Chloroplast Proteins and Virus Interplay: A Pathfinder to Crop Improvement

  • Neelam Yadav
  • Dinesh Kumar Yadav
  • Sarika Yadav
  • S. M. Paul Khurana


Plant viruses always posed extensive losses to crop production. Thus, it is of utmost importance to plant virologists and biologists to accurately identify culprit host plant proteins which participate in plant-virus interactions. Advancements in molecular virology and plant biotechnology have led to many major breakthroughs in past years enabling recognition of innumerable host factors of virus-plant interactions. Interestingly majority of these host factors are chloroplast and photosynthesis related proteins. Hence chloroplast-virus interaction is an epicentre of plant-virus interplays, and its study could help to understand mechanisms of virus infection, spread, symptom development and host resistance. Advanced proteomic tools have empowered the development of sensitive and effective methods to detect host and viral proteins of interplays. Thus, precise information on chloroplast-virus interaction could be used to develop finer disease control strategies and genetically engineered plants with better photosynthetic efficiency and yields.


Chloroplast-virus interaction Plant defence Plant-virus interaction Viral movement Viral replication Virus symptoms 


  1. Abbink, T. E., Peart, J. R., Mos, T. N., Baulcombe, D. C., Bol, J. F., & Linthorst, H. J. (2002). Silencing of a gene encoding a protein component of the oxygen-evolving complex of photosystem II enhances virus replication in plants. Virology, 295, 307–319.CrossRefPubMedGoogle Scholar
  2. Ahlquist, P. (2002). RNA-dependent RNA polymerases, viruses, and RNA silencing. Science, 296(5571), 1270–1273.CrossRefPubMedGoogle Scholar
  3. Alazem, M., & Lin, N. S. (2015). Roles of plant hormones in the regulation of host-virus interactions. Molecular Plant Pathology, 16(5), 529–540.Google Scholar
  4. Allen, T. C. (1972). Subcellular responses of mesophyll cells to wild Cucumber mosaic virus. Virology, 47, 467–474.CrossRefPubMedGoogle Scholar
  5. Almási, A., Harsányi, A., & Gáborjányi, R. (2001). Photosynthetic alterations of virus infected plants. Acta Phytopathologica et Entomologica Hungarica, 36, 15–29.CrossRefGoogle Scholar
  6. Angel, C. A., Lutz, L., Yang, X., Rodriguez, A., Adair, A., Zhang, Y., Leisner, S. M., Nelson, R. S., & Schoelz, J. E. (2013). The P6 protein of cauliflower mosaic virus interacts with CHUP1, a plant protein which moves chloroplasts on actin filaments. Virology, 443, 363–374.CrossRefPubMedGoogle Scholar
  7. Appiano, A., Pennazio, S., & Redolfi, P. (1978). Cytological alterations in tissues of Gomphrena globosa plants systemically infected with tomato bushy stunt virus. Journal of General Virology, 40, 277–286.CrossRefGoogle Scholar
  8. Arnott, H. J., Rosso, S. W., & Smith, K. M. (1969). Modification of plastid ultrastructure in tomato leaf cells infected with tobacco mosaic virus. Journal of Ultrastructure Research, 27, 149–167.CrossRefPubMedGoogle Scholar
  9. Ashraf, M., & Harris, P. J. C. (2013). Photosynthesis under stressful environments: An overview. Photosynthetica, 51, 163.CrossRefGoogle Scholar
  10. Babu, M., Griffiths, J. S., Huang, T. S., & Wang, A. (2008). Altered gene expression changes in Arabidopsis leaf tissues and protoplasts in response to Plum pox virus infection. BMCGenomics, 9, 325.Google Scholar
  11. Balasubramaniam, M., Kim, B. S., Hutchens-Williams, H. M., & Loesch-Fries, L. S. (2014). The photosystem II oxygen-evolving complex protein PsbP interacts with the coat protein of alfalfa mosaic virus and inhibits virus replication. Molecular Plant-Microbe Interactions, 27, 1107–1118.CrossRefPubMedGoogle Scholar
  12. Bassi, M., Appiano, A., Barbieri, N., & D’Agostino, G. (1985). Chloroplast alterations induced by tomato bushy stunt virus in Datura leaves. Protoplasma, 126, 233–235.CrossRefGoogle Scholar
  13. Betto, E., Bassi, M., Favali, M. A., & Conti, G. G. (1972). An electron microscopic and autoradiographic study of tobacco leaves infected with the U5 strain of tobacco mosaic virus. Journal of Phytopathology, 75, 193–201.CrossRefGoogle Scholar
  14. Bhat, S., Folimonova, S. Y., Cole, A. B., Ballard, K. D., Lei, Z., Watson, B. S., Sumner, L. W., & Nelson, R. S. (2013). Influence of host chloroplast proteins on Tobacco mosaic virus accumulation and intercellular movement. Plant Physiology, 161, 134–147.CrossRefPubMedGoogle Scholar
  15. Bhattacharjee, S. (2013). Role of genomic and proteomic tools in the study of host-virus interactions and virus evolution. Indian Journal of Virology, 24(3), 306–311.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Bhattacharyya, D., & Chakraborty, S. (2018). Chloroplast: The Trojan horse in plant-virus interaction. Molecular Plant Pathology, 19(2), 504–518.CrossRefPubMedGoogle Scholar
  17. Bhattacharyya, D., Gnanasekaran, P., Kumar, R. K., Kushwaha, N. K., Sharma, V. K., Yusuf, M. A., & Chakraborty, S. (2015). A geminivirus betasatellite damages the structural and functional integrity of chloroplasts leading to symptom formation and inhibition of photosynthesis. Journal of Experimental Botany, 66(19), 5881–5895.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Bobik, K., & Burch-Smith, T. M. (2015). Chloroplast signaling within, between and beyond cells. Frontiers in Plant Science, 6, 307.CrossRefGoogle Scholar
  19. Brizard, J. P., Carapito, C., Delalande, F., Van Dorsselaer, A., & Brugidou, C. (2006). Proteome analysis of plant-virus interactome: Comprehensive data for virus multiplication inside their hosts. Molecular & Cellular Proteomics, 5(12), 2279–2297.CrossRefGoogle Scholar
