Advertisement

Post-transcriptional Gene Silencing as a Tool for Controlling Viruses in Plants

  • Nikolay M. PetrovEmail author
  • Mariya I. Stoyanova
  • R. K. Gaur
Chapter

Abstract

RNA gene silencing is a mechanism for gene regulation, which limits transcription level by suppression of transcription (transcriptional gene silencing, TGS) or by activation of a process of degradation of specific RNA sequence (post-transcriptional gene silencing, PTGS), known also as RNA interference (RNAi). RNA interference was observed for the first time by chance during 1990, when in an attempt for over-expression of the chalcone synthase gene in petunias by insertion of its chimeric duplicate, the result was just the opposite – blocking of anthocyanin biosynthesis. After 16 years of experiments, the significance of this phenomenon has grown so much, that a Nobel Prize was awarded to Fire and Mello for its discovery. This chapter presents a retrospection of RNA gene silencing, its mechanism of action, corresponding participants, role in plants, and possible applications with a focus on the perspectives for utilizing this mechanism as a tool for control of viruses in plants.

Keywords

RNA interference RNA gene silencing Post-transcriptional gene silencing PTGS RNAi Classes of RNAs Virus control 

References

  1. Agrawal, N., Dasaradhi, P. V. N., Mohommed, A., Malhotra, P., Bhatnagar, R. K., & Mukherjee, S. K. (2003). RNA interference: Biology, mechanism and applications. Microbiology and Molecular Biology Reviews, 67, 657–685.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Aigner, A. (2006). Gene silencing through RNA interference (RNAi) in vivo: Strategies based on the direct application of siRNAs. Journal of Biotechnology, 124, 12–25.CrossRefPubMedGoogle Scholar
  3. Ambros, V., Lee, R. C., Lavanway, A., Williams, P. T., & Jewell, D. (2003). MicroRNAs and other tiny endogenous RNAs in C. elegans. Current Biology, 13, 807–818.CrossRefPubMedGoogle Scholar
  4. Aravin, A., & Tuschl, T. (2005). Identification and characterization of small RNAs involved in RNA silencing. FEBS, 579, 5830–5840.CrossRefGoogle Scholar
  5. Aravin, A. A., Sachidanandam, R., Bourc'his, D., Schaefer, C., Pezic, D., Toth, K. F., Bestor, T., & Hannon, G. J. (2008). A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice. Molecular Cell, 31(6), 785–799.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Arenz, C., & Schepers, U. (2003). RNA interference: From an ancient mechanism to a state of the art therapeutic application? Naturwissenschaften, 90, 345–359.CrossRefPubMedGoogle Scholar
  7. Axtell, M. J., & Bartel, D. P. (2005). Antiquity of microRNAs and their targets in land plants. Plant Cell, 17(6), 1658–1673.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bartel, D. P. (2004). MicroRNAs: Genomics, biogenesis, mechanism and function. Cell, 116, 281–297.CrossRefPubMedGoogle Scholar
  9. Baulcombe, D. C. (2000). Molecular biology. Unwinding RNA silencing. Science, 290, 1108–1109.CrossRefPubMedGoogle Scholar
  10. Baulcombe, D. C. (2002). RNA silencing. Current Biology, 12, 82–84.CrossRefGoogle Scholar
  11. Baulcombe, D. C. (2004). RNA silencing in plants. Nature, 431, 356–363.CrossRefPubMedGoogle Scholar
  12. Baumberger, N., & Baulcombe, D. C. (2005). Arabidopsis Argonaute1 is a RNA slicer that selectively recruits miRNAs and siRNAs. Proceedings of the National Academy of Sciences of the United States of America, 102, 11928–11933.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Bernstein, E., Caudy, A. A., Hammond, S. M., & Hannon, G. J. (2001). Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature, 409, 363–369.CrossRefGoogle Scholar
