Biotechnological Strategies to Reduce Arsenic Content in Rice

  • Natasha Das
  • Surajit Bhattacharya
  • Mrinal K. MaitiEmail author


Rice (Oryza sativa) grain containing above a certain threshold level of arsenic (As) is a significant contributor of dietary As intake that acts as a major risk factor for several human diseases. When As-contaminated water is used for irrigation in paddy field, the entry vis-à-vis mobilization of these heavy metal(loid)s from roots to grains inside the plant is facilitated. Amongst several strategies in practice, biotechnological strategies are the most effective ones to reduce the accumulation of heavy metal(loid)s in rice grains. To employ this strategy, identification of the genetic factors associated with As uptake, translocation, accumulation and detoxification in rice plant is very much essential. Some major genes as potential targets for biotechnological applications are discussed here in the context of As-stress mitigation in rice plants. Along with the endogenous rice genes for genetic engineering application, a few genes used for heterologous expression studies to reduce As accumulation in rice from other plants and microorganisms have also been reviewed. The new molecular techniques as biotechnological tools will lead mankind in the quest for food and nutritional security by producing safer rice grains.


Arsenic uptake and transport Arsenic accumulation Endogenous gene silencing Genetic engineering Heterologous expression Transgenic rice 


  1. Alves LD, Monteiro CC, Carvalho RF, Ribeiro PC, Tezotto T, Azevedo RA, Gratao PL (2017) Cadmium stress related to root-to-shoot communication depends on ethylene and auxin in tomato plants. Environ Exp Bot 134:102–115CrossRefGoogle Scholar
  2. Batres-Marquez SP, Jensen HH, Upton J (2009) Rice consumption in the United States: recent evidence from food consumption surveys. J Am Diet Assoc 109(10):1719–1727CrossRefGoogle Scholar
  3. Cao Y, Sun D, Ai H, Mei H, Liu X, Sun S et al (2017) Knocking out OsPT4 gene decreases arsenate uptake by rice plants and inorganic arsenic accumulation in rice grains. Environ Sci Technol 51:12131–12138CrossRefGoogle Scholar
  4. Castrillo G, Sánchez-Bermejo E, de Lorenzo L, Crevillén P, Fraile-Escanciano A, Mohan TC (2013) WRKY6 transcription factor restricts arsenate uptake and transposon activation in Arabidopsis. Plant Cell 25:2944–2957CrossRefGoogle Scholar
  5. Catarecha P, Segura MD, Franco-Zorrilla JM, García-Ponce B, Lanza M, Solano R et al (2007) A mutant of the Arabidopsis phosphate transporter PHT1; 1 displays enhanced arsenic accumulation. Plant Cell 19:1123–1133CrossRefGoogle Scholar
  6. Chen Y, Moore KL, Miller AJ, McGrath SP, Ma JF, Zhao FJ (2015) The role of nodes in arsenic storage and distribution in rice. J Exp Bot 66:3717–3724CrossRefGoogle Scholar
  7. Clemens S (2001) Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212:475CrossRefGoogle Scholar
  8. Clemens S, Ma JF (2016) Toxic heavy metal and metalloid accumulation in crop plants and foods. Annu Rev Plant Biol 67:489–512CrossRefGoogle Scholar
  9. Cozzolino V, Pigna M, Di Meo V, Caporale AG, Violante A (2010) Effects of arbuscular mycorrhizal inoculation and phosphorus supply on the growth of Lactuca sativa L. and arsenic and phosphorus availability in an arsenic polluted soil under non-sterile conditions. Appl Soil Ecol 45:262–268CrossRefGoogle Scholar
  10. Das N, Bhattacharya S, Maiti MK (2016) Enhanced cadmium accumulation and tolerance in transgenic tobacco overexpressing rice metal tolerance protein gene OsMTP1 is promising for phytoremediation. Plant Physiol Biochem 105:297–309CrossRefGoogle Scholar
  11. Das N, Bhattacharya S, Bhattacharyya S, Maiti MK (2017) Identification of alternatively spliced transcripts of rice phytochelatin synthase 2 gene OsPCS2 involved in mitigation of cadmium and arsenic stresses. Plant Mol Biol 94(1–2):167–183CrossRefGoogle Scholar
