of processing. J Sci Food Agric 80:825–860CrossRefGoogle Scholar
  37. De Pinto MC, Tommasi F, De Gara L (2000) Enzymes of the ascorbate biosynthesis and ascorbate-glutathione cycle in cultured cells of tobacco Bright Yellow 2. Plant Physiol Biochem 38:541–550CrossRefGoogle Scholar
  38. De Tullio M, Guether M, Balestrini R (2013) Ascorbate oxidase is the potential conductor of a symphony of signaling pathways. Plant Signal Behav 8:e23213PubMedPubMedCentralCrossRefGoogle Scholar
  39. Debolt S, Melino V, Ford CM (2007) Ascorbate as a biosynthetic precursor in plants. Ann Bot 99:3–8PubMedCrossRefPubMedCentralGoogle Scholar
  40. Demidchik V (2015) Mechanisms of oxidative stress in plants: From classical chemistry to cell biology. Environ Exp Bot 109:212–228CrossRefGoogle Scholar
  41. Dietz K-J (2014) Redox regulation of transcription factors in plant stress acclimation and development. Antioxid Redox Signal 21:1356–1372PubMedCrossRefGoogle Scholar
  42. Dietz K-J (2016) Thiol-based peroxidases and ascorbate peroxidases: why plants rely on multiple peroxidase systems in the photosynthesizing chloroplast? Mol Cells 39:20–25PubMedPubMedCentralCrossRefGoogle Scholar
  43. Drazkiewicz M, Skórzyńska-Polit E, Krupa Z (2003) Response of the ascorbate-glutathione cycle to excess copper in Arabidopsis thaliana (L). Plant Sci 164:195–202CrossRefGoogle Scholar
  44. Duan M, Ma N-N, Li D, Deng Y-S, Kong F-Y, Lv W, Meng Q-W (2012) Antisense-mediated suppression of tomato thylakoidal ascorbate peroxidase influences anti-oxidant network during chilling stress. Plant Physiol Biochem 58:37–45PubMedCrossRefGoogle Scholar
  45. El-Sayed HEA, El-Sayed A (2013) Exogenous application of ascorbic acid for improve germination, growth, water relations, organic and inorganic components in tomato (Lycopersicon esculentum Mill.) plant under salt-stress. NY Sci J 6:123–139Google Scholar
  46. Ergin S, Aydogan C, Ozturk N, Turhan E (2014) Effects of ascorbic acid application in strawberry plants during heat stress. Turk J Agric Nat Sci 7(7):1486–1491Google Scholar
  47. Exposito-Rodriguez M, Laissue PP, Yvon-Durocher G, Smirnoff N, Mullineaux PM (2017) Photosynthesis-dependent H2O2 transfer from chloroplasts to nuclei provides a high-light signalling mechanism. Nat Commun 8:49PubMedPubMedCentralCrossRefGoogle Scholar
  48. Faize M, Nicolás E, Faize L, Díaz-Vivancos P, Burgos L, Hernández JA (2015) Cytosolic ascorbate peroxidase and Cu/Zn-superoxide dismutase improve seed germination, plant growth, nutrient uptake and drought tolerance in tobacco. Theor Exp Plant Physiol 27:215–226CrossRefGoogle Scholar
  49. Farooq M, Irfan M, Aziz T, Ahmad I, Cheema SA (2013) Seed priming with ascorbic acid improves drought resistance of wheat. J Agron Crop Sci 199(1):12–22CrossRefGoogle Scholar
  50. Fatemi SN (2014) Ascorbic acid and its effects on alleviation of salt stress in sunflower. Ann Res Rev Biol 4(24):3656–3665CrossRefGoogle Scholar
  51. Fazlali R, Asli DE, Moradi P (2013) The effect of seed priming by ascorbic acid on bioactive compounds of naked seed pumpkin (Cucurbita pepo var. styriaca) under salinity stress. Int J Farm Allied Sci 2(17):587–590Google Scholar
  52. Fecht CMM, Maier P, Horst WJ (2003) Apoplastic peroxidases and ascorbate are involved in manganese toxicity and tolerance of Vigna unguiculata. Physiol Plant 117:237–244CrossRefGoogle Scholar
  53. Feng Z, Pang J, Nouchi I, Kobayashi K, Yamakawa T, Zhu J (2010) Apoplastic ascorbate contributes to the differential ozone sensitivity in two varieties of winter wheat under fully open – air field conditions. Environ Pollut 158:3539–3545PubMedCrossRefGoogle Scholar
  54. Fotopoulos V, De Tullio MC, Barnes J, Kanellis AK (2008) Altered stomatal dynamics in ascorbate oxidase over-expressing tobacco plants suggest a role for dehydroascorbate signalling. J Exp Bot 59:729–737PubMedCrossRefPubMedCentralGoogle Scholar
  55. Foyer CH, Noctor G (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 155:2–18PubMedPubMedCentralCrossRefGoogle Scholar
  56. Foyer CH, Shigeoka S (2011) Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol 155:93–100PubMedCrossRefPubMedCentralGoogle Scholar
  57. Frohnmeyer H, Staiger D (2003) Ultraviolet-B radiation-mediated responses in plants. Balancing damage and protection. Plant Physiol 133:1420–1428PubMedPubMedCentralCrossRefGoogle Scholar
  58. Fry SC (1998) Oxidative scission of plant cell wall polysaccharides by ascorbate-induced hydroxyl radicals. Biochem J 332:507–515PubMedPubMedCentralCrossRefGoogle Scholar