  14. Boerjan, W., Bauw, G., van Montagu, M., & Inze, D. (1994). Distinct phenotypes generated by overexpression and suppression of S-adenosyl-L-methionine synthetase reveal developmental patterns of gene silencing in tobacco. Plant Cell, 6, 1401–1414.PubMedPubMedCentralGoogle Scholar
  15. Boutet, S., Vazquez, F., Liu, J., Beclin, C., Fagard, M., Gratias, A., Morel, J. B., Crete, P., Chen, X., & Vaucheret, H. (2003). Arabidopsis HEN1: A genetic link between endogenous miRNA controlling development and siRNA controlling transgene silencing and virus resistance. Current Biology, 13, 843–848.CrossRefPubMedGoogle Scholar
  16. Braunstein, T. H., Moury, B., Johannessen, M., & Albrechtsen, M. (2002). Specific degradation of 3′ regions of GUS mRNA in post-transcriptionally silenced tobacco lines may be related to 5′-3′ spreading of silencing. RNA, 8, 1034–1044.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Brummell, D. A., Balint-Kurti, P. J., Hapster, M. H., Palys, J. M., Oeller, P. W., & Gutterson, N. (2003). Inverted repeat of a heterologous 3′-untranslated region for high-efficiency, high-throughput gene silencing. The Plant Journal, 33, 793–800.CrossRefPubMedGoogle Scholar
  18. Burgyan, J., & Havelda, Z. (2011). Viral suppressors of RNA silencing. Trends in Plant Science, 16, 265–272.CrossRefPubMedGoogle Scholar
  19. Chen, W., Zhang, X., Fan, Y., Li, B., Ryabov, E., Shi, N., Zhao, M., Yu, Z., Qin, C., Zheng, Q., Zhang, P., Wang, H., Jackson, S., Cheng, Q., Liu, Y., Gallusci, P., & Hong, Y. (2018). A genetic network for systemic RNA silencing in plants. Plant Physiology, 176(4), 2700–2719.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Cogoni, C., Irelan, J. T., Schumacher, M., Schmidhauser, T. J., Selker, E. U., & Macino, G. (1996). Transgene silencing of the al-1 gene in vegetative cells of Neurospora is mediated by a cytoplasmic effector and does not depend on DNA-DNA interactions or DNA methylation. The EMBO Journal, 15, 3153–3163.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Deleris, A., Gallego-Bartolome, J., Bao, J., Kasschau, K. D., Carrington, J. C., & Voinnet, O. (2006). Hierarchical action and inhibition of plant dicer-like proteins in antiviral defense. Science, 313, 68–71.CrossRefPubMedGoogle Scholar
  22. Denli, A. M., & Hannon, G. J. (2003). RNAi: An ever-growing puzzle. TRENDS in Biochemical Science, 28, 196–201.CrossRefGoogle Scholar
  23. Depicker, A., & Van Montagu, M. (2003). Posttranscriptional gene silencing in plants. Current Opinion in Cell Biology, 9, 373–382.CrossRefGoogle Scholar
  24. Dhakar, K., Gupta, V., Rathore, M., & Gaur, R. (2010). Virus resistance and gene silencing in plants infected with Begomovirus. Journal of Applied Sciences, 10(16), 1787–1791.CrossRefGoogle Scholar
  25. Dorner, S., Eulalio, A., Huntzinger, E., & Izaurralde, E. (2007). Symposium on MicroRNAs and siRNAs: Biological functions and mechanisms. The EMBO Journal, 8, 723–729.CrossRefGoogle Scholar
  26. Dunoyer, P., Himber, C., & Voinnet, O. (2005). Dicer-like 4 is required for RNA interference and produces the 21-nucleotide small interfering RNA component of the plant cell-to-cell silencing signal. Nature Genetics, 37, 1356–1360.CrossRefPubMedGoogle Scholar
  27. Eamens, A., Wang, M.-B., Smith, N. A., & Waterhouse, P. M. (2008). RNA silencing in plants: Yesterday, today, and tomorrow. Plant Physiology, 147, 456–468.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Elbashir, S. M., Martinez, J., Patkaniowska, A., Lendeckerl, W., & Tuschl, T. (2001). Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. The EMBO Journal, 20, 6877–6888.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Faehnle, C. R., & Joshua-Tor, L. (2007). Argonautes confront new small RNAs. Current Opinion in Chemical Biology, 11(5), 569–577.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Fagard, M., & Vaucheret, H. (2000). Systemic silencing signal(s). Plant Molecular Biology, 43, 285–293.CrossRefGoogle Scholar