  12. Das N, Bhattacharya S, Bhattacharyya S, Maiti MK (2018) Functional characterization of a rice MATE family transporter OsMATE1 implicates its role in arsenic accumulation. Plant Mol Biol 98(1–2):101–120CrossRefGoogle Scholar
  13. Deng F, Yamaji N, Ma JF, Lee SK, Jeon JS, Martinoia E et al (2018) Engineering rice with lower grain arsenic. Plant Biotechnol J 16:1691–1699CrossRefGoogle Scholar
  14. Dorlhac de Borne F, Elmayan T, De Roton C, De Hys L, Tepfer M (1998) Cadmium partitioning in transgenic tobacco plants expressing a mammalian metallothionein gene. Mol Breed 4:83–90CrossRefGoogle Scholar
  15. Duan GL, Hu Y, Schneider S, McDermott J, Chen J, Sauer N et al (2016) Inositol transporters atint2 and atint4 regulate arsenic accumulation in Arabidopsis seeds. Nat Plants 2:15202CrossRefGoogle Scholar
  16. Finnegan P, Chen W (2012) Arsenic toxicity: the effects on plant metabolism. Front Physiol 3:182CrossRefGoogle Scholar
  17. Geng CN, Zhu YG, Hu Y, Williams P, Meharg AA (2006) Arsenate causes differential acute toxicity to two P-deprived genotypes of rice seedlings (Oryza sativa L.). Plant Soil 279:297–306CrossRefGoogle Scholar
  18. Grill E, Winnacker EL, Zenk MH (1987) Phytochelatins, a class of heavy-metal-binding peptides from plants, are functionally analogous to metallothioneins. Proc Natl Acad Sci U S A 84(2):439–443CrossRefGoogle Scholar
  19. Ha SB, Smith AP, Howden R, Dietrich WM, Bugg S, O’Connell MJ, Goldsbrough PB, Cobbett CS (1999) Phytochelatin synthase genes from Arabidopsis and the yeast, Schizosaccharomyces pombe. Plant Cell 11:1153–1164CrossRefGoogle Scholar
  20. Hammaini A, Gonzalez F, Ballester A, Blazquez ML, Munoz JA (2003) Simultaneous uptake of metals by activated sludge. Miner Eng 16:723–729CrossRefGoogle Scholar
  21. Jang YC, Somanna Y, Kim H (2016) Source, distribution, toxicity and remediation of arsenic in the environment – a review. Int J Appl Environ Sci 11:559–581Google Scholar
  22. Karagas MR, Punshon T, Sayarath V, Jackson BP, Folt CL, Cottingham KL (2016) Association of rice and rice-product consumption with arsenic exposure early in life. JAMA Pediatr 170:609–616CrossRefGoogle Scholar
  23. Khan I, Ahmad A, Iqbal M (2009) Modulation of antioxidant defence system for arsenic detoxification in Indian mustard. Ecotoxicol Environ Saf 72:626–634CrossRefGoogle Scholar
  24. Kitchin KT, Wallace K (2006) Arsenite binding to synthetic peptides: the effect of increasing length between two cysteines. J Biochem Mol Toxicol 20:35–38CrossRefGoogle Scholar
  25. Li Y, Dhankher OM, Carreira L, Lee D, Chen A, Schroeder JI, Balish RS, Meagher RB (2004) Overexpression of phytochelatin synthase in Arabidopsis leads to enhanced arsenic tolerance and cadmium hypersensitivity. Plant Cell Physiol 45:1787–1797CrossRefGoogle Scholar
  26. Liu F, Liu XN, Ding C, Wu L (2015) The dynamic simulation of rice growth parameters under cadmium stress with the assimilation of multi-period spectral indices and crop model. Field Crop Res 183:225–234CrossRefGoogle Scholar
  27. Ma JF, Yamaji N, Mitani N, Xu XY, Su YH, McGrath SP, Zhao FJ (2008) Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc Natl Acad Sci U S A 105(29):9931–9935CrossRefGoogle Scholar
  28. Mandal B, Suzuki K (2002) Arsenic round the world: a review. Talanta 58:201–235CrossRefGoogle Scholar
  29. Meharg AA, Hartley-Whitaker J (2002) Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytol 154:29–4310CrossRefGoogle Scholar
  30. Meng XY, Qin J, Wang LH, Duan GL, Sun GX, Wu HL et al (2011) Arsenic biotransformation and volatilization in transgenic rice. New Phytol 191:49–456CrossRefGoogle Scholar
  31. Messens J, Silver S (2006) Arsenate reduction: thiol cascade chemistry with convergent evolution. J Mol Biol 362:1–17CrossRefGoogle Scholar