  59. Fryer MJ, Ball L, Oxborough K, Karpinski S, Mullineaux PM, Baker NR (2003) Control of Ascorbate Peroxidase 2 expression by hydrogen peroxide and leaf water status during excess light stress reveals a functional organization of Arabidopsis leaves. Plant J 33:691–705PubMedCrossRefGoogle Scholar
  60. Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Crosstalk between abiotic and biotic stress responses: A current view from the points of convergence in the stress signalling networks. Curr Opin Plant Biol 9:436–442PubMedPubMedCentralCrossRefGoogle Scholar
  61. Gao Q, Zhang L (2008) Ultraviolet-B-induced oxidative stress and antioxidant defense system responses in ascorbate-deficient vtc1 mutants of Arabidopsis thaliana. J Plant Physiol 165:138–148PubMedCrossRefGoogle Scholar
  62. Gloser V, Korovetska H, Martín-Vertedor AI, Hájíčková M, Prokop Z, Wilkinson S, Davies W (2016) The dynamics of xylem sap pH under drought: A universal response in herbs? Plant Soil 409:259–272CrossRefGoogle Scholar
  63. Gómez F, Fernández L, Gergoff G, Guiamet JJ, Chaves A, Bartoli CG (2008) Heat shock increases mitochondrial H2O2 production and extends postharvest life of spinach leaves. Postharvest Biol Technol 49:229–234CrossRefGoogle Scholar
  64. Green MA, Fry SC (2005) Vitamin C degradation in plant cells via enzymatic hydrolysis of 4-O-oxalyl-L-threonate. Nature 433:83–87PubMedCrossRefGoogle Scholar
  65. Hamama H, Murniati E (2010) The effect of ascorbic acid treatment on viability and vigor maize (Zea mays L.) seedling under drought stress. Hayati J Biosci 17(3):105–109CrossRefGoogle Scholar
  66. Hancock RD, Walker PG, Pont SDA, Marquis N, Vivera S, Gordon SL, Brennan RM, Viola R (2007) L-Ascorbic acid accumulation in fruit of Ribes nigrum occurs by in situ biosynthesis via the L-galactose pathway. Funct Plant Biol 34:1080–1091CrossRefGoogle Scholar
  67. He Y, Tang W, Swain JD, Green AL, Jack TP, Gan S (2001) Networking senescence-regulating pathways by using Arabidopsis enhancer trap lines. Plant Physiol 126:707–716PubMedPubMedCentralCrossRefGoogle Scholar
  68. Heijde M, Ulm R (2012) UV-B photoreceptor-mediated signalling in plants. Trends Plant Sci 17:230–237PubMedCrossRefGoogle Scholar
  69. Hemavathi CP, Upadhyaya N, Akula HS, Kim JH, Jeon MH, Oh SC, Chun DHK, Park SW (2011) Biochemical analysis of enhanced tolerance in transgenic potato plants overexpressing d – galacturonicacidreductase gene in response to various abiotic stresses. Mol Breed 28:105–115CrossRefGoogle Scholar
  70. Hemmati K, Ebadi A, Khomari S, Sedghi M (2018) Influence of ascorbic acid and 24-epibrassinolide on physiological characteristics of pot marigold under water-stress condition. J Plant Interact 13(1):364–372CrossRefGoogle Scholar
  71. Heydariyan M, Basirani N, Sharifi-Rad M, Khmmari I, Rafat Poor S (2014) Effect of seed priming on germination and seedling growth of the caper (Capparis spinosa) under drought stress. Int J Adv Biol Biomed Res 2(8):2381–2389Google Scholar
  72. Heyneke E, Luschin-Ebengreuth N, Krajcer I, Wolkinger V, Müller M, Zechmann B (2013) Dynamic compartment specific changes in glutathione and ascorbate levels in Arabidopsis plants exposed to different light intensities. BMC Plant Biol 13:104–123PubMedPubMedCentralCrossRefGoogle Scholar
  73. Hideg É, Rosenqvist E, Váradi G, Bornman J, Vincze É (2006) A comparison of UV-B induced stress responses in three barley cultivars. Func Plant Biol 33:77–90CrossRefGoogle Scholar
  74. Hideg É, Jansen MAK, Strid Å (2013) UV-B exposure, ROS, and stress: inseparable companions or loosely linked associates? Trends Plant Sci 18:107–115CrossRefGoogle Scholar
  75. Hocking B, Tyerman SD, Burton RA, Gilliham M (2016) Fruit calcium: transport and physiology. Front Plant Sci 7:569PubMedPubMedCentralCrossRefGoogle Scholar
  76. Horemans N, Foyer CH, Asard H (2000) Transport and action of ascorbate at the plant plasma membrane. Trends Plant Sci 5:263–267PubMedCrossRefGoogle Scholar
  77. Horemans N, Raeymaekers T, Van Beek K, Nowocin A, Blust R, Broos K, Cuypers A, Vangronsveld J, Guisez Y (2007) Dehydroascorbate uptake is impaired in the early response of Arabidopsis plant cell cultures to cadmium. J Exp Bot 58:4307–4317PubMedCrossRefGoogle Scholar
  78. Horling F, Lamkemeyer P, König J, Finkemeier I, Kandlbinder A, Baier M, Dietz KJ (2003) Divergent light-, ascorbate-, and oxidative stress-dependent regulation of expression of the peroxiredoxin gene family in Arabidopsis. Plant Physiol 131:317–325PubMedPubMedCentralCrossRefGoogle Scholar