  31. Fire, A., S, X., Montgomery, M. K., Kostas, S. A., Driver, S. E., & Mello, C. C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391, 806–811.CrossRefGoogle Scholar
  32. Friedman, R. C., Farh, K. K., Burge, C. B., & Bartel, D. P. (2009). Most mammalian mRNAs are conserved targets of microRNAs. Genome Research, 19(1), 92–105.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Gasciolli, V., Mallory, A. C., Bartel, D. P., & Vaucheret, H. (2005). Partially redundant functions of Arabidopsis dicer-like enzymes and a role for dcl4 in producing trans- acting siRNAs. Current Biology, 15, 1494–1500.CrossRefGoogle Scholar
  34. Ghoshal, B., & Sanfacon, H. (2015). Symptom recovery in virus-infected plants: Revisiting the role of RNA silencing mechanisms. Virology, 479–480, 167–179.CrossRefGoogle Scholar
  35. Grosshans, H., & Slack, F. J. (2002). Micro-RNAs: Small is plentiful. The Journal of Cell Biology, 156, 17–21.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Gunawardane, L. S., Saito, K., Nishida, K. M., Miyoshi, K., Kawamura, Y., Nagami, T., Siomi, H., & Siomi, M. C. (2007). A slicer-mediated mechanism for repeat-associated siRNA 5′ end formation in Drosophila. Science, 315, 1587–1590.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Guo, S., & Kemphues, K. J. (1995). Par-1, a gene required for establishing polarity in C. elegans embryos encodes a putative SerThr kinase that is asymmetrically distributed. Cell, 81, 611–620.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Hamilton, A., & Baulcombe, D. (1999). A species of small antisense RNA in post transcriptional gene silencing in plants. Science, 286, 950–952.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Hammond, S., Bernstein, E., Beach, D., & Hannon, G. (2000). An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature, 404, 293–296.CrossRefPubMedGoogle Scholar
  40. Herr, A. J., Jensen, M. B., Dalmay, T., & Baulcombe, D. C. (2005). RNApolymerase IV directs silencing of endogenous DNA. Science, 308, 118–120.CrossRefPubMedGoogle Scholar
  41. Hutvagner, G., Mclachlan, J., Pasquinelli, A. E., Balint, E., Tuschl, T., & Zamore, P. D. (2001). A cellular function for the RNA-interference enzyme dicer in the maturation of the let-7 small temporal RNA. Science, 293, 834–838.CrossRefPubMedGoogle Scholar
  42. Jorgensen R. A. (2003). Sense co-suppression in plants: Past, present and future. In RNAi: A guide to gene silencing. Cold Spring Harbor Laboratory Press, pp. 15–22.Google Scholar
  43. Jorgensen, R., Atkinson, R., Forster, R., & Lucas, W. (1998). An RNA-based information superhighway in plants. Science, 279, 1486–1487.CrossRefPubMedGoogle Scholar
  44. Klattenhoff, C., & Theurkauf, W. (2008). Biogenesis and germline functions of piRNAs. Development, 135(1), 3–9.CrossRefPubMedGoogle Scholar
  45. Klattenhoff, C., Bratu, D. P., McGinnis-Schultz, N., Koppetsch, B. S., Cook, H. A., & Theurkauf, W. E. (2006). Drosophila rasiRNA pathway mutations disrupt embryonic axis specification through activation of an ATR/Chk2 DNA damage response. Developmental Cell, 12, 45–55.CrossRefGoogle Scholar
  46. Kuznetsov, V. Y. (2003). RNA interference. An approach to produce knockout organism and cell lines. Biochemistry, 68, 1301–1317.Google Scholar