  32. Mosa KA, Kumar K, Chhikara S, Mcdermott J, Liu Z, Musante C et al (2012) Members of rice plasma membrane intrinsic proteins subfamily are involved in arsenite permeability and tolerance in plants. Transgenic Res 21:1265–1277CrossRefGoogle Scholar
  33. Nawrot T, Plusquin M, Hogervorst J, Roels HA, Celis H, Thijs L, Vangronsveld J, Van Hecke E, Staessen JA (2006) Environmental exposure to cadmium and risk of cancer: a prospective population-based study. Lancet Oncol 7:119–126CrossRefGoogle Scholar
  34. Norton GJ, Lou-Hing DE, Meharg AA, Price AH (2008) Rice–arsenate interactions in hydroponics: whole genome transcriptional analysis. J Exp Bot 59(8):2267–2276CrossRefGoogle Scholar
  35. Raab A, Feldmann J, Meharg AA (2004) The nature of arsenic phytochelatin complexes in Holcus lanatus and Pteris cretica. Plant Physiol 134:1113–1122CrossRefGoogle Scholar
  36. Schmöger MEV, Oven M, Grill E (2000) Detoxification of arsenic by phytochelatins in plants. Plant Physiol 122:793–802CrossRefGoogle Scholar
  37. Schoof RA, Yost LJ, Eickhoff J, Crecelius EA, Cragin DW, Meacher DM, Menzel DB (1999) A market basket survey of inorganic arsenic in food. Food Chem Toxicol 37(8):839–846CrossRefGoogle Scholar
  38. Shi SL, Wang T, Chen Z, Tang Z, Wu ZC, Salt DE et al (2016) OsHAC1;1 and OsHAC1;2 function as arsenate reductases and regulate arsenic accumulation. Plant Physiol 172:1708–1719CrossRefGoogle Scholar
  39. Shri M, Dave R, Dwivedi S, Shukla D, Kesari R, Tripathi RD, Trivedi PK, Chakrabarty D (2014) Heterologous expression of Ceratophyllum demersum phytochelatin synthase, CdPCS1, in rice leads to lower arsenic accumulation in grain. Sci Rep 4:5784CrossRefGoogle Scholar
  40. Singh HP, Batish DR, Kaur S, Arora K, Kohli RK (2006) α-Pinene inhibits growth and induces oxidative stress in roots. Ann Bot 98(6):1261–1269CrossRefGoogle Scholar
  41. Smith AH, Lopipero PA, Bates MN, Steinmaus CM (2002) Public health – arsenic epidemiology and drinking water standards. Science 296:2145–2146CrossRefGoogle Scholar
  42. Song WY, Park J, Mendoza-Cózatl DG, Suter-Grotemeyer M, Shim D, Hörtensteiner S et al (2010) Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters. Proc Natl Acad Sci U S A 107:21187–21192CrossRefGoogle Scholar
  43. Song W, Zheng AZ, Shao HB, Chu L, Brestic M, Zhang Z (2012) The alleviative effect of salicylic acid on the physiological indices of the seedling leaves in six different wheat genotypes under lead stress. Plant Omics: J Plant Omics Mol Biol 5:486–493Google Scholar
  44. Song WY, Yamaki T, Yamaji N, Ko D, Jung KH, Fujii-Kashino M, An G, Martinoia E, Lee Y, Ma JF (2014) A rice ABC transporter, OsABCC1, reduces arsenic accumulation in the grain. Proc Natl Acad Sci U S A 111:15699–15704CrossRefGoogle Scholar
  45. Srivastava S, Suprasanna P, D’Souza SF (2011) Redox state and energetic equilibrium determine the magnitude of stress in Hydrilla verticillata upon exposure to arsenate. Protoplasma 48:805–815CrossRefGoogle Scholar
  46. Srivastava S, Srivastava AK, Suprasanna P, D’Souza SF (2013) Identification and profiling of arsenic stress-induced microRNAs in Brassica juncea. J Exp Bot 64:303–315CrossRefGoogle Scholar
  47. Srivastava S, Srivastava AK, Sablok G, Deshpande T, Suprasanna P (2015) Transcriptomics profiling of Indian mustard (Brassica juncea) under arsenate stress identifies key candidate genes and regulatory pathways. Front Plant Sci 6:646CrossRefGoogle Scholar
  48. Stoeva N, Bineva T (2003) Oxidative changes and photosynthesis in oat plants grown in as-contaminated soil. Bulg J Plant Physiol 29(1–2):87–95Google Scholar
  49. Stoeva N, Berova M, Zlatev Z (2005) Effect of arsenic on some physiological parameters in bean plants. Biol Plant 49:293–296CrossRefGoogle Scholar
  50. Takahashi R, Ishimaru Y, Senoura T, Shimo H, Ishikawa S, Arao T, Nakanishi H, Nishizawa NK (2011) The OsNRAMP1 iron transporter is involved in Cd accumulation in rice. J Exp Bot 62:4843–4850CrossRefGoogle Scholar