  79. Hossain MA, Piyatida P, da Silva JAT, Fujita M (2012) Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot 2012:872875Google Scholar
  80. Hu Z, Li H, Chen S, Yang Y (2013) Chlorophyll content and photosystem II efficiency in soybean exposed to supplemental ultraviolet-B radiation. Photosynthetica 51:151–157CrossRefGoogle Scholar
  81. Huang J, Levine A, Wang Z (2013) Plant abiotic stress. Scientific World J.  https://doi.org/10.1155/2013/432836Google Scholar
  82. Innocenti AM, Bitonti MB, Arrigoni O, Liso R (1990) The size of quiescent centre in roots of Allium cepa L. grown with ascorbic acid. New Phytol 114:507–509CrossRefGoogle Scholar
  83. Inzé D, Van Montagu M (1995) Oxidative stress in plants. Curr Opin Biotechnol 6:153–158CrossRefGoogle Scholar
  84. Ishikawa T, Shigeoka S (2008) Recent advances in ascorbate biosynthesis and the physiological significance of ascorbate peroxidase in photosynthesizing organisms. Biosci Biotechnol Biochem 72:1143–1154PubMedCrossRefPubMedCentralGoogle Scholar
  85. Jan S, Hamayun M, Wali S, Bibi A, Gul H, Rahim F (2016) Foliar application of ascorbic acid mitigates sodium chloride induced stress in eggplant (Solanum melongena L.). Pak J Bot 48(3):869–876Google Scholar
  86. Jenkins GI (2009) Signal transduction in responses to UV-B radiation. Annu Rev Plant Biol 60:407–431PubMedCrossRefPubMedCentralGoogle Scholar
  87. Kangasjärvi S, Kangasjärvi J (2014) Towards understanding extracellular ROS sensory and signaling systems in plants. Adv Bot 2014:538946Google Scholar
  88. Kangasjärvi S, Lepistö A, Hännikäinen K, Piippo M, Luomala EM, Aro EM, Rintamäki E (2008) Diverse roles for chloroplast stromal and thylakoid bound ascorbate peroxidases in plant stress responses. Biochem J 412:275–285PubMedCrossRefPubMedCentralGoogle Scholar
  89. Kärkönen A, Fry SC (2006) Effect of ascorbate and its oxidation products on H2O2 production in cell-suspension cultures of Piceaabies and in the absence of cells. J Exp Bot 57:1633–1644PubMedCrossRefPubMedCentralGoogle Scholar
  90. Karpinski S, Reynolds H, Karpinska B, Wingsle G, Creissen G, Mullineaux P (1999) Systemic signaling and acclimation in response to excess excitation energy in Arabidopsis. Science 284:654–657PubMedCrossRefPubMedCentralGoogle Scholar
  91. Kaur H, Gupta N (2018) Ameliorative Effect of proline and ascorbic acid on seed germination and vigour parameters of tomato (Solanum lycopersicum L.) under salt stress. Int J Curr Microbiol App Sci 7(1):3523–3532CrossRefGoogle Scholar
  92. Kausar R, Hossain Z, Makino T, Komatsu S (2012) Characterization of ascorbate peroxidase in soybean under flooding and drought stresses. Mol Biol Rep 39:10573–10579PubMedCrossRefPubMedCentralGoogle Scholar
  93. Kerr JB, Fioletov VE (2008) Surface ultraviolet radiation. Atmosphere-Ocean 46:159–184CrossRefGoogle Scholar
  94. Klem K, Ač A, Holub P, Kovác D, Špunda V, Robson TM, Urban O (2012) Interactive effects of PAR and UV radiation on the physiology, morphology and leaf optical properties of two barley varieties. Environ Exp Bot 75:52–64CrossRefGoogle Scholar
  95. Kobayakawa H, Imai K (2017) Exogenous ascorbic acid scarcely ameliorates inhibition of photosynthesis in rice leaves by O3. Plant Prod Sci 20(1):83–89CrossRefGoogle Scholar
  96. Koffler BE, Polanschütz L, Zechmann B (2014) Higher sensitivity of pad2-1 and vtc2-1 mutants to cadmium is related to lower subcellular glutathione rather than ascorbate contents. Protoplasma 251:755–769PubMedCrossRefPubMedCentralGoogle Scholar
  97. Koyro HW, Ahmad P, Geissler N (2012) Abiotic stress responses in plants: an overview. In: Ahmad P, Prasad MNV (eds) Environmental adaptations and stress tolerance of plants in the era of climate change. Springer, New York, pp 1–28Google Scholar
  98. Krupa-Małkiewicz M, Smolik B, Ostojski D, Sędzik M, Pelc J (2015) Effect of ascorbic acid on morphological and biochemical parameters in tomato seedling exposure to salt stress. Och Srod Zasob Nat 26(2):21–25Google Scholar
  99. Kukavica B, Mojović M, Vučinić Ž, Maksimović V, Takahama U, Veljović-Jovanović S (2008) Generation of hydroxyl radical in isolated pea root cell wall, and the role of cell wall-bound peroxidase, Mn-SOD and phenolics in their production. Plant Cell Physiol 50:304–317PubMedCrossRefPubMedCentralGoogle Scholar
  100. Küpper H, Andresen E (2016) Mechanisms of metal toxicity in plants. Metallomics 8:269–285PubMedCrossRefPubMedCentralGoogle Scholar