  47. Lee, R. C., & Ambros, V. (2001). An extensive class of small RNAs in Caenorhabditis elegans. Science, 294, 862–864.CrossRefPubMedGoogle Scholar
  48. Lee, R. C., Feinbaum, R. L., & Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisensecomplementarity to lin-14. Cell, 75(5), 843–854.CrossRefPubMedGoogle Scholar
  49. Lee, Y. S., Nakahara, K., Pham, J. W., Kim, K., He, Z., Sontheimer, E. J., & Carthew, R. W. (2004). Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell, 117, 69–81.CrossRefPubMedGoogle Scholar
  50. Lewis, B. P., Burge, C. B., & Bartel, D. P. (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 120(1), 15–20.CrossRefGoogle Scholar
  51. Lipardi, C., Wei, Q., & Paterson, B. M. (2001). RNAi as random degradative PCR: siRNA primers convert mRNA into ds-RNAs that are degraded to generate new siRNAs. Cell, 107, 297–307.CrossRefPubMedGoogle Scholar
  52. Lippman, Z., May, B., Yordan, C., Singer, T., & Martienssen, R. (2003). Distinct mechanisms determine transposon inheritance and methylation via small interfering RNA and histone modification. PLoS Biology, 1, E67.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Liu, X., Jiang, F., Kalidas, S., Smith, D., & Liu, Q. (2006). Dicer-2 and R2D2 coordinately bind siRNA to promote assembly of the siRISC complexes. RNA, 14, 789–796.Google Scholar
  54. Liu, S., Zhou, J., Hu, C., Wei, C., & Zhang, J. (2017). Micro RNA-mediated gene silencing in plant defense and viral counter-defense. Frontiers in Microbiology, 8, 1–12.Google Scholar
  55. Llave, C., Kasschau, K. D., Rector, M. A., & Carrington, J. C. (2002). Endogenous and silencing-associated small RNAs in plants. Plant Cell, 14, 1605–1619.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Martinez, J., Patkaniowska, A., Urlaub, H., Luehrmann, R., & Tuschl, T. (2002). Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell, 110, 563–574.CrossRefPubMedGoogle Scholar
  57. Matzke, M., Matzke, A. J., & Kooter, J. M. (2001). RNAi: Guiding gene silencing. Science, 293, 1080–1083.CrossRefPubMedGoogle Scholar
  58. Matzke, M., Aufsatz, W., Kanno, T., Daxinger, L., Papp, I., Mette, M. F., & Matzke, A. J. M. (2004). Genetic analysis of RNA-mediated transcriptional gene silencing. Biochimica et Biophysica Acta, 1677, 129–141.CrossRefPubMedGoogle Scholar
  59. Millar, A. A., & Waterhouse, P. M. (2005). Plant and animal microRNAs: Similarities and differences. Functional Integrative Genomics, 5, 129–135.CrossRefPubMedGoogle Scholar
  60. Moon, J. Y., & Park, J. M. (2016). Cross-talk in viral defense signaling in plants. Frontiers in Microbiology, 7, 2068.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Morris, K. V., & Rossi, J. J. (2006). Antiviral applications of RNAi. Current Opinion Molecular Theory, 8, 115–121.Google Scholar
  62. Muangsan, N., Beclin, C., Vaucheret, H., & Robertson, D. (2004). Geminivirus VIGS of endogenous genes requires SGS2/SDE1 and SGS3 and defines a new branch in the genetic pathway for silencing in plants. The Plant Journal, 38, 1004–1014.CrossRefPubMedGoogle Scholar
  63. Napoli, C., Lemieux, C., & Jorgensen, R. A. (1990). Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell, 2, 279–289.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Nie, X., & Molen, T. A. (2015). Host recovery and reduced virus level in the upper leaves after Potato virus Y infection occur in tobacco and tomato but not in potato plants. Viruses, 7, 680–698.CrossRefPubMedPubMedCentralGoogle Scholar
  65. Okamura, K., Ishizuka, A., Siomi, H., & Siomi, M. C. (2004). Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways. Genes & Development, 18, 1655–1666.CrossRefGoogle Scholar
