Genomic Intervention in Wheat Improvement

  • Om Prakash Gupta
  • Vanita Pandey
  • K. Gopalareddy
  • Pradeep Sharma
  • Gyanendra Pratap SinghEmail author


Common wheat is the second most important cereal crop after rice worldwide. Hexaploidy nature of wheat genome makes it the model crop for the study of allopolyploid genomes with highly repetitive sequences. Conventional approaches of genome sequencing proved to be very tedious and time consuming for allohexaploid wheat. Therefore, with the advancement in the latest next generation sequencing technologies led IWGC to precisely map the wheat genome (~17 Gb). This genome sequence opens new avenues for functional characterization of genes which is the need of the hour for devising new strategies for wheat improvement. Here, we discuss the genome sequencing technologies, functional and comparative genomics of wheat to bridge the gap between genotype and phenotype.


Wheat Genome sequencing Functional genomics Comparative genomics 


  1. Acuna-Galindo, M. A., Mason, R. E., et al. (2015). Meta-analysis of wheat QTL regions associated with adaptation to drought and heat stress. Crop Science, 55, 477–492.CrossRefGoogle Scholar
  2. Avni, R., Nave, M., et al. (2017). Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science, 357, 93–97.PubMedCrossRefPubMedCentralGoogle Scholar
  3. Bevan, M. W., Uauy, C., Wulff, B. B., Zhou, J., Krasileva, K., & Clark, M. D. (2017). Genomic innovation for crop improvement. Nature, 543, 346–354.PubMedCrossRefPubMedCentralGoogle Scholar
  4. Bhowmik, P., Ellison, E., et al. (2018). Targeted mutagenesis in wheat microspores using CRISPR/Cas9. Scientific Reports, 8(1), 6502.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bhusal, N., Sarial, A. K., Sharma, P., & Sareen, S. (2017). Mapping QTLs for grain yield components in wheat under heat stress. PLoS One, 12, e0189594.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Boch, J., Scholze, H., et al. (2009). Breaking the code of DNA binding specificity of TAL-type III effectors. Science, 326, 1509–1512.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Breen, J., Wicker, T., Shatalina, M., et al. (2013). International wheat genome sequencing consortium. In E. Paux, T. Fahima, J. Dolezel, A. Korol, C. Feuillet, B. Keller (Eds.), A physical map of the short arm of wheat chromosome 1A. PLoS One, 8, e80272.Google Scholar
  8. Cavanagh, C. R., Chao, S., et al. (2013). Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. PNAS USA, 110, 8057–8062.PubMedCrossRefPubMedCentralGoogle Scholar
  9. Chin, C. S., Peluso, P., Sedlazeck, F. J., et al. (2016). Phased diploid genome assembly with single-molecule real-time sequencing. Nature Methods, 13, 1050–1054.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Clavijo, B. J., Venturini, L., et al. (2017). An improved assembly and annotation of the allohexaploid wheat genome identifies complete families of agronomic genes and provides genomic evidence for chromosomal translocations. Genome Research, 27, 885–896.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Cong, L., Ran, F. A., et al. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science, 339, 819–823.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Dalal, M., Sahu, S., et al. (2018). Transcriptome analysis reveals interplay between hormones, ROS metabolism and cell wall biosynthesis for drought-induced root growth in wheat. Plant Physiology & Biochemistry, 130, 482–492.
  13. Devos, K.M., Atkinson, M.D., et al. (1992). RFLP-based genetic map of the homoeologous group 3 chromosomes of wheat and rye. Theoretical & Applied Genetics, 83, 931–939.Google Scholar
  14. Devos, K. M., & Gale, M. D. (2000). Genome relationships: The grass model in current research. The Plant Cell, 12(5), 637–646.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Edae, E. A., Byrne, P. F., et al. (2014). Genome-wide association mapping of yield and yield components of spring wheat under contrasting moisture regimes. Theoretical and Applied Genetics, 127, 791–807.PubMedCrossRefPubMedCentralGoogle Scholar
  16. Feng, N., Song, G., et al. (2017). Transcriptome profiling of wheat inflorescence development from spikelet initiation to floral patterning identified stage-specific regulatory genes. Plant Physiology, 174, 1779–1794.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Ferrarini, M., Moretto, M., et al. (2013). An evaluation of the PacBio RS platform for sequencing and De novo assembly of a chloroplast genome. BMC Genomics, 14, 670.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Feuillet, C., & Keller, B. (2002). Comparative genomics in the grass family: Molecular characterization of grass genome structure and evolution. Annals of Botany, 89(1), 3–10.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Feuillet, C., Travella, S., et al. (2003). Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proceedings of the National Academy of Sciences of the United States of America, 100, 15253–15258.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Fu, D., Uauy, C., et al. (2007). RNA interference for wheat functional gene analysis. Transgenic Research, 16, 689–701.PubMedCrossRefPubMedCentralGoogle Scholar