  101. Kwon SY, Choi SM, Ahn YO, Lee HS, Lee HB, Park YM, Kwak SS (2003) Enhanced stress – tolerance of transgenic plants expressing a human dehydroascorbate reductase gene. J Plant Physiol 160:347–353PubMedCrossRefPubMedCentralGoogle Scholar
  102. Laing W, Norling C, Brewster D, Wright M, Bulley S (2017) Ascorbate concentration in Arabidopsis thaliana and expression of ascorbate related genes using RNAseq in response to light and the diurnal cycle. BioRxiv:138008Google Scholar
  103. Larkindale J, Hall JD, Knightand MR, Vierling E (2005) Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiol 138:882–897PubMedPubMedCentralCrossRefGoogle Scholar
  104. Latif M, Akram NA, Ashraf M (2016) Regulation of some biochemical attributes in drought-stressed cauliflower (Brassica oleracea L.) by seed pre-treatment with ascorbic acid. J Hortic Sci Biotechnol 91(2):129–137CrossRefGoogle Scholar
  105. Li F, Wu QY, Sun YL, Wang LY, Yang XH, Meng QW (2010) Overexpression of chloroplastic monodehydroascorbate reductase enhanced tolerance to temperature and methyl viologen-mediated oxidative stresses. Physiol Plant 139:421–434PubMedPubMedCentralGoogle Scholar
  106. Lichtenthaler HK (2007) Biosynthesis, accumulation and emission of carotenoids, alpha-tocopherol, plastoquinone, and isoprene in leaves under high photosynthetic irradiance. Photosynth Res 92:163–179PubMedCrossRefPubMedCentralGoogle Scholar
  107. Lidon FJ, Reboredo FH, Leitã AE, Silva MMA, Duarte MP, Ramalho JC (2012) Impact of UV-B radiation on photosynthesis-an overview. Emirates J Food Agric 24:546–556CrossRefGoogle Scholar
  108. Liebthal M, Maynard D, Dietz K-J (2017) Peroxiredoxins and redox signaling in plants. Antioxid Redox Signal.  https://doi.org/10.1089/ars.2017.7164CrossRefGoogle Scholar
  109. Lima-Silva V, Rosado A, Amorim-Silva V (2012) Genetic and genome-wide transcriptomic analyses identify co-regulation of oxidative response and hormone transcript abundance with vitamin C content in tomato fruit. BMC Genomics 13:187.  https://doi.org/10.1186/1471-2164-13-187CrossRefPubMedPubMedCentralGoogle Scholar
  110. Liso R, Innocenti AM, Bitonti MB, Arrigoni O (1988) Ascorbic acid-induced progression of quiescent centre cells from G1 to S phase. New Phytol 110:469–471CrossRefGoogle Scholar
  111. Long SP, Naidu SL (2002) Effects of oxidants at the biochemical, cell and physiological levels, with particular reference to ozone. In: Bell JNB, Treshow M (eds) Air pollution and plant life. Wiley, Chichester, pp 69–88Google Scholar
  112. Lucini L, Bernardo L (2015) Comparison of proteome response to saline and zinc stress in lettuce. Front Plant Sci 6:240PubMedPubMedCentralCrossRefGoogle Scholar
  113. Lukatkin AS, Anjum NA (2014) Control of cucumber (Cucumis sativus L.) tolerance to chilling stress—evaluating the role of ascorbic acid and glutathione. Front Environ Sci 2:62CrossRefGoogle Scholar
  114. Majer P, Hideg É (2012) Existing antioxidant levels are more important in acclimation to supplemental UV-B irradiation than inducible ones: studies with high light pretreated tobacco leaves. Emirates J Food Agric 24:598–606CrossRefGoogle Scholar
  115. Majer P, Vidović M, Czégény G, Veljović-Jovanović S, Strid Å, Hideg E (2016) Evaluation of procedures for assessing anti- and pro-oxidants in plant samples. Anal Methods 8:5569–5580CrossRefGoogle Scholar
  116. Malik S, Ashraf M (2012) Exogenous application of ascorbic acid stimulates growth and photosynthesis of wheat (Triticum aestivum L.) under drought. Soil Environ 31(1):72–77Google Scholar
  117. Malik S, Ashraf M, Arshad M, Malik TA (2015) Effect of ascorbic acid application on physiology of wheat under drought stress. Pak J Agric Sci 52(1):209–217Google Scholar
  118. McAdam SA, Brodribb TJ (2016) Linking turgor with ABA biosynthesis: implications for stomatal responses to vapour pressure deficit across land plants. Plant Physiol 171:2008–2016PubMedPubMedCentralCrossRefGoogle Scholar
  119. Melino VJ, Soole KL, Ford CM (2009) Ascorbate metabolism and the developmental demand for tartaric and oxalic acids in ripening grape berries. BMC Plant Biol 9:145PubMedPubMedCentralCrossRefGoogle Scholar
  120. Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33:453–467CrossRefGoogle Scholar
  121. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410PubMedCrossRefPubMedCentralGoogle Scholar
  122. Mittler R, Zilinskas BA (1994) Regulation of pea cytosolic ascorbate peroxidase and other antioxidant enzymes during the progression of drought stress and following recovery from drought. Plant J 5:397–405PubMedCrossRefPubMedCentralGoogle Scholar
