Recent Advances in Artifact Removal Techniques for EEG Signal Processing

  • Amandeep Bisht
  • Chamandeep Kaur
  • Preeti SinghEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 989)


EEG recordings are frequently contaminated with unavoidable artifacts. Preprocessing in EEG has been a dynamic field of investigation as none of the reported methods can be reviewed as a standard approach for effective artifact removal. This paper presents a broad survey of the existing artifact removal methods. This review is expected to help researchers in improving the existing artifact handling techniques so as to relieve the expert’s burden by ensuring efficient analysis.


EEG Artifacts Signal processing 


  1. 1.
    Jung, C.Y., Saikiran, S.S.: A review on EEG artifacts and its different removal technique. Asia-Pac. J. Converg. Res. Interchang. 2(4), 43–60 (2016)Google Scholar
  2. 2.
    Klados, M. A., Papadelis, C., Braun, C., Bamidis, P.D.: REG-ICA: a hybrid methodology combining blind source separation and regression techniques for the rejection of ocular artifacts. Biomed. Signal Process. Control. 6, 291–300 (2011). ElsevierCrossRefGoogle Scholar
  3. 3.
    Zachariah, A., Jai, J., Titus, G.: Automatic EEG artifact removal by independent component analysis using critical EEG rhythms. In: International Conference on Control Communication and Computing (2013).
  4. 4.
    Clercq, W.D., Vergult, A., Vanrumste, B., Paesschen, W.V., Huffel, S.V.: Canonical correlation analysis applied to remove muscle artifacts from the electroencephalogram. IEEE Trans. Biomed. Eng. 53(12), 2583–2587 (2006)CrossRefGoogle Scholar
  5. 5.
    Yong, X., Ward, R.K., Birch, G.E.: Artifact removal in EEG using morphological component analysis. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 345–348 (2009)Google Scholar
  6. 6.
    Khatun, S., Mahajan, R., Morshed, B.I.: Comparative analysis of wavelet based approaches for reliable removal of ocular artifacts from single channel EEG. In: IEEE International Conference on Electro/Information Technology (2015).
  7. 7.
    Pachori, R.B.: Discrimination between ictal and seizure-free EEG signals using empirical mode decomposition. Res. Lett. Signal Process. 2008(14) (2008). HindawiGoogle Scholar
  8. 8.
    Stearns, S. D.: Adaptive Signal Processing. Prentice Hall, Englewood Cliffs (1985)Google Scholar
  9. 9.
    Jung, T., Makeig, S., Humphries, C., Lee, T., Mckeown, M.J., Iragui, V., Sejnowski, T.J.: Removing electroencephalographic artifacts by blind source separation. Psychophysiology 3, 163–178 (2000)CrossRefGoogle Scholar
  10. 10.
    Zou, Y., Nathan, V., Jafari, R.: Automatic identification of artifact-related independent components for artifact removal in EEG recordings. IEEE J. Biomed. Health Inform. 20(1), 73–81 (2016)CrossRefGoogle Scholar
  11. 11.
    Safieddine, D., Kachenoura, A., Albera, L., Birot, G., Karfoul, A., Pasnicu, A., Biraben, A., Wendling, F., Senhadji, L., Merlet, I.: Removal of muscle artifact from EEG data: comparison between stochastic (ICA and CCA) and deterministic (EMD and wavelet-based) approaches. Eurasip J. Adv. Signal Process. 2012(1) (2012)Google Scholar
  12. 12.
    Sweeney, K.T., McLoone, S.F., Ward, T.E.: The use of ensemble empirical mode decomposition with canonical correlation analysis as a novel artifact removal technique. IEEE Trans. Biomed. Eng. 60(1), 97–105 (2013)CrossRefGoogle Scholar
  13. 13.
    Chen, X., Xu, T.E., Liu, A., McKeown, M.J., Wang, Z.J.: The use of multivariate EMD and CCA for denoising muscle artifacts from few-channel EEG recordings. IEEE Trans. Instrum. Meas. 67(2), 359–370 (2018)CrossRefGoogle Scholar
  14. 14.
    Hamaneh, M.B., Chitravas, N., Kaiboriboon, K., Lhatoo, S.D., Loparo, K.A.: Automated removal of EKG artifact from EEG data using independent component analysis and continuous wavelet transformation. IEEE Trans. Biomed. Eng. 61(6), 1634–1641 (2014)CrossRefGoogle Scholar
  15. 15.
    Zhao, C., Qui, T.: An automatic ocular artifacts removal method based on wavelet-enhanced canonical correlation analysis. IEEE 33rd Annual International Conference of the Engineering in Medicine and Biology Society (2011).
  16. 16.
    Lindsen, J.P., Bhattacharya, J.: Correction of blink artifacts using independent component analysis and empirical mode decomposition. Psychophysiology 47, 955–960 (2010)Google Scholar
  17. 17.
    Chen, X., He, C., Peng, H.: Removal of muscle artifacts from single-channel EEG based on ensemble empirical mode decomposition and multiset canonical correlation analysis. J. Appl. Math. 2014 (2014). HindawiGoogle Scholar
  18. 18.
    Shoker, L., Sanei, S., Chambers, J.A.: Artifact removal from electroencephalograms using a hybrid BSS-SVM algorithm. IEEE Signal Process. Lett. 12, 721–724 (2005)CrossRefGoogle Scholar
  19. 19.
    Navarro, X., Poree, F., Carrault, G.: ECG removal in preterm EEG combining empirical mode decomposition and adaptive filtering. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), vol. 2012 pp. 661–664 (2012)Google Scholar
  20. 20.
    Chen, Y., Zhao, Q., Hu, B., Li, J., Jiang, H., Lin, W., Li, Y., Zhou, S., Peng, H.: Method of removing ocular artifacts from eeg using discrete wavelet transform and kalman filtering. In: IEEE International Conference on Bioinformatics and Biomedicine, pp. 1485–1492 (2016).Google Scholar
  21. 21.
    Chavez, M., Grosselin, F., Bussalb, A., Fallani, F.D.V., Navarro-Sune, X.: Surrogate-based artifact removal from single-channel EEG. IEEE Trans. Neural Syst. Rehabil. Eng. 26(3), 540–555 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.UIET, Panjab UniversityChandigarhIndia

Personalised recommendations