Plant Viruses as Virus Induced Gene Silencing (VIGS) Vectors

  • Sunny DhirEmail author
  • Ashish Srivastava
  • Nobiyuki Yoshikawa
  • S. M. Paul Khurana


Virus-induced gene silencing (VIGS) is widely used to analyse the gene functions in model plants and in the plant species where generation of stable genetic transformants to downregulate gene expression is laborious and time-consuming. Plant viruses serve as a suitable candidate for understanding functional genomics by their modification as Virus Induced Gene Silencing vectors. Recent advancements in genetic engineering tools have made a significant contribution to their use as vectors. Here in this chapter, we have tried to discuss about the use of various plant viruses as gene silencing vectors and the next-generation vectors.


RNA interference RNA virus RNA silencing CaMV35S 


  1. Ali, S., Nasir, I. A., Rafiq, M., Butt, S. J., Ihsan, F., Rao, A. Q., & Husnain, T. (2017). Sugarcane mosaic virus-based gene silencing in Nicotiana benthamiana. Iranian Journal of Biotechnology, 15(4), e1536.Google Scholar
  2. Choi, H. W., & Hwang, B. K. (2012). The pepper extracellular peroxidase CaPO2 is required for salt, drought and oxidative stress tolerance as well as resistance to fungal pathogens. Planta, 235, 1369–1382. Scholar
  3. Dai, F., Zhang, C., Jiang, X., Kang, M., Yin, X., Lü, P., et al. (2012). RhNAC2 and RhEXPA4 are involved in the regulation of dehydration tolerance during the expansion of rose petals. Plant Physiology, 160, 2064–2082. Scholar
  4. Deng, X., Kelloniemi, J., Haikonen, T., Vuorinen, A. L., Elomaa, P., Teeri, T. H., et al. (2013). Modification of Tobacco rattle virus RNA1 to serve as a VIGS vector reveals that the 29K movement protein is an RNA silencing suppressor of the virus. Molecular Plant-Microbe Interactions, 26, 503–514. Scholar
  5. Faivre-Rampant, O., Thomas, J., Allegre, M., Morel, J., Tharreau, D., Notteghem, J., Lebrun, M., Schaffrath, U., & Piffanelli, P. (2008). Characterization of the model system rice-Magnaporthe for the study of non host resistance in cereals. New Phytologist, 180, 592–605. Scholar
  6. Gedling, C. R., Ali, E. M., Gunadi, A., et al. (2018). Improved apple latent spherical virus-induced gene silencing in multiple soybean genotypes through direct inoculation of agro-infiltrated Nicotiana benthamiana extract. Plant Methods, 14, 19. Scholar
  7. Hiriart, J. B., Aro, E. M., & Lehto, K. (2003). Dynamics of the VIGS-mediated chimeric silencing of the Nicotiana benthamiana ChlH gene and of the Tobacco mosaic virus vector. Molecular Plant-Microbe Interactions, 16, 99–106. Scholar
  8. Holzberg, S., Brosio, P., Gross, C., & Pogue, G. P. (2002). Barley stripe mosaic virus-induced gene silencing in a monocot plant. The Plant Journal, 30, 315–327.CrossRefGoogle Scholar
  9. Kanazawa, A., Inaba, J., Kasai, M., Shimura, H., & Masuta, C. (2011). RNA-mediated epigenetic modifications of an endogenous gene targeted by a viral vector: A potent gene silencing system to produce a plant that does not carry a transgene but has altered traits. Plant Signaling & Behavior, 6, 1090–1093. Scholar
  10. Kasajima, I., Ohtsubo, N., & Sasaki, K. (2017). Combination of Cyclamen persicum Mill. floral gene promoters and chimeric repressors for the modification of ornamental traits in Toreniafournieri Lind. Horticulture Research, 4, 17008. Scholar
  11. Kumagai, M. H., Donson, J., della-Cioppa, G., Harvey, D., Hanley, K., & Grill, L. K. (1995). Cytoplasmic inhibition of carotenoid biosynthesis with viral derived RNA. Proceedings of the National Academy of Sciences of the United States of America, 92, 1679–1683.CrossRefGoogle Scholar