  51. Tang L, Mao B, Li Y, Lv Q, Zhang L, Chen C et al (2017) Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield. Sci Rep 7:14438CrossRefGoogle Scholar
  52. Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metal toxicity and the environment. Molecular. Clin Environ Toxicol Experientia Suppl 101:133–164CrossRefGoogle Scholar
  53. Tiwari M, Sharma D, Dwivedi S, Singh M, Tripathi RD, Trivedi PK (2014). Expression in Arabidopsis and cellular localization reveal involvement of rice NRAMP, OsNRAMP1, in arsenic transport and tolerance. Plant Cell Environ 37:140–152CrossRefGoogle Scholar
  54. Tripathi RD, Srivastava S, Mishra S, Singh N, Tuli R, Gupta DK et al (2007) Arsenic hazards: strategies for tolerance and remediation by plants. Trends Biotechnol 25:158–165CrossRefGoogle Scholar
  55. Ullrich-Eberius CI, Sanz A, Novacky AJ (1989) Evaluation of arsenate- and vanadate-associated changes of electrical membrane potential and phosphate transport in Lemna gibba-G1. J Exp Bot 40:119–128CrossRefGoogle Scholar
  56. Verbruggen N, Hermans C, Schat H (2009) Mechanisms to cope with arsenic or cadmium excess in plants. Curr Opin Plant Biol 12(3):364–372CrossRefGoogle Scholar
  57. Verma S, Verma PK, Meher AK, Bansiwal AK, Tripathi RD, Chakrabarty D (2017) A novel fungal arsenic methyltransferase, WaarsM reduces grain arsenic accumulation in the transgenic rice plant. J Hazard Mater 344:626–634CrossRefGoogle Scholar
  58. Wang H, Xu Q, Kong YH, Chen Y, Duan JY, Wu WH et al (2014) Arabidopsis WRKY45 transcription factor activates PHOSPHATE TRANSPORTER1;1 expression in response to phosphate starvation. Plant Physiol 164:2020–2029CrossRefGoogle Scholar
  59. Wang L, Bei X, Gao J, Li Y, Yan Y, Hu Y (2016) The similar and different evolutionary trends of MATE family occurred between rice and Arabidopsis thaliana. BMC Plant Biol 16:207CrossRefGoogle Scholar
  60. Wang FZ, Chen MX, Lu LJ, Xie LJ, Yuan LB, Qi H et al (2017) OsARM1, an R2R3 MYB transcription factor, is involved in regulation of the response to arsenic stress in rice. Front Plant Sci 8:1868CrossRefGoogle Scholar
  61. Williams PN, Villada A, Deacon C, Raab A, Figuerola J, Green AJ, Feldmann J, Meharg AA (2007) Greatly enhanced arsenic shoot assimilation in rice leads to elevated grain levels compared to wheat and barley. Environ Sci Technol 41(19):6854–6859CrossRefGoogle Scholar
  62. Wu Z, Ren H, McGrath SP, Wu P, Zhao FJ (2011) Investigating the contribution of the phosphate transport pathway to arsenic accumulation in rice. Plant Physiol 157:498–508CrossRefGoogle Scholar
  63. Xu J, Shi S, Wang L, Tang Z, Lv T, Zhu X et al (2017) OsHAC4 is critical for arsenate tolerance and regulates arsenic accumulation in rice. New Phytol 215(3):1090–1101CrossRefGoogle Scholar
  64. Yamaji N, Ma JF (2014) The node, a hub for mineral nutrient distribution in graminaceous plants. Trends Plant Sci 19:556–563CrossRefGoogle Scholar
  65. Ye Y, Li P, Xu T, Zeng L, Cheng D, Yang M et al (2017) OsPT4 contributes to arsenate uptake and transport in rice. Front Plant Sci 8:2197CrossRefGoogle Scholar
  66. Yu LJLYF, Liao B, Xie LJ, Chen L, Xiao S et al (2012) Comparative transcriptome analysis of transporters, phytohormone and lipid metabolism pathways in response to arsenic stress in rice (Oryza sativa). New Phytol 195:97–112CrossRefGoogle Scholar
  67. Zhao FJ, McGrath SP, Meharg AA (2010) Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Annu Rev Plant Biol 61:535–559CrossRefGoogle Scholar
  68. Zhao FJ, Moore KL, Lombi E, Zhu YG (2014) Imaging element distribution and speciation in plant cells. Trends Plant Sci 19:183–192CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Natasha Das
    • 1
  • Surajit Bhattacharya
    • 2
  • Mrinal K. Maiti
    • 1
    Email author
  1. 1.Department of BiotechnologyIndian Institute of Technology KharagpurKharagpurIndia
  2. 2.Amity Institute of BiotechnologyAmity University KolkataRajarhat, Newtown, KolkataIndia

Personalised recommendations