  66. Paddison, P., Caudy, A., Bernstein, E., Hannon, G., & Conklin, D. (2002). Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes & Development, 16(8), 948–958.CrossRefGoogle Scholar
  67. Pasquinelli, A. E. (2002). MicroRNAs: Deviants no longer. Trends in Genetics, 18, 171–173.CrossRefGoogle Scholar
  68. Petrov, N. (2012). Inhibition of the virus replication of PVY by siRNAs. In Proc 3rd Congress of Virology (Days of virology in Bulgaria) with Int Part, pp. 103–107.Google Scholar
  69. Petrov, N., & Stoyanova, M. (2011). Production of high quality molecules for activation of PTGS of the host against PVY using bacteriophage ф6 polymerase complex. Science & Technologies, 1, 25–29.Google Scholar
  70. Petrov, N., Stoyanova, M., Andonova, R., & Teneva, A. (2015a). Induction of resistance to potato virus Y strain NTN in potato plants through RNAi. Biotechnology and Biotechnological Equipment, 29, 21–26.CrossRefGoogle Scholar
  71. Petrov, N., Teneva, A., Stoyanova, M., Andonova, R., Denev, I., & Tomlekova, N. (2015b). Blocking the systemic spread of potato virus Y in the tissues of potatoes by posttranscriptional gene silencing. Bulgarian Journal Agricultural Science, 21, 288–294.Google Scholar
  72. Reinhart, B. J., Weinstein, E. G., Rhoades, M. W., Bartel, B., & Bartel, D. P. (2002). MicroRNAs in plants. Genes & Development, 16, 1616–1626.CrossRefGoogle Scholar
  73. Rosas-Diaz, T., Zhang, D., Fan, P., Wang, L., Ding, X., Jiang, Y., Jimenez-Gongora, T., Medina-Puche, L., Zhao, X., Feng, Z., Zhang, G., Liu, X., Bejarano, E. R., Tan, L., Zhang, H., Zhu, J. K., Xing, W., Faulkner, C., Nagawa, S., & Lozano-Duran, R. (2018). A virus-targeted plant receptor-like kinase promotes cell-to-cell spread of RNAi. Proceedings of the National Academy of Sciences of the United States of America, 115(6), 1388–1393.CrossRefPubMedPubMedCentralGoogle Scholar
  74. Rothstein, S. J., Dimaio, J., Strand, M., & Rice, D. (1987). Stable and heritable inhibition of the expression of nopaline synthase in tobacco expressing antisense RNA. Proceedings of the National Academy of Sciences of the United States of America, 84, 8439–8443.CrossRefPubMedPubMedCentralGoogle Scholar
  75. Rovere, C. V., Del Vas, M., & Hopp, H. E. (2002). RNA-mediated virus resistance. Current Opinion in Biotechnology, 13, 167–172.CrossRefGoogle Scholar
  76. Sahu, A., Marwal, A., Nehra, C., Choudhary, D., Sharma, P., & Gaur, R. (2014). RNAi mediated gene silencing against beta satellite associated with Croton yellow vein mosaic begomovirus. Molecular Biology Reports Springer, 41(11), 7631–7638.CrossRefGoogle Scholar
  77. Schauer, S. E., Jacobsen, S. E., Meinke, D. W., & Ray, A. (2002). Dicer-like 1: Blind men and elephants in Arabidopsis development. Trends in Plant Science, 7, 487–491.CrossRefPubMedGoogle Scholar
  78. Schramke, V., & Allshire, R. (2003). Hairpin RNAs and retrotransposon LTRs effect RNAi and chromatin-based gene silencing. Science, 301, 1069–1074.CrossRefGoogle Scholar
  79. Schramke, V., & Allshire, R. (2004). Those interfering little RNAs! Silencing and eliminating chromatin. Current Opinion in Genetics & Development, 14, 174–180.CrossRefGoogle Scholar
  80. Seto, A. G., Kingston, R. E., & Lau, N. C. (2007). The coming of age for Piwi proteins. Molecular Cell, 26(5), 603–609.CrossRefPubMedGoogle Scholar
  81. Sijen, T., & Kooter, J. M. (2000). Post-transcriptional gene si1lencing: RNAs on the attack or on the defense? Bio Essays, 22, 520–531.Google Scholar
  82. Silhavy, D., & Burgyan, J. (2004). Effects and side-effects of viral RNA silencing suppressors on short RNAs. Trends in Plant Science, 9, 76–83.CrossRefPubMedGoogle Scholar