  21. Gahlaut, V., Mathur, S., et al. (2014). A multi-step phosphorelay two-component system impacts on tolerance against dehydration stress in common wheat. Functional & Integrative Genomics, 14, 707–716.CrossRefGoogle Scholar
  22. Gil-Humanes, J., Piston, F., et al. (2014). The shutdown of celiac disease-related gliadin epitopes in bread wheat by RNAi provides flours with increased stability and better tolerance to over-mixing. PLoS One, 9, e91931.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Gupta, P. K., Mir, R. R., et al. (2008). Wheat genomics: Present status and future prospects. International Journal of Plant Genomics, 2008, 1–36.Google Scholar
  24. Gupta, P. K., Balyan, H. S., et al. (2017). QTL analysis for drought tolerance in wheat: Present status and future possibilities. Agronomy, 7, 5. Scholar
  25. Guyot, R., Yahiaoui, N., et al. (2004). In silico comparative analysis reveals a mosaic conservation of genes within a novel colinear region in wheat chromosome 1AS and rice chromosome 5S. Functional & Integrative Genomics, 4(1), 47–58.CrossRefGoogle Scholar
  26. Hasterok, R., Marasek, A., et al. (2006). Alignment of the genomes of Brachypodiumdistachyon and temperate cereals and grasses using bacterial artificial chromosome landing with fluorescence in situ hybridization. Genetics, 173(1), 349–362.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Hernandez, P., Martis, M., et al. (2012). Next-generation sequencing and syntenic integration of flow-sorted arms of wheat chromosome 4A exposes the chromosome structure and gene content. The Plant Journal, 69, 377–386.PubMedCrossRefPubMedCentralGoogle Scholar
  28. Huo, N., Gu, Y. Q., et al. (2006). Construction and characterization of two BAC libraries from Brachypodium distachyon, a new model for grass genomics. Genome, 49(9), 1099–1108.PubMedCrossRefPubMedCentralGoogle Scholar
  29. ICAR-Indian Institute of Wheat and Barley Research Vision 2050.Google Scholar
  30. International Wheat Genome Sequencing Consortium. (2014). A chromosome-based draft sequence of the hexaploidy bread wheat (Triticum aestivum) genome. Science, 345, 1251788.CrossRefGoogle Scholar
  31. International Wheat Genome Sequencing Consortium (IWGSC). (2018). Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science, 361, 661.CrossRefGoogle Scholar
  32. Ishida, Y., Tsunashima, M., et al. (2014). Wheat (Triticum aestivum L.) transformation using immature embryos. In K. Wang (Ed.), Agrobacterium protocols (Methods in molecular biology) (pp. 189–198). New York: Springer.Google Scholar
  33. Isidore, E., Scherrer, B., et al. (2005). Ancient haplotypes resulting from extensive molecular rearrangements in the wheat A genome have been maintained in species of three different ploidy levels. Genome Research, 15(4), 526–536.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Jordan, K. W., Wang, S., et al. (2015). A haplotype map of allohexaploid wheat reveals distinct patterns of selection on homoeologous genomes. Genome Biology, 16, 48.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Krasileva, K. V., Vasquez-Gross, H. A., et al. (2017). Uncovering hidden variation in polyploid wheat. Proceedings of the National Academy of Sciences of the United States of America, 114, E913–E921.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Lieberman-Aiden, E., van Berkum, N. L., et al. (2009). Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science, 326, 289–293.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Marcussen, T., Sandve, S. R., et al. (2014). International wheat genome sequencing consortium. In K. S. Jakobsen, B. B. Wulff, B. Steuernagel, K. F. Mayer, O. A. Olsen (Eds.), Ancient hybridizations among the ancestral genomes of bread wheat. Science, 345, 1250092.Google Scholar
  38. McCallum, C. M., Comai, L., et al. (2000). Targeted screening for induced mutations. Nature Biotechnology, 18, 455–457.PubMedCrossRefGoogle Scholar
  39. Montenegro, J. D., Golicz, A. A., et al. (2017). The pangenome of hexaploid bread wheat. The Plant Journal, 90, 1007–1013.PubMedCrossRefPubMedCentralGoogle Scholar
  40. Moscou, M. J., & Bogdanove, A. J. (2009). A simple cipher governs DNA recognition by TAL effectors. Science, 326, 1501.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Paux, E., Sourdille, P., et al. (2008). A physical map of the 1-gigabase bread wheat chromosome 3B. Science, 322, 101–104.PubMedCrossRefPubMedCentralGoogle Scholar
  42. Periyannan, S., Moore, J., et al. (2013). The gene Sr33, an ortholog of barley Mla genes, encodes resistance to wheat stem rust race Ug99. Science, 341, 786–788.PubMedCrossRefPubMedCentralGoogle Scholar