  123. Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498CrossRefGoogle Scholar
  124. Mock HP, Dietz K-J (2016) Redox proteomics for the assessment of redox-related posttranslational regulation in plants. Biochim Biophys Acta 1864:967–973PubMedCrossRefPubMedCentralGoogle Scholar
  125. Morina F, Jovanović LJ, Mojović M, Vidović M, Panković D, Veljović-Jovanović S (2010) Zinc-induced oxidative stress in Verbascum thapsus is caused by an accumulation of reactive oxygen species and quinhydrone in the cell wall. Physiol Plant 140:209–224PubMedPubMedCentralGoogle Scholar
  126. Munir N, Aftab F (2011) Enhancement of salt tolerance in sugarcane by ascorbic acid pretreatment. Afr J Biotechnol 10(80):18362–18370Google Scholar
  127. Munné BS, Queval G, Foyer CH (2013) The impact of global change factors on redox signaling underpinning stress tolerance. Plant Physiol 161:5–19CrossRefGoogle Scholar
  128. Nicotra AB, Atkin OK, Bonser SP, Davidson AM, Finnegan EJ, Mathesius U, Poot P, Purugganan MD, Richards CL, Valladares F, van Kleunen M (2010) Plant phenotypic plasticity in a changing climate. Trends Plant Sci 15:684–692PubMedPubMedCentralCrossRefGoogle Scholar
  129. Nishikimi M, Yagi K (1996) Biochemistry and molecular biology of ascorbic acid biosynthesis. Subcell Biochem 25:17–39PubMedCrossRefGoogle Scholar
  130. Noctor G, Mhamdi A, Foyer CH (2014) The roles of reactive oxygen metabolism in drought: Not so cut and dried. Plant Physiol 164:1636–1648PubMedPubMedCentralCrossRefGoogle Scholar
  131. Noshi M, Hatanaka R, Tanabe N, Terai Y, Maruta T, Shigeoka S (2016) Redox regulation of ascorbate and glutathione by a chloroplastic dehydroascorbate reductase is required for high-light stress tolerance in Arabidopsis. Biosci Biotechnol Biochem 80:870–877PubMedCrossRefGoogle Scholar
  132. Opdenakker K, Remans T, Keunen E, Vangronsveld J, Cuypers A (2012) Exposure of Arabidopsis thaliana to Cd or Cu excess leads to oxidative stress mediated alterations in MAP Kinase transcript levels. Environ Exp Bot 83:53–61CrossRefGoogle Scholar
  133. Orman-Ligeza B, Parizot B, de Rycke R (2016) RBOH-mediated ROS production facilitates lateral root emergence in Arabidopsis. Development 143:3328–3339PubMedPubMedCentralCrossRefGoogle Scholar
  134. Ort DR, Baker NR (2002) A photoprotective role for O2 as an alternative electron sink in photosynthesis? Curr Opin Plant Biol 5:193–198PubMedCrossRefGoogle Scholar
  135. Ortiz-Espín A, Sánchez-Guerrero A, Sevilla F, Jiménez A (2017) The role of ascorbate in plant growth and development. In: Hossain MA, MunneBosch S, Burritt DJ, Dian-Vivancos P, Fujita M, Lorence A (eds) Ascorbic acid in plant growth, development and stress tolerance. Springer, Cham, pp 24–45Google Scholar
  136. Page M, Sultana N, Paszkiewicz K, Florance H, Smirnoff N (2012) The influence of ascorbate on anthocyanin accumulation during high light acclimation in Arabidopsis thaliana: further evidence for redox control of anthocyanin synthesis. Plant Cell Environ 35:388–404PubMedCrossRefPubMedCentralGoogle Scholar
  137. Pallanca JE, Smirnoff N (2000) The control of ascorbic acid synthesis and turnover in pea seedlings. J Exp Bot 51:669–674PubMedCrossRefGoogle Scholar
  138. Parsons HT, Fry SC (2012) Oxidation of dehydroascorbic acid and 2,3-diketogulonate under plant apoplastic conditions. Phytochemistry 75:41–49PubMedCrossRefGoogle Scholar
  139. Pastori GM, Kiddle G, Antoniw J, Bernard S, Veljovic-Jovanovic S, Verrier PJ, Noctor G, Foyer CH (2003) Leaf vitamin C contents modulate plant defense transcripts and regulate genes that control development through hormone signalling. Plant Cell 15:939–951PubMedPubMedCentralCrossRefGoogle Scholar
  140. Penella C, Calatayud Á, Melgar JC (2017) Ascorbic acid alleviates water stress in young peach trees and improves their performance after rewatering. Front Plant Sci 8:1627PubMedPubMedCentralCrossRefGoogle Scholar
  141. Pignocchi C, Fletcher JM, Wilkinson JE, Barnes JD, Foyer CH (2003) The function of ascorbate oxidase in tobacco. Plant Physiol 132:1631–1641PubMedPubMedCentralCrossRefGoogle Scholar
  142. Pollastri S, Tattini M (2011) Flavonols: old compounds for old roles. Ann Bot 108:1225–1233PubMedPubMedCentralCrossRefGoogle Scholar
  143. Potters G, Horemans N, Bellone S, Caubergs RJ, Trost P, Guisez Y, Asard H (2004) Dehydroascorbate influences the plant cell cycle through a glutathione-independent reduction mechanism. Plant Physiol 134:1479–1487PubMedPubMedCentralCrossRefGoogle Scholar
