Advertisement

Advances in the Management of Orbital and Adnexal Trauma

  • Bipasha MukherjeeEmail author
  • Md Shahid Alam
  • Anantanarayanan Parameswaran
Chapter
Part of the Current Practices in Ophthalmology book series (CUPROP)

Abstract

The princliples of management of orbital trauma differ from facial trauma due to the contents of the orbital cavity, i.e., the eyeball and the surrounding neurovascular structures being packed within a small space. In the last decade, due to the advances in imaging and implant materials, there have been changes in the way orbital injuries are managed. In this chapter, we highlight some of these advances.

Keywords

Rapid prototyping Stereolithography Trauma Virtual surgical planning Navigation Orbit 

References

  1. 1.
    Kunz C, Audigé L, Cornelius C-P, Buitrago-Téllez C, Rudderman R, Prein J. The comprehensive AOCMF classification system: orbital fractures—level 3 tutorial. Craniomaxillofac Trauma Reconstr. 2014;7:S092–102.CrossRefGoogle Scholar
  2. 2.
    Kashima T. Types and management of orbital fractures. In: Mukherjee B, Yuen H, editors. Emergencies of the orbit and adnexa. New Delhi: Springer; 2017. p. 95–9. http://link.springer.com/10.1007/978-81-322-1807-4_14.CrossRefGoogle Scholar
  3. 3.
    Holck DE, Boyd EM, Ng J, Mauffray RO. Benefits of stereolithography in orbital reconstruction. Ophthalmology. 1999;106:1214–8.CrossRefGoogle Scholar
  4. 4.
    Bell RB, Markiewicz MR. Computer-assisted planning, stereolithographic modeling, and intraoperative navigation for complex orbital reconstruction: a descriptive study in a preliminary cohort. J Oral Maxillofac Surg. 2009;67:2559–70.CrossRefGoogle Scholar
  5. 5.
    Herford AS, Miller M, Lauritano F, Cervino G, Signorino F, Maiorana C. The use of virtual surgical planning and navigation in the treatment of orbital trauma. Chin J Traumatol. 2017;20:9–13.CrossRefGoogle Scholar
  6. 6.
    Malyala SK, Kumar RY. A review on rapid prototyping technologies in biomedical applications. Int J Recent Sci Res. 2016;7:10783–9.Google Scholar
  7. 7.
    Sinn DP, Cillo JE, Miles BA. Stereolithography for craniofacial surgery. J Craniofac Surg. 2006;17:869–75.CrossRefGoogle Scholar
  8. 8.
    Beigi B, McMullan TFW, Gupta D, Khandwala M. Stereolithographic models to guide orbital and oculoplastic surgery. Graefes Arch Clin Exp Ophthalmol. 2010;248:551–4.CrossRefGoogle Scholar
  9. 9.
    Novelli G, Tonellini G, Mazzoleni F, Bozzetti A, Sozzi D. Virtual surgery simulation in orbital wall reconstruction: integration of surgical navigation and stereolithographic models. J Cranio-Maxillofac Surg. 2014;42:2025–34.CrossRefGoogle Scholar
  10. 10.
    Schlickewei W, Schlickewei C. The use of bone substitutes in the treatment of bone defects—the clinical view and history. Macromol Symp. 2007;253:10–23.  https://doi.org/10.1002/masy.200750702.CrossRefGoogle Scholar
  11. 11.
    Manfrè L, de Maria M, Todaro E, Mangiameli A, Ponte F, Lagalla R. MR dacryocystography: comparison with dacryocystography and CT dacryocystography. AJNR Am J Neuroradiol. 2000;21:1145–50.PubMedGoogle Scholar
  12. 12.
    Udhay P, Noronha OV, Mohan RE. Helical computed tomographic dacryocystography and its role in the diagnosis and management of lacrimal drainage system blocks and medial canthal masses. Indian J Ophthalmol. 2008;56:31–7.CrossRefGoogle Scholar
  13. 13.
    Freitag SK, Woog JJ, Kousoubris PD, Curtin HD. Helical computed tomographic dacryocystography with three-dimensional reconstruction: a new view of the lacrimal drainage system. Ophthal Plast Reconstr Surg. 2002;18:121–32.CrossRefGoogle Scholar