  20. Cantú, M. D., Mariano, A. G., Palma, M. S., Carrilho, E., & Wulff, N. A. (2008). Proteomic analysis reveals suppression of bark chitinases and proteinase inhibitors in citrus plants affected by the citrus sudden death disease. Phytopathology, 98(10), 1084–1092.CrossRefPubMedGoogle Scholar
  21. Caplan, J. L., Mamillapalli, P., Burch-Smith, T. M., Czymmek, K., & Dinesh-Kumar, S. P. (2008). Chloroplastic protein NRIP1 mediates innate immune receptor recognition of a viral effector. Cell, 132, 449–462.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Carroll, T. W. (1970). Relation of barley stripe mosaic virus to plastids. Virology, 42, 1015–1022.CrossRefPubMedGoogle Scholar
  23. Casado-Vela, J., Sellés, S., & Martínez, R. B. (2006). Proteomic analysis of tobacco mosaic virus-infected tomato (Lycopersicon esculentum M.) fruits and detection of viral coat protein. Proteomics, 6(Suppl1), S196–S206.CrossRefPubMedGoogle Scholar
  24. Chavez, J. D., Cilia, M., Weisbrod, C. R., Ju, H.-J., Eng, J. K., Gray, S. M., & Bruce, J. E. (2012). Cross-linking measurements of the Potato leafroll virus reveal protein interaction topologies required for virion stability, aphid transmission and virus-plant interactions. Journal of Proteome Research, 11(5), 2968–2981.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Cheng, Y. Q., Liu, Z. M., Xu, J., Zhou, T., Wang, M., Chen, Y. T., Li, H. F., & Fan, Z. F. (2008). HC-Pro protein of sugar cane mosaic virus interacts specifically with maize ferredoxin-5 in vitro and in planta. Journal of General Virology, 89, 2046–2054.CrossRefPubMedGoogle Scholar
  26. Cheng, S. F., Huang, Y. P., Chen, L. H., Hsu, Y. H., & Tsai, C. H. (2013). Chloroplast phosphoglycerate kinase is involved in the targeting of bamboo mosaic virus to chloroplasts in Nicotiana benthamiana plants. Plant Physiology, 163, 1598–1608.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Cho, W. K., Lian, S., Kim, S. M., Seo, B. Y., Jung, J. K., & Kim, K. H. (2015). Time-course RNA-Seq analysis reveals transcriptional changes in Rice plants triggered by Rice stripe virus infection. PLoS One, 10(8), e0136736.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Choi, C. W. (1996). Cytological modification of sorghum leaf tissues showing the early acute response to maize dwarf mosaic virus. Journal of Plant Biology, 39, 215–221.Google Scholar
  29. Chowdhury, S. R., & Savithri, H. S. (2011). Interaction of Sesbania mosaic virus movement protein with the coat protein-implications for viral spread. FEBS Journal, 278, 257–272.CrossRefGoogle Scholar
  30. Citovsky, V., Knorr, D., Schuster, G., & Zambryski, P. (1990). The P30 movement protein of tobacco mosaic virus is a single-strand nucleic acid binding protein. Cell, 60, 637–647.CrossRefPubMedGoogle Scholar
  31. Clemente-Moreno, M. J., Díaz-Vivancos, P., Rubio, M., Fernández-García, N., & Hernández, J. A. (2013). Chloroplast protection in plum pox virus-infected peach plants by L-2-oxo-4-thiazolidine-carboxylic acid treatments: Effect in the proteome. Plant Cell and Environment, 36, 640–654.CrossRefGoogle Scholar
  32. Cowan, G. H., Roberts, A. G., Chapman, S. N., Ziegler, A., Savenkov, E. I., & Torrance, L. (2012). The potato mop-top virus TGB2 protein and viral RNA associate with chloroplasts and viral infection induces inclusions in the plastids. Frontiers in Plant Science, 3, 290.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Dardick, C. (2007). Comparative expression profiling of Nicotiana benthamiana leaves systemically infected with three fruit tree viruses. Molecular Plant Microbe Interactions, 20, 1004–1017.CrossRefGoogle Scholar
  34. De Stradis, A., Redinbaugh, M., Abt, J., & Martelli, G. (2005). Ultrastructure of maize necrotic streak virus infections. Journal of Plant Pathology, 87, 213–221.Google Scholar
  35. Di Carli, M., Villani, M. E., Bianco, L., Lombardi, R., Perrotta, G., Benvenuto, E., & Donini, M. (2010). Proteomic analysis of the plant−virus interaction in cucumber mosaic virus (CMV) resistant transgenic tomato. Journal of Proteome Research, 9(11), 5684–5697.CrossRefGoogle Scholar
  36. Di Carli, M., Benvenuto, E., & Donini, M. (2012). Recent insights into plant-virus interactions through proteomic analysis. Journal of Proteome Research, 11, 4765–4780.CrossRefGoogle Scholar
  37. Diaz-Vivancos, P., Rubio, M., Mesonero, V., Periago, P. M., Barceló, A. R., Martínez-Gómez, P., & Hernández, J. A. (2006). Apoplastic antioxidant system in Prunus: Response to long-term plum pox virus infection. Journal of Experimental Botany, 57(14), 3813–3824.CrossRefGoogle Scholar
  38. Díaz-Vivancos, P., Clemente-Moreno, M. J., Rubio, M., Olmos, E., García, J. A., Martínez-Gómez, P., & Hernández, J. A. (2008). Alteration in the chloroplastic metabolism leads to ROS accumulation in pea plants in response to plum pox virus. Journal of Experimental Botany, 59(8), 2147–2160.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Ding, B., Haudenshield, J. S., Hull, R. J., Wolf, S., Beachy, R. N., & Lucas, W. J. (1992). Secondary plasmodesmata are specific sites of localization of the tobacco mosaic virus movement protein in transgenic tobacco plants. Plant Cell, 4, 915–928.PubMedPubMedCentralGoogle Scholar
  40. Dufresne, P. J., Thivierge, K., Cotton, S., Beauchemin, C., Ide, C., Ubalijoro, E., Laliberté, J. F., & Fortin, M. G. (2008). Heat shock 70 protein interaction with Turnip mosaic virus RNA-dependent RNA polymerase within virus-induced membrane vesicles. Virology, 374(1), 217–227.CrossRefGoogle Scholar
  41. El Fattah, A. A., El-Din, H. A. N., Abodoah, A., & Sadik, A. (2005). Occurrence of two sugarcane mosaic potyvirus strains in sugarcane. Pakistan Journal of Biotechnology, 2, 1–12.Google Scholar
  42. Elvira, M. I., Galdeano, M. M., Gilardi, P., García-Luque, I., & Serra, M. T. (2008). Proteomic analysis of pathogenesis-related proteins (PRs) induced by compatible and incompatible interactions of pepper mild mottle virus (PMMoV) in Capsicum chinense L3 plants. Journal of Experimental Botany, 59(6), 1253–1265.CrossRefGoogle Scholar
