A Survey on Wireless Optical Communication: Potential and Challenges

  • Sanjeev Kumar
  • Preeti SinghEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 989)


With the increase in the number of users, the demand for bandwidth is growing in mobile communication. The RF-based technologies have limitations such as a lower data rate, security issues, an expensive licensing, a congested spectrum and a high cost of installation. To overcome these issues, wireless optical communication is an alternative. This paper focuses on FSO (Free Space Optics) a part of WOC (Wireless Optical Communication). There are a number of advantages of wireless optical communication: huge modulation bandwidth, no spectrum licensing, high security, low cost and many more. In spite of these advantages, the performance of optical wireless communication is degraded due to certain effects in both FSO. This paper gives an inclusive survey of FSO communication systems.


Radio frequency Free space optics Visible light communication Wireless optical communication 


  1. 1.
    Chan, V.W.: Free-space optical communications. J. Lightwave Technol. 24(12), 4750–4762 (2006)CrossRefGoogle Scholar
  2. 2.
    Hochfelder, D.: Alexander graham bell. Encylopedia Britannica (2015)Google Scholar
  3. 3.
    Kaushal, H., and Georges K.: Free space optical communication: challenges and mitigation techniques (2015). arXiv:1506.04836
  4. 4.
    Perlot, N., Daniel, F.: Aperture averaging: theory and measurements. Free-Space Laser Communication Technologies XVI. Int. Soc. Opt. Photon. 5338, 233–243 (2004)Google Scholar
  5. 5.
    Yura, H.T., and McKinley, W.G.: Aperture averaging of scintillation for space-to-ground optical communication applications. Appl. Optics 22(11), 1608–1609 (1983)CrossRefGoogle Scholar
  6. 6.
    Zocchi, F.E.: A simple analytical model of adaptive optics for direct detection free-space optical communication. Opt. Commun. 248(4–6), 359–374 (2005)CrossRefGoogle Scholar
  7. 7.
    Barbier, P.R., David, W.R., Mark, L.P., Penelope, P.D.: Performance improvement of a laser communication link incorporating adaptive optics. In artificial turbulence for imaging and wave propagation. Int. Soc. Opt. Photon. 3432, 93–103 (1998)Google Scholar
  8. 8.
    Baranova, N.B., Mamaev A.V., Pilipetsky N.F., Shkunov V.V., Zel’dovich B.Y.: Wave-front dislocations: topological limitations for adaptive systems with phase conjugation. JOSA 73(5), 525–528 (1983)CrossRefGoogle Scholar
  9. 9.
    Vorontsov, M.A., Sivokon, V.P.: Stochastic parallel-gradient-descent technique for high-resolution wave- front phase-distortion correction. JOSA A 15(10), 2745–2758 (1998)CrossRefGoogle Scholar
  10. 10.
    Mohammad, N.S., Uysal M., Kavehrad M.: BER performance of free-space optical transmission with spatial diversity. IEEE Trans. wirel. Commun. 6(8) (2007)Google Scholar
  11. 11.
    Djordjevic, I.B., Vasic, B., Neifeld, M.A.: Multilevel coding in free-space optical MIMO transmission with Q-ary PPM over the atmospheric turbulence channel. IEEE Photon. Technol. Lett. 18(14), 1491–1493 (2006)CrossRefGoogle Scholar
  12. 12.
    Karimi, M., Kenari, M.N.: BER analysis of cooperative systems in free-space optical networks. J. Lightwave Technol. 27(24), 5639–5647 (2009)CrossRefGoogle Scholar
  13. 13.
    Safari, M., Uysal, M.: Relay-assisted free-space optical communication. IEEE Trans. Wirel. Commun. 7(12), 5441–5449 (2008)CrossRefGoogle Scholar
  14. 14.