  14. 14.
    Ali MJ, Singh S, Naik MN, Kaliki S, Dave TV. Interactive navigation-guided ophthalmic plastic surgery: the utility of 3D CT-DCG-guided dacryolocalization in secondary acquired lacrimal duct obstructions. Clin Ophthalmol. 2016;11:127–33.CrossRefGoogle Scholar
  15. 15.
    Mukherjee B, Dhobekar M. Traumatic nasolacrimal duct obstruction: clinical profile, management, and outcome. Eur J Ophthalmol. 2013;23:615–22.CrossRefGoogle Scholar
  16. 16.
    Ali MJ, Gupta H, Honavar SG, Naik MN. Acquired nasolacrimal duct obstructions secondary to naso-orbito-ethmoidal fractures: patterns and outcomes. Ophthal Plast Reconstr Surg. 2012;28(4):242–5.CrossRefGoogle Scholar
  17. 17.
    Uzun F, Karaca EE, Konuk O. Surgical management of traumatic nasolacrimal duct obstruction. Eur J Ophthalmol. 2016;26(6):517–9.CrossRefGoogle Scholar
  18. 18.
    Ali MJ, Singh S, Naik MN. The usefulness of continuously variable view rigid endoscope in lacrimal surgeries: first intraoperative experience. Ophthal Plast Reconstr Surg. 2016;32(6):477–80.CrossRefGoogle Scholar
  19. 19.
    Ali MJ, Naik MN. First intraoperative experience with three-dimensional (3D) high-definition (HD) nasal endoscopy for lacrimal surgeries. Eur Arch Otorhinolaryngol. 2017;274(5):2161–4.CrossRefGoogle Scholar
  20. 20.
    Ali MJ, Singh S, Naik MN, Kaliki S, Dave TV. Interactive navigation-guided ophthalmic plastic surgery: navigation enabling of telescopes and their use in endoscopic lacrimal surgeries. Clin Ophthalmol. 2016;10:2319–24.CrossRefGoogle Scholar
  21. 21.
    Fodstad H, Hariz M, Ljunggren B. History of Clarke’s stereotactic instrument. Stereotact Funct Neurosurg. 1991;57:130–40.CrossRefGoogle Scholar
  22. 22.
    Ali MJ, Naik MN. Image-guided dacryolocalization (IGDL) in traumatic secondary acquired lacrimal drainage obstructions (SALDO). Ophthal Plast Reconstr Surg. 2015;31(5):406–9.CrossRefGoogle Scholar
  23. 23.
    Ali MJ, Mariappan I, Maddileti S, et al. Mitomycin C in dacryocystorhinostomy: the search for the right concentration and duration—a fundamental study on human nasal mucosa fibroblasts. Ophthal Plast Reconstr Surg. 2013;29:469–74.CrossRefGoogle Scholar
  24. 24.
    Kamal S, Ali MJ, Naik MN. Circumostial injection of mitomycin C (COS-MMC) in external and endoscopic dacryocystorhinostomy: efficacy, safety profile, and outcomes. Ophthal Plast Reconstr Surg. 2014;30(2):187–90.CrossRefGoogle Scholar
  25. 25.
    Ali MJ, Psaltis AJ, Ali MH, Wormald PJ. Endoscopic assessment of the dacryocystorhinostomy ostium after powered endoscopic surgery: behaviour beyond 4 weeks. Clin Exp Ophthalmol. 2015;43(2):152–5.CrossRefGoogle Scholar
  26. 26.
    Sarode D, Bari DA, Cain AC. The benefit of silicone stents in primary endoscopic dacryocystorhinostomy: a systematic review and meta-analysis. Clin Otolaryngol. 2007;42:307–14.CrossRefGoogle Scholar
  27. 27.
    Feng YF, Cai JQ, Zhang JY, Han XH. A meta-analysis of primary dacryocystorhinostomy with and without silicone intubation. Can J Ophthalmol. 2011;46:521–7.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Bipasha Mukherjee
    • 1
    Email author
  • Md Shahid Alam
    • 2
  • Anantanarayanan Parameswaran
    • 3
  1. 1.Orbit, Oculoplasty, Reconstructive and Aesthetic ServicesSankara NethralayaChennaiIndia
  2. 2.Orbit, Oculoplasty, Reconstructive and Aesthetic ServicesSankara NethralayaKolkataIndia
  3. 3.Department of Oral and Maxillofacial SurgeryMeenakshiammal Dental College and HospitalChennaiIndia

Personalised recommendations