  43. Falcioni, T., Ferrio, J. P., del Cueto, A. I., Giné, J., Achón, M. Á., & Medina, V. (2014). Effect of salicylic acid treatment on tomato plant physiology and tolerance to potato virus X infection. European Journal of Plant Pathology, 138, 331–345.CrossRefGoogle Scholar
  44. Feki, S., Loukili, M. J., Triki-Marrakchi, R., Karimova, G., Old, I., Ounouna, H., Nato, A., Nato, F., Guesdon, J. L., Lafaye, P., & Elgaaied, A. B. A. (2005). Interaction between tobacco ribulose-1,5-biphosphate carboxylase/oxygenase large subunit (RubisCO-LSU) and the PVY coat protein (PVY-CP). European Journal of Plant Pathology, 112, 221–234.CrossRefGoogle Scholar
  45. Fujiwara, T., Giesman-Cookmeyer, D., Ding, B., Lommel, S. A., & Lucas, W. J. (1993). Cell-to-cell trafficking of macromolecules through plasmodesmata potentiated by the red clover necrotic mosaic virus movement protein. Plant Cell, 5, 1783–1794.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Gaddam, S. A., Kotakadi, V. S., Reddy, M. N., & Saigopal, D. V. R. (2012). Antigenic relationships of citrus yellow mosaic virus by immunological methods. Asian Journal of Plant Science and Research, 2, 566–569.Google Scholar
  47. Ganusova, E. E., Rice, J. H., Carlew, T. S., Patel, A., Perrodin-Njoku, E., Hewezi, T., & Burch-Smith, T. M. (2017). Altered expression of a chloroplast protein affects the outcome of virus and nematode infection. Molecular Plant Microbe Interactions, 30, 478–488.CrossRefGoogle Scholar
  48. García-Marcos, A., Pacheco, R., Manzano, A., Aguilar, E., & Tenllado, F. (2013). Oxylipin biosynthesis genes positively regulate programmed cell death during compatible infections with the synergistic pair potato virus X-potato virus Y and tomato spotted wilt virus. Journal of Virology, 87, 5769–5783.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Garg, I., & Hegde, V. (2000). Biological characterization, preservation and ultrastructural studies of Andean strain of potato virus S. Indian Phytopathology, 53, 256–260.Google Scholar
  50. Gerola, F., & Bassi, M. (1966). An electron microscopy study of leaf vein tumours from maize plants experimentally infected with maize rough dwarf virus. Caryologia, 19, 13–40.CrossRefGoogle Scholar
  51. Gerold, G., Bruening, J., & Pietschmann, T. (2016). Decoding protein networks during virus entry by quantitative proteomics. Virus Research, 218, 25–39.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Giribaldi, M., Purrotti, M., Pacifico, D., Santini, D., Mannini, F., Caciagli, P., Rolle, L., Cavallarin, L., Giuffrida, M. G., & Marzachì, C. (2011). A multidisciplinary study on the effects of phloem-limited viruses on the agronomical performance and berry quality of Vitis vinifera cv. Nebbiolo. Journal of Proteomics, 75(1), 306–315.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Gröning, B. R., Abouzid, A., & Jeske, H. (1987). Single-stranded DNA from abutilon mosaic virus is present in the plastids of infected Abutilon sellovianum. Proceedings of the National Academy of Sciences U. S. A, 84, 8996–9000.CrossRefGoogle Scholar
  54. Gruhler, A., Olsen, J. V., Mohammed, S., Mortensen, P., Faergeman, N. J., Mann, M., & Jensen, O. N. (2005). Quantitative phosphoproteomics applied to the yeast pheromone signalling pathway. Molecular & Cellular Proteomics, 4(2005), 310–327.CrossRefGoogle Scholar
  55. Gudleski-O’Regan, N., Greco, T. M., Cristea, I. M., & Shenk, T. (2012). Increased expression of LDL receptor-related protein 1 during human cytomegalovirus infection reduces virion cholesterol and infectivity. Cell Host & Microbe, 12, 86–96.CrossRefGoogle Scholar
  56. Guo, X., Zhu, X., Zhang, J., & Guo, Y. (2004). Changes of cell ultrastructure of maize leaves infected by maize dwarf mosaic virus. Scientia Agricultura Sinica, 37, 72–75.Google Scholar
  57. Haagmans, B. L., Andeweg, A. C., & Osterhaus, A. D. M. E. (2009). The application of genomics to emerging zoonotic viral diseases. PLoS Pathogens, 5, e1000557.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Harries, P. A., Palanichelvam, K., Yu, W., Schoelz, J. E., & Nelson, R. S. (2009). The cauliflower mosaic virus protein P6 forms motile inclusions that traffic along actin microfilaments and stabilize microtubules. Plant Physiology, 149, 1005–1016.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Hatta, T., & Matthews, R. E. F. (1974). The sequence of early cytological changes in Chinese cabbage leaf cells following systemic infection with turnip yellow mosaic virus. Virology, 59, 383–396.CrossRefGoogle Scholar
  60. Hernández, J. A., Díaz-Vivancos, P., Rubio, M., Olmos, E., Ros-Barceló, A., & Martínez-Gómez, P. (2006). Long-term plum pox virus infection produces an oxidative stress in a susceptible apricot, Prunus armeniaca, cultivar but not in a resistant cultivar. Plant Physiology, 126, 140–152.CrossRefGoogle Scholar
  61. Hohn, T., Fütterer, J., & Hull, R. (1997). The proteins and functions of plant pararetroviruses: Knowns and unknowns. Critical Reviewsin Plant Sciences, 16, 133–161.CrossRefGoogle Scholar
  62. Holmes, F. O. (1931). Local lesions of mosaic in Nicotiana tabacum L. Contrib Boyce Thompson Inst, 3, 163–172.Google Scholar
  63. Holmes, E. C. (2007). Viral evolution in the genomic age. PLoS Biology, 5(10), e278.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Horner, S. M., Wilkins, C., Badil, S., Iskarpatyoti, J., & Gale, M., Jr. (2015). Proteomic analysis of mitochondrion-associated ER membranes (MAM) during RNA virus infection reveals dynamic changes in protein and organelle trafficking. PLoSOne, 10, e0117963.CrossRefGoogle Scholar