    Brown, W.C.: Optimum thresholds for optical On-Off keying receivers operating in the turbulent atmosphere. In free-space laser communication technologies IX. Int. Soc. Opt. Photon. 2990, 254–262 (1997)Google Scholar
  15. 15.
    Yuen, J.H.: Autonomous Software-Defined Radio Receivers for Deep Space Applications, vol 13. Wiley, Amsterdam (2006)Google Scholar
  16. 16.
    Hranilovic, S., David, A.J.: A multilevel modulation scheme for high-speed wireless infrared communications. Proc. IEEE Int. Symp. Circuits Syst. 6, 338–341 (1999)Google Scholar
  17. 17.
    Faridzadeh, M., Gholami. A., Ghassemlooy, Z., Rajbhandari, S.: Hybrid PPM-BPSK subcarrier intensity modulation for free space optical communications. In: 16th European Conference on Networks and Optical Communications (NOC), pp. 36–39. IEEE (2011)Google Scholar
  18. 18.
    Sinsky, J.H., Adamiecki, A., Gnauck, A., Burrus, C.A., Leuthold, J., Wohlgemuth, O., Chandrasekhar, S., Umbach, A.: RZ-DPSK transmission using a 42.7-Gb/s integrated balanced optical front end with record sensitivity. J. Lightwave Technol. 22(1), 180 (2004)CrossRefGoogle Scholar
  19. 19.
    Djordjevic, I.B., Vasic, B., Neifeld, M.A.: LDPC coded OFDM over the atmospheric turbulence channel. Opt. Express 15(10), 6336–6350 (2007)CrossRefGoogle Scholar
  20. 20.
    Kim, I.I., Korevaar, E.J.: Availability of free-space optics (FSO) and hybrid FSO/RF systems. In optical wireless communications IV. Int. Soc. Opt. Photon. 4530, 84–96 (2001)Google Scholar
  21. 21.
    Kashyap, A., and Shayman, M.: Routing and traffic engineering in hybrid RF/FSO networks.” In Communications, ICC 2005. IEEE International Conference on, vol. 5, IEEE, (2005) 3427–3433Google Scholar
  22. 22.
    Liu, B., Liu, Z., Towsley, D.: On the capacity of hybrid wireless networks. In: INFOCOM Twenty-Second Annual Joint Conference of the IEEE Computer and Communications. IEEE Societies, vol. 2, pp. 1543–1552. IEEE (2003)Google Scholar
  23. 23.
    Weichel, H.: Laser beam propagation in the atmosphere, vol. 3. SPIE Press (1990)Google Scholar
  24. 24.
    Kim, I.I., Achour, M.: Free-space links address the last-mile problem. Laser Focus World 37(6), 121–130 (2001)Google Scholar
  25. 25.
    Andrews, L.C., Phillips, R.L.: Laser Beam Propagation Through Random Media, vol. 152. SPIE Press, Bellingham (2005)CrossRefGoogle Scholar
  26. 26.
    Rao, R.Z.: Scintillation index of optical wave propagating in turbulent atmosphere. Chin. Phys. B 18(2), 581 (2009)CrossRefGoogle Scholar
  27. 27.
    Kaushal, H., Kumar, V., Dutta, A., Aennam, H., Jain, V.K., Kar, S., Joseph, J.: Experimental study on beam wander under varying atmospheric turbulence conditions. IEEE Photon. Technol. Lett. 23(22), 1691–1693 (2011)CrossRefGoogle Scholar
  28. 28.
    Liu, X.: Free-space optics optimization models for building sway and atmospheric interference using variable wavelength. IEEE Trans. Commun. 57(2), 492–498 (2009)CrossRefGoogle Scholar
  29. 29.
    Katz, J.: Planets as background noise sources in free space optical communications. (1986)Google Scholar
  30. 30.
    Sannibale, V., Gerardo, G.O., William, H.F.: A sub-hertz vibration isolation platform for a deep space optical communication transceiver. Free-space Laser communication technologies XXI, International Society for Optics and Photonics 7199, 71990K (2009)CrossRefGoogle Scholar
  31. 31.
    Andrews, L.C.: Aperture-averaging factor for optical scintillations of plane and spherical waves in the atmosphere. JOSA A 9(4), 597–600 (1992)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.UIET, Panjab UniversityChandigarhIndia

Personalised recommendations