  144. Pyngrope S, Bhoomika K, Dubey RS (2013) Reactive oxygen species, ascorbate-glutathione pool, and enzymes of their metabolism in drought-sensitive and tolerant indica rice (Oryza sativa L.) seedlings subjected to progressing levels of water deficit. Protoplasma 250:585–600PubMedCrossRefGoogle Scholar
  145. Rafique N, Raza SH, Qasim M, Iqbal N (2011) Pre-sowing application of ascorbic acid and salicylic acid to seed of pumpkin and seedling response to salt. Pak J Bot 43(6):2677–2682Google Scholar
  146. Rahantaniaina MS, Li S, Chatel-Innocenti G, Tuzet A, Issakidis-Bourguet E, Mhamdi A, Noctor G (2017) Cytosolic and chloroplastic DHARs cooperate in oxidative stress-driven activation of the salicylic acid pathway. Plant Physiol 174:956–971PubMedPubMedCentralCrossRefGoogle Scholar
  147. Sadak MS, Elhamid EMA, Mostafa HM (2013) Alleviation of adverse effects of salt stress in wheat cultivars by foliar treatment with antioxidants I. changes in growth, some biochemical aspects and yield quantity and quality. Am Eur J Agric Environ Sci 13:1476–1487Google Scholar
  148. Saeidi-Sar S, Abbaspour H, Afshari H, Yaghoobi SR (2013) Effects of ascorbic acid and gibberellin A 3 on alleviation of salt stress in common bean (Phaseolus vulgaris L.) seedlings. Acta Physiol Plant 35(3):667–677CrossRefGoogle Scholar
  149. Sanmartin M, Drogoudi PA, Lyons T, Pateraki I, Barnes J, Kanellis AK (2003) Over-expression of ascorbate oxidase in the apoplast of transgenic tobacco results in altered ascorbate and glutathione redox states and increased sensitivity to ozone. Planta 216:918–928PubMedGoogle Scholar
  150. Sanmartin M, Pateraki I, Chatzopoulou F, Kanellis AK (2007) Differential expression of the ascorbate oxidase multigene family during fruit development and in response to stress. Planta 225:873–885PubMedPubMedCentralCrossRefGoogle Scholar
  151. Sato Y, Masuta Y, Saito K, Murayama S, Ozawa K (2011) Enhanced chilling tolerance at the booting stage in rice by transgenic overexpression of the ascorbate peroxidase gene. OsAPXa Plant Cell Rep 30:399–406PubMedCrossRefGoogle Scholar
  152. Schmidt R, Mieulet D, Hubberten H-M, Obata T, Hoefgen R, Fernie AR, Fisahn J, San Segundo B, Guiderdoni E, Schippers JHM, Mueller-Roeber B (2013) Salt-responsive ERF1 regulates reactive oxygen species-dependent signaling during the initial response to salt stress in rice. Plant Cell 25:2115–2131PubMedPubMedCentralCrossRefGoogle Scholar
  153. Seiler C, Harshavardhan VT, Rajesh K, Reddy PS, Strickert M, Rolletschek H, Scholz U, Wobus U, Sreenivasulu N (2011) ABA biosynthesis and degradation contributing to ABA homeostasis during barley seed development under control and terminal drought-stress conditions. J Exp Bot 62:2615–2632PubMedCrossRefGoogle Scholar
  154. Shah F, Huang J, Cui K, Nie L, Shah T, Wu W, Chen C (2011) Physiological and biochemical changes in rice associated with high night temperature stress and their amelioration by exogenous application of ascorbic acid (vitamin C). Aust J Crop Sci 5(13):1810–1816Google Scholar
  155. Shalata A, Neumann PM (2001) Exogenous ascorbic acid (vitamin C) increases resistance to salt stress and reduces lipid peroxidation. J Exp Bot 524:2207–2211CrossRefGoogle Scholar
  156. Sharma SS, Dietz K-J (2009) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14:43–50PubMedCrossRefPubMedCentralGoogle Scholar
  157. Sharma P, Dubey RS (2004) Ascorbate peroxidase from rice seedlings: Properties of enzyme isoforms, effects of stresses and protective roles of osmolytes. Plant Sci 167:541–550CrossRefGoogle Scholar
  158. Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 217037Google Scholar
  159. Singh N, Bhardwaj RD (2016) Ascorbic acid alleviates water deficit induced growth inhibition in wheat seedlings by modulating levels of endogenous antioxidants. Biologia 71(4):402–413Google Scholar
  160. Sivaci A, Kaya A, Duman S (2014) Effects of ascorbic acid on some physiological changes of pepino (Solanum muricatum Ait.) under chilling stress. Acta Biol Hung 65(3):305–318PubMedCrossRefGoogle Scholar
  161. Slesak I, Libik M, Karpinska B, Karpinski S, Miszalski Z (2007) The role of hydrogen peroxide in regulation of plant metabolism and cellular signalling in response to environmental stresses. Acta Biochim Pol 54:39–50PubMedPubMedCentralGoogle Scholar
  162. Smirnoff N (2000) Ascorbate biosynthesis and function in photoprotection. Philos Trans R Soc Lond Ser B Biol Sci 355:1455–1464CrossRefGoogle Scholar