  65. Huh, S. U., Kim, M. J., Ham, B. K., & Paek, K. H. (2011). A zinc finger protein Tsip1 controls cucumber mosaic virus infection by interacting with the replication complex on vacuolar membranes of the tobacco plant. New Phytologist, 191, 746–762.CrossRefPubMedGoogle Scholar
  66. Jakubiec, A., Notaise, J., Tournier, V., Hericourt, F., Block, M. A., Drugeon, G., van Aelst, L., & Jupin, I. (2004). Assembly of turnip yellow mosaic virus replication complexes: Interaction between the proteinase and polymerase domains of the replication proteins. Journal of Virology, 78(15), 7945–7957.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Jang, C., Seo, E. Y., Nam, J., Bae, H., Gim, Y. G., Kim, H. G., Cho, I. S., Lee, Z. W., Bauchan, G. R., Hammond, J., & Lin, H. S. (2013). Insights into alternanthera mosaic virus TGB3 functions: Interactions with Nicotiana benthamiana PsbO correlate with chloroplast vesiculation and veinal necrosis caused by TGB3 over-expression. Frontier in Plant Science, 4, 5.Google Scholar
  68. Jean Beltran, P. M., Mathias, R. A., & Cristea, I. M. (2016). A portrait of the human organelle proteome in space and time during cytomegalovirus infection. Cell Systems, 3, 361–373.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Jean Beltran, P. M., Cook, K. C., & Cristea, I. M. (2017). Exploring and exploiting proteome organization during viral infection. Journal of Virology, 91(18), e00268–e00217.CrossRefPubMedPubMedCentralGoogle Scholar
  70. Jimenez, I., Lopez, L., Alamillo, J. M., Valli, A., & Garcia, J. A. (2006). Identification of a plum pox virus CI-interacting protein from chloroplast that has a negative effect in virus infection. Molecular Plant-Microbe Interactions, 19, 350–358.CrossRefPubMedPubMedCentralGoogle Scholar
  71. Jin, Y., Ma, D., Dong, J., Li, D., Deng, C., Jin, J., & Wang, T. (2007). The HC-pro protein of potatovirus Y interacts with NtMinD of tobacco. Molecular Plant-Microbe Interactions, 20, 1505–1511.CrossRefPubMedGoogle Scholar
  72. Jin, X., Jiang, Z., Zhang, K., Wang, P., Cao, X., Yue, N., Wang, X., Zhang, X., Li, Y., Li, D., Kang, B. H., & Zhang, Y. (2018). Three-dimensional analysis of chloroplast structures associated with virus infection. Plant Physiology, 176, 1–13.CrossRefGoogle Scholar
  73. Kaido, M., Abe, K., Mine, A., Hyodo, K., Taniguchi, T., Taniguchi, H., Mise, K., & Okuno, T. (2014). Gapdh-A recruits a plant virus movement protein to cortical virus replication complexes to facilitate viral cell-to-cell movement. PLoS Pathogens, 10, e1004505.CrossRefPubMedPubMedCentralGoogle Scholar
  74. Kitajima, E., & Costa, A. (1973). Aggregates of chloroplasts in local lesions induced in Chenopodium quinoa wild by turnip mosaic virus. Journal of General Virology, 20, 413–416.CrossRefGoogle Scholar
  75. Kleffmann, T., Russenberger, D., von Zychlinski, A., Christopher, W., Sjolander, K., Gruissem, W., & Baginsky, S. (2004). The Arabidopsis thaliana chloroplast proteome reveals pathway abundance and novel protein functions. Current Biology, 14, 354–362.CrossRefPubMedGoogle Scholar
  76. Kong, L., Wu, J., Lu, L., Xu, Y., & Zhou, X. (2014). Interaction between rice stripe virus disease-specific protein and host PsbP enhances virus symptoms. Molecular Plant, 7, 691–708.CrossRefPubMedGoogle Scholar
  77. Kozar, F. E., & Sheludko, Y. M. (1969). Ultrastructure of potato and Datura stramonium plant cells infected with Potato virus X. Virology, 38, 220–229.CrossRefPubMedGoogle Scholar
  78. Kozuleva, M., Klenina, I., Proskuryakov, I., Kirilyuk, I., & Ivanov, B. (2011). Production of superoxide in chloroplast thylakoid membranes. FEBS Letters, 585, 1067–1071.CrossRefPubMedGoogle Scholar
  79. Krenz, B., Windeisen, V., Wege, C., Jeske, H., & Kleinow, T. (2010). A plastid-targeted heat shock cognate 70kDa protein interacts with the abutilon mosaic virus movement protein. Virology, 401, 6–17.CrossRefPubMedGoogle Scholar
  80. Krenz, B., Jeske, H., & Kleinow, T. (2012). The induction of stromule formation by a plant DNA-virus in epidermal leaf tissues suggests a novel intra- and intercellular macromolecular trafficking route. Frontiers in Plant Science, 3(29), 1–12.Google Scholar
  81. Kumar, A., Kumar, J., Khan, Z. A., Yadav, N., Sinha, V., Bhatnagar, D., & Khan, J. A. (2010). Study of betasatellite molecule from leaf curl disease of sunn hemp (Crotalaria juncea) in India. Virus Genes, 41, 432–440.CrossRefPubMedGoogle Scholar
  82. Kundu, S., Chakraborty, D., & Pal, A. (2011). Proteomic analysis of salicylic acid induced resistance to Mungbean Yellow Mosaic India Virus in Vigna mungo. Journal of Proteomics, 74(3), 337–349.CrossRefPubMedGoogle Scholar
  83. Larson, R. L., Wintermantel, W. M., Hill, A., Fortis, L., & Nunez, A. (2008). Proteome changes in sugar beet in response to Beet necrotic yellow vein virus. Physiological and Molecular Plant Pathology, 72(1–3), 62–72.CrossRefGoogle Scholar
  84. Lee, B. J., Kwon, S. J., Kim, S. K., Kim, K. J., Park, C. J., Kim, Y. J., Park, O. K., & Paek, K. H. (2006). Functional study of hot pepper 26S proteasome subunit RPN7 induced by Tobacco mosaic virus from nuclear proteome analysis. Biochemical and Biophysical Research Communications, 351(2), 405–411.CrossRefPubMedGoogle Scholar
  85. Lehto, K., Tikkanen, M., Hiriart, J. B., Paakkarinen, V., & Aro, E. M. (2003). Depletion of the photosystem II core complex in mature tobacco leaves infected by the flavum strain of tobacco mosaic virus. Molecular Plant-Microbe Interactions, 16, 1135–1144.CrossRefPubMedGoogle Scholar
  86. Lei, R., Du, Z., Kong, J., Li, G., He, Y., Qiu, Y., Yan, J., & Zhu, S. (2018). Blue native/SDS-PAGE and iTRAQ-based chloroplasts proteomics analysis of Nicotianatabacum leaves infected with M Strain of Cucumber Mosaic Virus reveals several proteins involved in chlorosis symptoms. Proteomics, 18(2).