  43. Pfeifer, M., Kugler, K. G., et al. (2014). International wheat genome sequencing consortium. In K. F. Mayer, & O. A. Olsen (Eds.), Genome interplay in the grain transcriptome of hexaploid bread wheat. Science, 345, 1250091.Google Scholar
  44. Poland, J. A., Brown, P. J., et al. (2012). Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS One, 7, e32253.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Rasekh, M. E., Chiatante, G., et al. (2017). Discovery of large genomic inversions using long range information. BMC Genomics, 18, 65.CrossRefGoogle Scholar
  46. Richardson, T., Thistleton, J., et al. (2014). Efficient Agrobacterium transformation of elite wheat germplasm without selection. Plant Cell, Tissue and Organ Culture, 119, 647–659.CrossRefGoogle Scholar
  47. Shan, Q., Wang, Y., et al. (2014). Genome editing in rice and wheat using the CRISPR/Cas system. Nature Protocols, 9, 2395–2410.PubMedCrossRefPubMedCentralGoogle Scholar
  48. Singh, N. K., Raghuvanshi, S., et al. (2004). Sequence analysis of the long arm of rice chromosome 11 for rice-wheat synteny. Functional and Integrative Genomics, 4(2), 102–117.PubMedCrossRefPubMedCentralGoogle Scholar
  49. Sorrells, M. E., La Rota, M., et al. (2003). Comparative DNA sequence analysis of wheat and rice genomes. Genome Research, 13(8), 1818–1827.PubMedPubMedCentralGoogle Scholar
  50. Stein, N., Feuillet, C., et al. (2000). Subgenome chromosome walking in wheat: A 450- kb physical contig in Triticum monococcum L. spans the Lr10 resistance locus in hexaploid wheat (Triticum aestivum L.). PNAS USA, 97(24), 13436–13441.PubMedCrossRefPubMedCentralGoogle Scholar
  51. Sun, L., Sun, G., Shi, C., & Sun, D. (2018). Transcriptome analysis reveals new microRNAs-mediated pathway involved in another development in male sterile wheat. BMC Genomics, 19(1), 333.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Tahmasebi, S., Heidari, B., Pakniyat, H., & McIntyre, C. L. (2017). Mapping QTLs associated with agronomic and physiological traits under terminal drought and heat stress conditions in wheat (Triticum aestivum L.). Genome, 60, 26–45.PubMedCrossRefPubMedCentralGoogle Scholar
  53. Tanno, K., & Willcox, G. (2006). How fast was wild wheat domesticated? Science, 311, 1886.PubMedCrossRefGoogle Scholar
  54. Till, B. J., Zerr, T., et al. (2006). A protocol for TILLING and ecotilling in plants and animals. Nature Protocols, 1, 2465–2477.PubMedCrossRefPubMedCentralGoogle Scholar
  55. Travella, S., Klimm, T. E., & Keller, B. (2006). RNA interference-based gene silencing as an efficient tool for functional genomics in hexaploid bread wheat. Plant Physiology, 142, 6–20.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Uauy, C., Distelfeld, A., et al. (2006). A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science, 314, 1298–1301.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Wan, Y., Poole, R. L., et al. (2008). Transcriptome analysis of grain development in hexaploid wheat. BMC Genomics, 9, 121.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Wang, Z., Gerstein, M., & Snyder, M. (2009). M.RNA-Seq: A revolutionary tool for transcriptomics. Nature Reviews Genetics, 10, 57–63.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Wang, Y. P., Cheng, X., et al. (2014). Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature Biotechnology, 32, 947–951.PubMedCrossRefPubMedCentralGoogle Scholar
  60. Wang, W., Simmonds, J., et al. (2018). Gene editing and mutagenesis reveal inter-cultivar differences and additivity in the contribution of TaGW2 homoeologues to grain size and weight in wheat. Theoretical and Applied Genetics, 131(11), 2463–2475. Scholar
  61. Wulff, B. B. H., & Moscou, M. J. (2014). Strategies for transferring resistance into wheat: From wide crosses to GM cassettes. Frontiers in Plant Science, 5, 1–11.CrossRefGoogle Scholar
  62. Yu, M., Chen, G., et al. (2014). QTL mapping for important agronomic traits in synthetic wheat derived from Agilopis tauschii ssp. tauschii. Journal International Agricultural, 13, 1835–1844.Google Scholar
  63. Zhao, Y., Zhang, C., et al. (2016). An alternative strategy for targeted gene replacement in plants using a dual-sgRNA/Cas9 design. Scientific Reports, 6, 23890.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Zong, Y., Wang, Y., et al. (2017). Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nature Biotechnology, 35, 438–440.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Om Prakash Gupta
    • 1
  • Vanita Pandey
    • 1
  • K. Gopalareddy
    • 2
  • Pradeep Sharma
    • 2
  • Gyanendra Pratap Singh
    • 3
    Email author
  1. 1.Division of Quality and Basic SciencesICAR-Indian Institute of Wheat and Barley ResearchKarnalIndia
  2. 2.Division of Crop ImprovementICAR-Indian Institute of Wheat and Barley ResearchKarnalIndia
  3. 3.ICAR-Indian Institute of Wheat and Barley ResearchKarnalIndia

Personalised recommendations