  163. Smirnoff N (2011) Vitamin C: The metabolism and functions of ascorbic acid in plants. Adv Bot Res 59:107–177CrossRefGoogle Scholar
  164. Smirnoff N, Wheeler GL (2000) Ascorbic acid in plants: biosynthesis and function. Crit Rev Biochem Mol Biol 35:291–314PubMedCrossRefGoogle Scholar
  165. Sofo A, Tuzio AC, Dichio B, Xiloyannis C (2005) Influence of water deficit and rewatering on the components of the ascorbate–glutathione cycle in four interspecific Prunus hybrids. Plant Sci 169(2):403–412CrossRefGoogle Scholar
  166. Spasojević I, Bogdanović-Pristov J (2010) The potential physiological implications of polygalacturonic acid-mediated production of superoxide. Plant Signal Behav 5:1525–1529PubMedPubMedCentralCrossRefGoogle Scholar
  167. Suekawa M, Kondo T, Fujikawa Y, Esaka M (2017) Regulation of ascorbic acid biosynthesis in plants. In: Hossain MA, MunneBosch S, Burritt DJ, Dian-Vivancos P, Fujita M, Lorence A (eds) Ascorbic acid in plant growth, development and stress tolerance. Springer. Cham.Springer, Cham, pp 157–176Google Scholar
  168. Sultan SE (2000) Phenotypic plasticity for plant development, function and life history. Trends Plant Sci 5:537–542PubMedCrossRefGoogle Scholar
  169. Sun WH, Duan M, Li F, Shu DF, Yang S, Meng QW (2010) Overexpression of tomato tAPX gene in tobacco improves tolerance to high or low temperature stress. Biol Plant 54:614–620CrossRefGoogle Scholar
  170. Szechyńska HM, Karpiński S (2013) Light intensity-dependent retrograde signalling in higher plants. J Plant Physiol 170:1501–1516CrossRefGoogle Scholar
  171. Tabatabaei SA, Naghibalghora SM (2013) The effect of ascorbic acid on germination characteristics and proline of sesame seeds under drought stress. Int J Agric Crop Sci 6(4):208–212Google Scholar
  172. Takahama U, Oniki T (1992) Regulation of peroxidase-dependent oxidation of phenolics in the apoplast of spinach leaves by ascorbate. Plant Cell Physiol 33:379–387Google Scholar
  173. Takahama U, Oniki T (1997) A peroxidase/phenolics/ascorbate system can scavenge hydrogen peroxide in plant cells. Physiol Plant 101:845–852CrossRefGoogle Scholar
  174. Talla S, Riazunnisa K, Padmavathi L, Sunil B, Rajsheel P, Raghavendra AS (2011) Ascorbic acid is a key participant during the interactions between chloroplasts and mitochondria to optimize photosynthesis and protect against photoinhibition. J Biosci 36:163–173PubMedCrossRefPubMedCentralGoogle Scholar
  175. Tamás L, Bočová B, Huttová J, Mistrík I, Ollé M (2006) Cadmium-induced inhibition of apoplastic ascorbate oxidase in barley roots. Plant Growth Regul 48:41–49CrossRefGoogle Scholar
  176. Tang L, Kwon SY, Kim SH, Kim JS, Choi JS, Cho KY, Sung CK, Kwak SS, Lee HS (2006) Enhanced tolerance of transgenic potato plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against oxidative stress and high temperature. Plant Cell Rep 25:1380–1386PubMedCrossRefPubMedCentralGoogle Scholar
  177. Tenhaken R (2014) Cell wall remodeling under abiotic stress. Front Plant Sci 5:771PubMedPubMedCentralGoogle Scholar
  178. Tombesi S, Nardini A, Frioni T, Soccolini M, Zadra C, Farinelli D, Poni S, Palliotti A (2015) Stomatal closure is induced by hydraulic signals and maintained by ABA in drought-stressed grapevine. Sci Rep 5:12449PubMedPubMedCentralCrossRefGoogle Scholar
  179. Torsethaugen G, Pell EJ, Assmann SM (1999) Ozone inhibits guard cell K1 channels implicated in stomatal opening. Proc Natl Acad Sci U S A 96:13577–13582PubMedPubMedCentralCrossRefGoogle Scholar
  180. Veljović-Jovanović S, Kukavica B, Cvetić T, Mojović M, Vučinić Ž (2005) Ascorbic acid and the oxidative processes in pea root cell wall isolates: characterization by fluorescence and EPR spectroscopy. Ann N Y Acad Sci 1048:500–504PubMedCrossRefPubMedCentralGoogle Scholar
  181. Veljović-Jovanović S, Vidović M, Morina F (2017) Ascorbate as a key player in plant abiotic stress response and tolerance. In: Hossain MA, MunneBosch S, Burritt DJ, Dian-Vivancos P, Fujita M, Lorence A (eds) Ascorbic acid in plant growth, development and stress tolerance. Springer, Cham, pp 47–109CrossRefGoogle Scholar
  182. Venkatesh J, Park SW (2014) Role of L-ascorbate in alleviating abiotic stresses in crop plants. Bot Stud 55:38. http://www.as-botanicalstudies.com/content/55/1/38PubMedPubMedCentralCrossRefGoogle Scholar