  87. Li, Y., Wu, M. Y., Song, H. H., Hu, X., & Qiu, B. S. (2005). Identification of a tobacco protein interacting with tomato mosaic virus coat protein and facilitating long-distance movement of virus. Archives of Virology, 150, 1993–2008.CrossRefPubMedGoogle Scholar
  88. Li, Y. H., Hong, J., Xue, L., Yang, Y., Zhou, X. P., & Jiang, D. A. (2006). Effects of broad bean wilt virus 2 isolate infection on photosynthetic activities and chloroplast ultrastructure in broad bean leaves. Acta Phytophysiologica Sinica, 4, 490–496.Google Scholar
  89. Li, Z., Barajas, D., Panavas, T., Herbst, D. A., & Nagy, P. D. (2008). Cdc34p ubiquitin-conjugating enzyme is a component of the tombusvirus replicase complex and ubiquitinates p33 replication protein. Journal of Virology, 82(14), 6911–6926.CrossRefPubMedPubMedCentralGoogle Scholar
  90. Li, Z., Pogany, J., Panavas, T., Xu, K., Esposito, A. M., Kinzy, T. G., & Nagy, P. D. (2009). Translation elongation factor 1A is a component of the tombusvirus replicase complex and affects the stability of the p33 replication co-factor. Virology, 385(1), 245–260.CrossRefPubMedPubMedCentralGoogle Scholar
  91. Li, K., Xu, C., & Zhang, J. (2011). Proteome profile of maize (Zea Mays L.) leaf tissue at the flowering stage after long-term adjustment to rice black-streaked dwarf virus infection. Gene, 485(2), 106–113.CrossRefPubMedGoogle Scholar
  92. Lim, H. S., Vaira, A. M., Bae, H., Bragg, J. N., Ruzin, S. E., Bauchan, G. R., Dienelt, M. M., Owens, R. A., & Hammond, J. (2010). Mutation of a chloroplast-targeting signal in Alternanthera mosaic virus TGB3 impairs cell-to-cell movement and eliminates long-distance virus movement. Journal of General Virology, 91, 2102–2115.CrossRefPubMedGoogle Scholar
  93. Lisal, J., Lam, T. T., Kainov, D. E., Emmett, M. R., Marshall, A. G., & Tuma, R. (2005). Functional visualization of viral molecular motor by hydrogen-deuterium exchange reveals transient states. Nature Structural & Molecular Biology, 12, 460–466.CrossRefGoogle Scholar
  94. Liu, K. C., & Boyle, J. S. (1972). Intracellular morphology of two tobacco mosaic virus strains in, and cytological responses of, systemically susceptible potato plants. Phytopathology, 62, 1303–1311.CrossRefGoogle Scholar
  95. Liu, L., Chung, H., Lacatus, G., Baliji, S., Ruan, J., & Sunter, G. (2014). Altered expression of 829 Arabidopsis genes in response to a multifunctional geminivirus pathogenicity protein. BMC Plant Biology, 14, 302.CrossRefPubMedPubMedCentralGoogle Scholar
  96. Liu, W., Gray, S., Huo, Y., Li, L., Wei, T., & Wang, X. (2015). Proteomic analysis of interaction between a plant virus and its vector insect reveals new functions of hemipteran cuticular protein. Molecular & Cellular Proteomics, 14, 2229–2242.CrossRefGoogle Scholar
  97. Ma, Y., Zhou, T., Hong, Y., Fan, Z., & Li, H. (2008). Decreased level of ferredoxin I in tobacco mosaic virus-infected tobacco is associated with development of the mosaic symptom. Physiological and Molecular Plant Pathology, 72, 39–45.CrossRefGoogle Scholar
  98. Mahgoub, H. A., Wipf-Scheibel, C., Delécolle, B., Pitrat, M., Dafalla, G., & Lecoq, H. (1997). Melon rugose mosaic virus: Characterization of an isolate from Sudan and seed transmission in melon. Plant Disease, 81, 656–660.CrossRefPubMedGoogle Scholar
  99. Malter, D., & Wolf, S. (2011). Melon phloem-sap proteome: Developmental control and response to viral infection. Protoplasma, 248(1), 217–224.CrossRefPubMedGoogle Scholar
  100. Martelli, G. P., & Russo, M. (1973). Electron microscopy of artichoke mottled crinkle virus in leaves of Chenopodium quinoa Wild. Journal of Ultrastructure Research, 42, 93–107.CrossRefPubMedGoogle Scholar
  101. Maxwell, K. L., & Frappier, L. (2007). Viral proteomics. Microbiology and Molecular Biology Reviews, 71(2), 398–411.CrossRefPubMedPubMedCentralGoogle Scholar
  102. Mazidah, M., Lau, W. H., Yusoff, K., Habibuddin, H., & Tan, Y. H. (2012). Ultrastructural features of Catharanthus roseus leaves infected with cucumber mosaic virus. Pertanika Journal of Tropical Agricultural Science, 35, 85–92.Google Scholar
  103. McHardy, A. C., & Adams, B. (2009). The role of genomics in tracking the evolution of influenza a virus. PLoS Pathogens, 5(10), e1000566.CrossRefPubMedPubMedCentralGoogle Scholar
  104. McMullen, C., Gardner, W., & Myers, G. (1978). Aberrant plastids in barley leaf tissue infected with barley stripe mosaic virus. Phytopathology, 68, 317–325.CrossRefGoogle Scholar
  105. Mel’nichuk, M. D., Kozhukalo, V. E., D’Iachkova, O. A., Sytnik, S. K., Alekseenko, I. P., & Smirnova, S. A. (2002). Effect of tobacco mosaic virus on the ultrastructure of leaf mesophyll cells of the pepper Capsicuum anuum L. Mikrobiolohichnyĭ Zhurnal, 64, 35–40.PubMedGoogle Scholar
  106. Mochizuki, T., & Ohki, S. T. (2011). Single amino acid substitutions at residue 129 in the coat protein of cucumber mosaic virus affect symptom expression and thylakoid structure. Archivesof Virology, 156, 881–886.CrossRefGoogle Scholar
  107. Mochizuki, T., Yamazaki, R., Wada, T., & Ohki, S. T. (2014a). Coat protein mutations in an attenuated cucumber mosaic virus encoding mutant 2b protein that lacks RNA silencing suppressor activity induces chlorosis with photosynthesis gene repression and chloroplast abnormalities in infected tobacco plants. Virology, 456–457, 292–299.CrossRefPubMedGoogle Scholar
  108. Mochizuki, T., Ogata, Y., Hirata, Y., & Ohki, S. T. (2014b). Quantitative transcriptional changes associated with chlorosis severity in mosaic leaves of tobacco plants infected with Cucumber mosaic virus. Molecular Plant Pathology, 15, 242–254.CrossRefPubMedGoogle Scholar
  109. Mohamed, N. A. (1973). Some effects of systemic infection by tomato spotted wilt virus on chloroplasts of Nicotiana tabacum leaves. Physiological Plant Pathology, 3, 509–516.CrossRefGoogle Scholar
  110. Moline, H. E. (1973). Ultrastructure of Datura stramonium leaves infected with the physalis mottle strain of belladonna mottle virus. Virology, 56, 123–133.CrossRefPubMedGoogle Scholar