  83. Sonoda, S., & Nishiguchi, M. (2000). Graft transmission of post-transcriptional gene silencing: Target specificity for RNA degradation is transmissible between silenced and non-silenced plants, but not between silenced plants. The Plant Journal, 21, 1–8.CrossRefPubMedGoogle Scholar
  84. Tanzer, A., & Stadler, P. F. (2004). Molecular evolution of a microRNA cluster. Journal of Molecular Biology, 339(2), 327–335.CrossRefPubMedGoogle Scholar
  85. Vaistij, F. E., Jones, L., & Baulcombe, D. C. (2002). Spreading of RNA targeting and DNA methylation in RNA silencing requires transcription of the target gene and a putative RNA-dependent RNA polymerase. Plant Cell, 14, 857–867.CrossRefPubMedPubMedCentralGoogle Scholar
  86. Vaucheret, H. (2006). Post-transcriptional small RNA pathways in plants: Mechanisms and regulations. Genes Development, 20, 759–771.CrossRefPubMedGoogle Scholar
  87. Vaucheret, H., Vazquez, F., Crete, P., & Bartel, D. P. (2004). The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes & Development, 18, 1187–1197.CrossRefGoogle Scholar
  88. Vazquez, F., Gasciolli, V., Crete, P., & Vaucheret, H. (2004). The nuclear dsRNA binding protein HYL1 is required for microRNA accumulation and plant development, but not posttranscriptional transgene silencing. Current Biology, 14, 346–351.CrossRefPubMedGoogle Scholar
  89. Voinnet, O. (2002). RNA silencing: Small RNAs as ubiquitous regulators of gene expression. Current Opinion Plant Biology, 5, 444–451.CrossRefGoogle Scholar
  90. Voinnet, O., & Baulcombe, D. C. (1997). Systemic signaling in gene silencing. Nature, 389, 553–558.CrossRefPubMedGoogle Scholar
  91. Wang, M. B., Masuta, C., Smith, N. A., & Shimura, H. (2012). RNA silencing and plant viral diseases. Molecular Plant-Microbe Interactions, 25, 1275–1285.CrossRefPubMedGoogle Scholar
  92. Wesley, S. V., Helliwell, C., Smith, N. A., Wang, M. B., Rouse, D., Liu, Q., Gooding, P., Singh, S., Abbott, D., Stoutjesdijk, P., Robinson, S., Gleave, A., Green, A., & Waterhouse, P. M. (2001). Constructs for efficient, effective and high throughput gene silencing in plants. The Plant Journal, 27, 581–590.CrossRefPubMedGoogle Scholar
  93. Xie, Z., Johansen, L. K., Gustafson, A. M., Kristin, K., Kasschan, K. D., Lellis, A. D., Zilberman, D., Jacobsen, S. E., & Carrington, J. C. (2004). Genetic and functional diversification of small RNA pathways in plants. PLoS Biology, 2, 642651.CrossRefGoogle Scholar
  94. Xie, Z., Allen, E., Wilken, A., & Carrington, J. C. (2005). Dicer-like 4 functions in transacting small interfering RNA biogenesis and vegetative phase change in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 102, 12984–12989.CrossRefGoogle Scholar
  95. Zamore, P. D., Tuschl, T., Sharp, P. A., & Bartel, D. P. (2000). RNAi: Double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell, 101, 25–33.CrossRefPubMedGoogle Scholar
  96. Zhang, T., Zheng, Q., Yi, X., An, H., Zhao, Y., Ma, S., & Zhou, G. (2018). Establishing RNA virus resistance in plants by harnessing CRISPR immune system. Plant Biotechnology Journal, 16(8), 1415–1423.CrossRefPubMedPubMedCentralGoogle Scholar
  97. Zilberman, D., Cao, X., & Jacobsen, S. E. (2003). Argonaute 4 control of locus-specific siRNA accumulation and DNA and histone methylation. Science, 299, 716–719.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Nikolay M. Petrov
    • 1
    Email author
  • Mariya I. Stoyanova
    • 2
  • R. K. Gaur
    • 3
  1. 1.New Bulgarian UniversitySofiaBulgaria
  2. 2.Institute of Soil ScienceAgrotechnologies and Plant Protection “N. Pushkarov”SofiaBulgaria
  3. 3.Department of BiotechnologyDeen Dayal Upadhyaya Gorakhpur UniversityGorakhpurIndia

Personalised recommendations