  183. Venkatesh J, Upadhyaya CP, Yu JW, Hemavathi A, Kim DH, Strasser RJ, Park SW (2012) Chlorophyll a fluorescence transient analysis of transgenic potato overexpressing D-galacturonic acid reductase gene for salinity stress tolerance. Hortic Environ Biotechnol 53:320–328CrossRefGoogle Scholar
  184. Vidović M, Morina F, Milić S, Albert A, Zechmann B, Tosti T, Winkler JB, Jovanović SV (2015a) Carbon allocation from source to sink leaf tissue in relation to flavonoid biosynthesis in variegated Pelargonium zonale under UV-B radiation and high PAR intensity. Plant Physiol Biochem 93:44–55PubMedCrossRefPubMedCentralGoogle Scholar
  185. Vidović M, Morina F, Milić S, Zechmann B, Albert A, Winkler JB, Veljović-Jovanović S (2015b) Ultraviolet-B component of sunlight stimulates photosynthesis and flavonoid accumulation in variegated leaves depending on background light. Plant Cell Environ 38(5):968–979PubMedCrossRefPubMedCentralGoogle Scholar
  186. Vidović M, Morina F, Lj P, Milić-Komić S, Živanović B, Veljović-Jovanović S (2016) Antioxidative response in variegated Pelargonium zonale leaves and generation of extracellular H2O2 in (peri)vascular tissue induced by sunlight and paraquat. J Plant Physiol 206:25–39PubMedCrossRefPubMedCentralGoogle Scholar
  187. Vidović M, Morina F, Veljović-Jovanović S (2017) Stimulation of various phenolics in plants under ambient UV-B radiation. In: Singh VP, Singh S, Prasad SM, Parihar P (eds) UV-B Radiation: from environmental stressor to regulator of plant growth. Wiley-Blackwell, Chichester, pp 9–56CrossRefGoogle Scholar
  188. Vuletić M, Hadži-Tašković Šukalović V, Marković K, Kravić N, Vučinić Ž, Maksimović V (2014) Differential response of antioxidative systems of maize (Zea mays L.) roots cell walls to osmotic and heavy metal stress. Plant Biol 16:88–96PubMedCrossRefPubMedCentralGoogle Scholar
  189. Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14PubMedCrossRefPubMedCentralGoogle Scholar
  190. Wang Y, Wisniewski M, Meilan R, Cui M, Fuchigami L (2006) Transgenic tomato (Lycopersicon esculentum) overexpressing cAPX exhibits enhanced tolerance to UV–B and heat stress. J Appl Hortic 8:87–90Google Scholar
  191. Wang HS, Yu C, Zhu ZJ, Yu XC (2011) Overexpression in tobacco of a tomato GMPase gene improves tolerance to both low and high temperature stress by enhancing antioxidation capacity. Plant Cell Rep 30:1029–1040PubMedCrossRefPubMedCentralGoogle Scholar
  192. Weisiger RA, Fridovich I (1973) Mitochondrial superoxide dismutase site of synthesis and intra-mitochondrial localization. J Biol Chem 248:4793–4796PubMedPubMedCentralGoogle Scholar
  193. West M, Harada JJ (1993) Embryogenesis in higher plants: An overview. Plant Cell 5:1361–1369PubMedPubMedCentralCrossRefGoogle Scholar
  194. Wu D, Hu Q, Yan Z, Chen W, Yan C, Huang X, Zhang J, Yang P, Deng H, Wang J, Deng X (2012) Structural basis of ultraviolet-B perception by UVR8. Nature 484:214–219PubMedCrossRefGoogle Scholar
  195. Xu M, Lu Y, Yang H, He J, Hu Z, Hu X et al (2015) ZmGRF, a GA regulatory factor from maize, promotes flowering and plant growth in Arabidopsis. Plant Mol Biol 87:157–167PubMedCrossRefGoogle Scholar
  196. Yin L, Wang S, Eltayeb AE, Uddin MI, Yamamoto Y, Tsuji W, Takeuchi Y, Tanaka K (2010) Overexpression of dehydroascorbate reductase, but not monodehydroascorbate reductase, confers tolerance to aluminum stress in transgenic tobacco. Planta 231:609–621PubMedCrossRefGoogle Scholar
  197. Zhang Y (2012) Ascorbic acid in plants. Biosynthesis, regulation and enhancement. Springer, Boston. ISSN 2192-1210Google Scholar
  198. Zhang L, Wang Z, Xia Y, Kai G, Chen W, Tang K (2007) Metabolic engineering of plant L – ascorbic acid biosynthesis: recent trends and applications. Crit Rev Biotechnol 27:173–182PubMedCrossRefPubMedCentralGoogle Scholar
  199. Zhu JK (2017) Abiotic stress signaling and responses in plants. Cell 167(2):313–324CrossRefGoogle Scholar
  200. Zipor G, Oren SM (2013) Do vacuolar peroxidases act as plant caretakers? Plant Sci 199:41–47PubMedCrossRefPubMedCentralGoogle Scholar
  201. Zonouri M, Javadi T, Ghaderi N (2014) Effect of foliar spraying of ascorbic acid on cell membrane stability, lipid peroxidation, total soluble protein, ascorbate peroxidase and leaf ascorbic acid under drought stress in grapes. Int J Adv Biol Biomed Res 2:349–354Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of HorticultureBahauddin Zakariya UniversityMultanPakistan
  2. 2.Department of Plant PathologyBahauddin Zakariya UniversityMultanPakistan
  3. 3.Department of AgronomyBahauddin Zakariya UniversityMultanPakistan

Personalised recommendations