  111. Montasser, M., & Al-Ajmy, A. (2015). Histopathology for the influence of CMV infection on tomato cellular structures. FASEB Journal, 29(Suppl), 887.Google Scholar
  112. Naderi, M., & Beger, P. H. (1997). Effects of chloroplast targeted Potato virus Y coat protein on transgenic plants. Physiological and Molecular Plant Pathology, 50(2), 67–83.CrossRefGoogle Scholar
  113. Nagy, P. D., & Pogany, J. (2012). The dependence of viral RNA replication on co-opted host factors. Nature Reviews Microbiology, 10, 137–149.CrossRefGoogle Scholar
  114. Nambara, E., & Marion-Poll, A. (2005). Abscisic acid biosynthesis and catabolism. Annual Review of Plant Biology, 56, 165–185.CrossRefPubMedGoogle Scholar
  115. Nelson, R. S., & Citovsky, V. (2005). Plant viruses. Invaders of cells and pirates of cellular pathways. Plant Physiology, 138, 1809–1814.CrossRefPubMedPubMedCentralGoogle Scholar
  116. Ohnishi, J., Hirai, K., Kanda, A., Usugi, T., Meshi, T., & Tsuda, S. (2009). The coat protein of tomato mosaic virus L11Y is associated with virus-induced chlorosis on infected tobacco plants. Journal of General Plant Pathology, 75, 297–306.CrossRefGoogle Scholar
  117. Otulak, K., Chouda, M., Bujarski, J., & Garbaczewska, G. (2015). The evidence of tobacco rattle virus impact on host plant organelles ultrastructure. Micron, 70, 7–20.CrossRefPubMedGoogle Scholar
  118. Padmanabhan, M. S., & Dinesh-Kumar, S. P. (2010). All hands on deck-the role of chloroplasts, endoplasmic reticulum, and the nucleus in driving plant innate immunity. Molecular Plant-Microbe Interactions, 23, 1368–1380.CrossRefPubMedGoogle Scholar
  119. Panavas, T., Hawkins, C. M., Panaviene, Z., & Nagy, P. D. (2005). The role of the p33:p33/p92 interaction domain in RNA replication and intracellular localization of p33 and p92 proteins of Cucumber necrosis tombusvirus. Virology, 338, 81–95.CrossRefPubMedGoogle Scholar
  120. Pérez-Bueno, M. L., Rahoutei, J., Sajnani, C., García-Luque, I., & Barón, M. (2004). Proteomic analysis of the oxygen-evolving complex of photosystem II under biotec stress: Studies on Nicotiana benthamiana infected with tobamoviruses. Proteomics, 4(2), 418–425.CrossRefPubMedGoogle Scholar
  121. Pineda, M., Sajnani, C., & Barón, M. (2010). Changes induced by the Pepper mild mottle tobamovirus on the chloroplast proteome of Nicotiana benthamiana. Photosynthesis Research, 103(1), 31–45.CrossRefPubMedGoogle Scholar
  122. Pompe-Novak, M., Wrischer, M., & Ravnikar, M. (2001). Ultrastructure of chloroplasts in leaves of potato plants infected by potato virus YNTN. Phyton (Horn. Austria), 41, 215–226.Google Scholar
  123. Qiao, Y., Li, H. F., Wong, S. M., & Fan, Z. F. (2009). Plastocyanin transit peptide interacts with potato virus X coat protein, while silencing of plastocyanin reduces coat protein accumulation in chloroplasts and symptom severity in host plants. Molecular Plant Microbe Interactions, 22, 1523–1534.CrossRefPubMedGoogle Scholar
  124. Qiu, Y., Zhang, Y., Wang, C., Lei, R., Wu, Y., Li, X., & Zhu, S. (2018). Cucumber mosaic virus coat protein induces the development of chlorotic symptoms through interacting with the chloroplast ferredoxin I protein. Scientific Reports, 8, 1205.CrossRefPubMedPubMedCentralGoogle Scholar
  125. Radwan, D. E. M., Lu, G., Fayez, K. A., & Mahmoud, S. Y. (2008). Protective action of salicylic acid against bean yellow mosaic virus infection in Vicia faba leaves. Journal of Plant Physiology, 165, 845–857.CrossRefPubMedGoogle Scholar
  126. Rahoutei, J., García-Luque, I., & Barón, M. (2000). Inhibition of photosynthesis by viral infection: effect on PSII structure and function. Physiologia Plantarum, 110(2), 286–292.CrossRefGoogle Scholar
  127. Reimann-Philipp, U., & Beachy, R. N. (1993). Coat protein-mediated resistance in transgenic tobacco expressing the tobacco mosaic virus coat protein from tissue-specific promoters. Molecular Plant-Microbe Interactions, 6, 323–330.CrossRefPubMedGoogle Scholar
  128. Revers, F., Le Gall, O., Candresse, T., & Maule, A. J. (1999). New advances in understanding the molecular biology of plant/Potyvirus interactions. Molecular Plant Microbe Interactions, 12, 367–376.CrossRefGoogle Scholar
  129. Roberts, P. L., & Wood, K. R. (1982). Effects of a severe (P6) and a mild (W) strain of cucumber mosaic virus on tobacco leaf chlorophyll, starch and cell ultrastructure. Physiological Plant Pathology, 21, 31–37.CrossRefGoogle Scholar
  130. Rodrigo, G., Carrera, J., Ruiz-Ferrer, V., Del Toro, F. J., Llave, C., Voinnet, O., & Elena, S. F. A. (2012). Meta-analysis reveals the commonalities and differences in Arabidopsis thaliana response to different viral pathogens. PLoS One, 7, e40526.CrossRefPubMedPubMedCentralGoogle Scholar
  131. Rodrigues, S. P., Ventura, J. A., Aguilar, C., Nakayasu, E. S., Almeida, I. C., Fernandes, P. M., & Zingali, R. B. (2011). Proteomic analysis of papaya (Carica papaya L.) displaying typical sticky disease symptoms. Proteomics, 11(13), 2592–2602.CrossRefPubMedGoogle Scholar
  132. Rodrigues, S. P., Ventura, J. A., Aguilar, C., Nakayasu, E. S., Choi, H., Sobreira, T. J., Nohara, L. L., Wermelinger, L. S., Almeida, I. C., Zingali, R. B., & Fernandes, P. M. (2012). Label-free quantitative proteomics reveals differentially regulated proteins in the latex of sticky diseased Carica papaya L. plants. Journal of Proteomics, 75(11), 3191–3198.CrossRefPubMedPubMedCentralGoogle Scholar
  133. Rodriguez, A., Angel, C. A., Lutz, L., Leisner, S. M., Nelson, R. S., & Schoelz, J. E. (2014). Association of the P6 protein of Cauliflower mosaic virus with plasmodesmata and plasmodesmal proteins. Plant Physiology, 166, 1–14.CrossRefGoogle Scholar
  134. Roossinck, M. J., Martin, D. P., & Roumagnac, P. (2015). Plant virus metagenomics: Advances in virus discovery. Phytopathology, 105, 716–727.CrossRefPubMedPubMedCentralGoogle Scholar