  12. Li, C., Yan, J. M., Li, Y. Z., Zhang, Z. C., Wang, Q. L., & Liang, Y. (2013). Silencing the SpMPK1, SpMPK2, and SpMPK3 genes in tomato reduces abscisic acid-mediated drought tolerance. International Journal of Molecular Sciences, 14, 21983–21996. Scholar
  13. Liu, Y., Schiff, M., & Kumar, S. P. (2002). Virus-induced gene silencing in tomato. The Plant Journal, 31(6), 777–786.CrossRefGoogle Scholar
  14. Ratcliff, F., Martin-Hernandez, A. M., & Baulcombe, D. C. (2001). Technical advance. Tobacco rattle virus as a vector for analysis of gene function by silencing. The Plant Journal, 25, 237–245. Scholar
  15. Roger, H. (2008). Comparative plant virology (2nd ed.). Amsterdam: Elsevier Publications.Google Scholar
  16. Sasaki, S., Yamagishi, N., & Yoshikawa, N. (2011). Efficient virus-induced gene silencing in apple, pear and Japanese pear using Apple latent spherical virus vectors. Plant Methods, 7, 15.CrossRefGoogle Scholar
  17. Scofield, S. R., Huang, L., Brandt, A. S., & Gill, B. S. (2005). Development of a virus-induced gene-silencing system for hexaploid wheat and its use in functional analysis of the Lr21-mediated leaf rust resistance pathway. Plant Physiology, 138, 2165–2173.CrossRefGoogle Scholar
  18. Senthil-Kumar, M., Govind, G., Kang, L., Mysore, K. S., & Udayakumar, M. (2007). Functional characterization of Nicotiana benthamiana homologs of peanut water deficit-induced genes by virus-induced gene silencing. Planta, 225, 523–539. Scholar
  19. Tang, Y., Wang, F., Zhao, J., Xie, K., Hong, Y., & Liu, Y. (2010). Virus-based microRNA expression for gene functional analysis in plants. Plant Physiology, 153, 632–641.Google Scholar
  20. Turnage, M. A., Muangsan, N., Peele, C. G., & Robertson, D. (2002). Geminivirus-based vectors for gene silencing in Arabidopsis. The Plant Journal, 30, 107–114.CrossRefGoogle Scholar
  21. Valentine, T., Shaw, J., Blok, V. C., Phillips, M. S., Oparka, K. J., & Lacomme, C. (2004). Efficient virus-induced gene silencing in roots using a modified tobacco rattle virus vector. Plant Physiology, 136, 3999–4009.CrossRefGoogle Scholar
  22. Wang, J. E., Li, D. W., Zhang, Y. L., Zhao, Q., He, Y. M., & Gong, Z. H. (2013). Defence responses of pepper (Capsicum annuum L.) infected with incompatible and compatible strains of Phytophthora capsici. European Journal of Plant Pathology, 136, 625–638. Scholar
  23. Yin, K., Han, T., Liu, G., Chen, T., Wang, Y., Yu, A. Y., et al. (2015). A geminivirus-based guide RNA delivery system for CRISPR/Cas9 mediated plant genome editing. Scientific Reports, 5, 14926.CrossRefGoogle Scholar
  24. Zaidi, S. S.-A., & Mansoor, S. (2017). Viral vectors for plant genome engineering. Frontiers in Plant Science, 8, 539. Scholar
  25. Zhang, W., Zhang, L., Wang, D., Hunter, C., Voogd, N., & Joyce, K. D. (2013). A Narcissus mosaic viral vector system for protein expression and flavonoid production. Plant Methods, 9, 28.CrossRefGoogle Scholar
  26. Zhao, F., Lim, S., Igori, D., Yoo, R. H., Kwon, S.-K., & Moon, J. S. (2016). Development of tobacco ring spot virus-based vectors for foreign gene expression and virus induced gene silencing in variety of plants. Virology, 492, 166–178.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Sunny Dhir
    • 1
    Email author
  • Ashish Srivastava
    • 1
  • Nobiyuki Yoshikawa
    • 2
  • S. M. Paul Khurana
    • 3
  1. 1.Amity Institute of Virology & ImmunologyAmity UniversityNoidaIndia
  2. 2.Faculty of Agriculture Department of Plant-bioscienceIwate UniversityMoriokaJapan
  3. 3.Amity Institute of BiotechnologyAmity UniversityGurgaonIndia

Personalised recommendations