  135. Schnablová, R., Synková, H., & Čeřovská, N. (2005). The influence of potato virus Y infection on the ultrastructure of Pssuipt transgenic tobacco. International Journal of Plant Sciences, 166, 713–721.CrossRefGoogle Scholar
  136. Schoelz, J. E., & Leisner, S. (2017). Setting up shop: The formation and function of the viral factories of Cauliflower mosaic virus. Frontiers of Plant Science, 8, 1832.CrossRefGoogle Scholar
  137. Schuchalter-Eicke, G., & Jeske, H. (1983). Seasonal changes in the chloroplast ultrastructure in Abutilon mosaic virus (AbMV) infected Abutilon spec. (Malvaceae). Journal of Phytopathology, 108, 172–184.CrossRefGoogle Scholar
  138. Serrano, I., Audran, C., & Rivas, S. (2016). Chloroplasts at work during plant innate immunity. Journal of Experimental Botany, 67(13), 3845–3854.CrossRefPubMedPubMedCentralGoogle Scholar
  139. Seyfferth, C., & Tsuda, K. (2014). Salicylic acid signal transduction: The initiation of biosynthesis, perception and transcriptional reprogramming. Frontiers in Plant Science, 5, 697.CrossRefPubMedPubMedCentralGoogle Scholar
  140. Shalla, T. A. (1964). Assembly and aggregation of tobacco mosaic virus in tomato leaflets. Journal of Cell Biology, 21, 253–264.CrossRefPubMedPubMedCentralGoogle Scholar
  141. Shi, Y., Chen, J., Hong, X., Chen, J., & Adams, M. J. (2007). A potyvirus P1 protein interacts with the Rieske Fe/S protein of its host. Molecular Plant Pathology, 8, 785–790.CrossRefGoogle Scholar
  142. Shimura, H., Pantaleo, V., Ishihara, T., Myojo, N., Inaba, J.-I., Sueda, K., Burgyan, J., & Masuta, C. (2011). A viral satellite RNA induces yellow symptoms on tobacco by targeting a gene involved in chlorophyll biosynthesis using the RNA silencing machinery. PLoS Pathogens, 7, e1002021.CrossRefPubMedPubMedCentralGoogle Scholar
  143. Shukla, D. D., Ward, C. W., & Brunt, A. A. (1994). The Potyviridae. Cambridge: CAB International, University Press.Google Scholar
  144. Smith, N. A., Eamens, A. L., & Wang, M. B. (2011). Viral small interfering RNAs target host genes to mediate disease symptoms in plants. PLoS Pathogens, 7, e1002022.CrossRefPubMedPubMedCentralGoogle Scholar
  145. Stael, S., Kmiecik, P., Willems, P., Van Der Kelen, K., Coll, N. S., Teige, M., & Van Breusegem, F. (2015). Plant innate immunity-sunny side up? Trends in Plant Science, 20, 3–11.CrossRefPubMedGoogle Scholar
  146. Stobbe, A. H., & Roossinck, M. J. (2014). Plant virus metagenomics: What we know and why we need to know more. Frontiers of Plant Science, 5, 150.CrossRefGoogle Scholar
  147. Sun, X., Li, Y., Shi, M., Zhang, N., Wu, G., Li, T., Qing, L., & Zhou, C. (2013). In vitro binding and bimolecular fluorescence complementation assays suggest an interaction between tomato mosaic virus coat protein and tobacco chloroplast ferredoxin I. Archives of Virology, 158, 2611–2615.CrossRefPubMedGoogle Scholar
  148. Thivierge, K., Cotton, S., Dufresne, P. J., Mathieu, I., Beauchemin, C., Ide, C., Fortin, M. G., & Laliberté, J. F. (2008). Eukaryotic elongation factor 1A interacts with Turnip mosaic virus RNA-dependent RNA polymerase and VPg-Pro in virus-induced vesicles. Virology, 377(1), 216–225.CrossRefPubMedGoogle Scholar
  149. Tomlinson, J. A., & Webb, M. J. W. (1978). Ultrastructural changes in chloroplasts of lettuce infected with beet western yellows virus. Physiological Plant Pathology, 12, 13–18.CrossRefGoogle Scholar
  150. Torrance, L., Cowan, G. H., Gillespie, T., Ziegler, A., & Lacomme, C. (2006). Barley stripe mosaic virus-encoded proteins triple-gene block 2 and γb localize to chloroplasts in virus-infected monocot and dicot plants, revealing hitherto-unknown roles in virus replication. Journal of General Virology, 87, 2403–2411.CrossRefPubMedPubMedCentralGoogle Scholar
  151. Torres, M. A., Jones, J. D. G., & Dangl, J. L. (2006). Reactive oxygen species signaling in response to pathogens. Plant Physiology, 141, 373–378.CrossRefPubMedPubMedCentralGoogle Scholar
  152. Tu, Y., Jin, Y., Ma, D., Li, H., Zhang, Z., Dong, J., & Wang, T. (2015). Interaction between PVY HC-Pro and the NtCF1β-subunit reduces the amount of chloroplast ATP synthase in virus-infected tobacco. Scientific Reports, 5, 15605.CrossRefPubMedPubMedCentralGoogle Scholar
  153. Ushiyama, R., & Matthews, R. E. F. (1970). The significance of chloroplast abnormalities associated with infection by turnip yellow mosaic virus. Virology, 42, 293–303.CrossRefPubMedPubMedCentralGoogle Scholar
  154. Varjak, M., Saul, S., Arike, L., Lulla, A., Peil, L., & Merits, A. (2013). Magnetic fractionation and proteomic dissection of cellular organelles occupied by the late replication complexes of Semliki Forest virus. Journal of Virology, 87, 10295–10312.CrossRefPubMedPubMedCentralGoogle Scholar
  155. Ventelon-Debout, M., Delalande, F., Brizard, J. P., Diemer, H., Van Dorsselaer, A., & Brugidou, C. (2004). Proteome analysis of cultivar-specific deregulations of Oryza sativa indica and O. sativa japonica cellular suspensions undergoing rice yellow mottle virus infection. Proteomics, 4(1), 216–225.CrossRefGoogle Scholar
  156. Visser, M., Cook, G., Burger, J. T., & Maree, H. J. (2017). In silico analysis of the grapefruit sRNAome, transcriptome and gene regulation in response to CTV-CDVd co-infection. Virology Journal, 14, 200.CrossRefPubMedPubMedCentralGoogle Scholar
  157. Wasternack, C., & Hause, B. (2013). Jasmonates: Biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Annals of Botany, 111, 1021–1058.CrossRefPubMedPubMedCentralGoogle Scholar
  158. Wei, T., Huang, T.-S., McNeil, J., Laliberté, J.-F., Hong, J., Nelson, R. S., & Wang, A. (2010). Sequential recruitment of the endoplasmic reticulum and chloroplasts for plant potyvirus replication. Journal of Virology, 84, 799–809.CrossRefGoogle Scholar
  159. Wei, T., Zhang, C., Hou, X., Sanfaçon, H., & Wang, A. (2013). The SNARE protein Syp 71 is essential for Turnip Mosaic Virus infection by mediating fusion of virus-induced vesicles with chloroplasts. PLoS Pathogens, 9(5), e1003378.CrossRefPubMedPubMedCentralGoogle Scholar
  160. Wildermuth, M. C., Dewdney, J., Wu, G., & Ausubel, F. M. (2001). Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature, 414, 562–565.CrossRefGoogle Scholar
  161. Wisniewski, L. A., Powell, P. A., Nelson, R. S., & Beachy, R. N. (1990). Local and systemic spread of tobacco mosaic virus in transgenic tobacco. Plant Cell, 2, 559–567.PubMedPubMedCentralGoogle Scholar
  162. Wolf, S., Lucas, W. J., Deom, C. M., & Beachy, R. N. (1989). Movement protein of tobacco mosaic virus modifies plasmodesmatal size exclusion limit. Science, 246, 377–379.CrossRefGoogle Scholar
  163. Wu, L., Han, Z., Wang, S., Wang, X., Sun, A., Zu, X., & Chen, Y. (2013). Comparative proteomic analysis of the plant-virus interaction in resistant and susceptible ecotypes of maize infected with sugarcane mosaic virus. Journal of Proteomics, 26(89), 124–140.Google Scholar
  164. Xu, J., & Feng, M. (1998). Ultrastructural differences of RMV and TMV infected Nicotiana tabacum mesophyll cells for distinguishing virus strains. Acta Microbiologica Sinica, 38, 422–427.PubMedGoogle Scholar
  165. Yadav, S., & Chhibbar, A. K. (2018). Plant virus interactions. In A. Singh & I. Singh (Eds.), Molecular aspects of plant-pathogen interaction (pp. 43–77). Singapore: Springer.CrossRefGoogle Scholar
  166. Yadav, N., & Khan, J. A. (2008). Identification of a potyvirus associated with mosaic disease of Narcissus sp. in India. Plant Pathology, 57, 394.CrossRefGoogle Scholar
  167. Yadav, N., & Khan, J. A. (2015). Molecular identification of a new strain Narcissus yellow stripe virus strain associated with severe mosaic disease of Narcissus from India. Indian Phytopathology, 68(4), 444–448.Google Scholar
  168. Yadav, N., & Khurana, S. M. P. (2016). Plant virus detection and diagnosis: Progress and challenges. In P. Shukla (Ed.), Frontier discoveries and innovations in interdisciplinary microbiology (pp. 97–132). New Delhi: Springer.Google Scholar
  169. Yadav, N., Khurana, S. M. P., & Yadav, D. K. (2015a). Plant secretomics: Unique initiatives. In D. Barh, M. S. Khan, & E. Davies (Eds.), Plant Omics: The Omics of plant science (pp. 358–384). New Delhi: Springer.Google Scholar
  170. Yadav, S., Yadav, D. K., Yadav, N., & Khurana, S. M. P. (2015b). Plant glycomics: Advances and applications. In D. Barh, M. S. Khan, & E. Davies (Eds.), Plant Omics: The Omics of plant science (pp. 299–329). New Delhi: Springer Publisher.Google Scholar
  171. Yadav, D. K., Yadav, N., Yadav, S., Haque, S., & Tuteja, N. (2016). An insight into fusion technology aiding efficient recombinant protein production for functional proteomics. Archives of Biochemistry and Biophysics, 612, 57–77.CrossRefGoogle Scholar
  172. Yan, S. L., Lehrer, A. T., Hajirezaei, M. R., Springer, A., & Komor, E. (2008). Modulation of carbohydrate metabolism and chloroplast structure in sugarcane leaves which were infected by sugarcane yellow leaf virus (SCYLV). Physiological and Molecular Plant Pathology, 73, 78–87.CrossRefGoogle Scholar
  173. Yang, C., Guo, R., Jie, F., Nettleton, D., Peng, J., Carr, T., Yeakley, J. M., Fan, J. B., & Whitham, S. A. (2007). Spatial analysis of Arabidopsis thaliana gene expression in response to Turnip mosaic virus infection. Molecular Plant Microbe Interactions, 20, 358–370.CrossRefGoogle Scholar
  174. Yang, Y., Qiang, X., Owsiany, K., Zhang, S., Thannhauser, T. W., & Li, L. J. (2011). Evaluation of different multidimensional LC-MS/MS pipelines for isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic analysis of potato tubers in response to cold storage. Journal of Proteome Research, 10(10), 4647–4660.CrossRefGoogle Scholar
  175. Yang, J., Zhang, F., Li, J., Chen, J.-P., & Zhang, H.-M. (2016). Integrative analysis of the micro RNAome and transcriptome illuminates the response of susceptible rice plants to Rice stripe virus. PLoS One, 11(1), e0146946.CrossRefPubMedPubMedCentralGoogle Scholar
  176. Zarzyńska-Nowak, A., Jeżewska, M., Hasiów-Jaroszewska, B., & Zielińska, L. (2015). A comparison of ultrastructural changes of barley cells infected with mild and aggressive isolates of barley stripe mosaic virus. Journal of Plant Diseases and Protection, 122, 153–160.CrossRefGoogle Scholar
  177. Zechmann, B., Müller, M., & Zellnig, G. (2003). Cytological modifications in zucchini yellow mosaic virus (ZYMV)-infected Styrian pumpkin plants. Archives of Virology, 148, 1119–1133.CrossRefGoogle Scholar
  178. Zhang, C., Liu, Y., Sun, X., Qian, W., Zhang, D., & Qiu, B. (2008). Characterization of a specific interaction between IP-L, a tobacco protein localized in the thylakoid membranes, and tomato mosaic virus coat protein. Biochemical and Biophysical Research Communications, 374, 253–257.CrossRefPubMedGoogle Scholar
  179. Zhao, J., Liu, Q., Zhang, H., Jia, Q., Hong, Y., & Liu, Y. (2013). The RubisCO small subunit is involved in Tobamovirus movement and Tm-22-mediated extreme resistance. Plant Physiology, 161, 374–383.CrossRefGoogle Scholar
  180. Zhao, J., Zhang, X., Hong, Y., & Liu, Y. (2016a). Chloroplast in plant-virus interaction. Frontiers in Microbiology, 7, 1565.PubMedPubMedCentralGoogle Scholar
  181. Zhao, W., Yang, P., Kang, L., & Cui, F. (2016b). Different pathogenicities of Rice stripe virus from the insect vector and from viruliferous plants. New Phytologist, 210, 196–207.CrossRefPubMedGoogle Scholar
  182. Zheng, J., Tan, B. H., Sugrue, R., & Tang, K. (2012). Current approaches on viral infection: Proteomics and functional validations. Frontiers in Microbiology, 3(393), 1–14.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Neelam Yadav
    • 1
  • Dinesh Kumar Yadav
    • 1
  • Sarika Yadav
    • 2
  • S. M. Paul Khurana
    • 3
  1. 1.Department of BotanyUniversity of AllahabadAllahabadIndia
  2. 2.Department of Biochemistry, Sri Venkateshawara CollegeUniversity of DelhiNew DelhiIndia
  3. 3.Amity Institute of BiotechnologyAmity UniversityGurgaonIndia

Personalised recommendations