Advertisement

Principles and Implications of Various Genome Enrichment Approaches for Targeted Sequencing of Plant Genomes

  • Parampreet Kaur
  • Kishor GaikwadEmail author
Chapter

Abstract

The higher eukaryotic organisms harbor huge amounts of DNA in their cells that are generally very complex and dynamic in nature. Strategies of sequencing of higher plants have undergone revolutionary changes concurrent with the development of different and newer chemistries. After the advent of NGS technlogies, the approaches to decipher higher plant genomes have evolved in a precise manner to unlock the genetic potential in a targeted manner. Target enrichment refers to the techniques aiming to reduce genome complexity and enrich for specific subset of the genome for sequencing purposes, to deduce a more meaningful and comprehensive data in a fraction of time, cost and effort. Based on the enrichment mode, these approaches and their modifications are classified as PCR-, hybridization-, Restriction enzyme- based and Enrichment for expressed genomic sequences. Since targeted enrichment techniques confers most of the benefits as those of WGS, these are especially useful for target or trait specific studies and are bound to grow for their diverse applications in both reference and non-model crop species.

Keywords

Genome partitioning Target enrichment approaches Crop improvement Sequencing Plant genomes 

References

  1. Ali, O. A., Rourke, S. M. O., Amish, S. J., et al. (2016). RAD capture (rapture): Flexible and efficient sequence-based genotyping. Genetics, 202, 389–400.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Allen, A. M., Barker, G. L. A., Wilkinson, P., et al. (2013). Discovery and development of exome-based, co-dominant single nucleotide polymorphism markers in hexaploid wheat (Triticum aestivum L.). Plant Biotechnology Journal, 11, 279–295.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Andolfatto, P. D., Davison, D., Erezyilmaz, D., et al. (2011). Multiplexed shotgun genotyping for rapid and effi cient genetic mapping. Genome Research, 21, 610–617.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Arai-kichise, Y., Shiwa, Y., Nagasaki, H., et al. (2011). Discovery of genome-wide DNA polymorphisms in a landrace cultivar of japonica rice by whole-genome sequencing. Plant and Cell Physiology, 52, 274–282.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Arruda, M. P., Lipka, A. E., Brown, P. J., et al. (2016). Comparing genomic selection and marker-assisted selection for Fusarium head blight resistance in wheat (Triticum aestivum). Molecular Breeding, 36, 1–11.CrossRefGoogle Scholar
  6. Ashrafi, H., Hulse, A. M., & Hoegenauer, K., et al. (2012). Comparison and evaluation of cotton SNPs developed by Transcriptome, genome reduction on restriction site conservation and RAD-based sequencing. ICGI Research conference, Raleigh, North Carolina, USA, October 11, 2012.Google Scholar
  7. Baird, N. A., Etter, P. D., Atwood, T. S., et al. (2008). Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One, 3, e3376.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bashiardes, S., Veile, R., Helms, C., et al. (2005). Direct genomic selection. Nature Methods, 2, 63–69.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bedell, J. A., Budiman, M. A., Nunberg, A., et al. (2005). Sorghum genome sequencing by methylation filtration. PLoS Biology, 3, 0103–0115.CrossRefGoogle Scholar
  10. Bevan, M. W., Uauy, C., Wulff, B. B. H., et al. (2017). Genomic innovation for crop improvement. Nature, 543, 346–354.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bhat, J. A., Ali, S., Salgotra, R. K., et al. (2016). Genomic selection in the era of next generation sequencing for complex traits in plant breeding. Frontiers in Genetics, 7, 221.  https://doi.org/10.3389/fgene.2016.00221.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bolon, Y. T., Huan, W. J., Xu, W. W., et al. (2011). Phenotypic and genomic analyses of a fast neutron mutant population resource in soybean. Plant Physiology, 156, 240–253.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Brassac, J., & Blattner, F. R. (2015). Species level phylogeny and polyploidy relationships in Hordeum (Poaceae) inferred by next-generation sequencing and In-Silico cloning of multiple nuclear loci. Systematic Biology, 64, 792–808.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Bundock, P. C., Casu, R. E., & Henry, R. J. (2012). Enrichment of genomic DNA for polymorphism detection in a non-model highly polyploid crop plant. Plant Biotechnology Journal, 10, 657–667.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Byers, R. L., Harker, D. B., & Yourstone, S. M. (2012). Development and mapping of SNP assays in allotetraploid cotton. Theoretical and Applied Genetics, 124, 1201–1214.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Chalhoub, B., et al. (2014). Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science, 345, 950–953.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Chen, X., Li, X., Zhang, B., et al. (2013). Detection and genotyping of restriction fragment associated polymorphisms in polyploid crops with a pseudo-reference sequence: A case study in allotetraploid Brassica napus. BMC Genomics, 14, 346.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Chen, X., Ge, X., Wang, J., et al. (2015). Genome-wide DNA methylation profiling by modified reduced representation bisulfite sequencing in Brassica rapa suggests that epigenetic modifications play a key role in polyploid genome evolution. Frontiers in Plant Science, 6, 836.  https://doi.org/10.3389/fpls.2015.00836.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Chutimanitsakun, Y., Nipper, R. W., Cuesta-Marcos, A., et al. (2011). Construction and application for QTL analysis of a Restriction Site Associated DNA (RAD) linkage map in barley. BMC Genomics, 12, 4.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Clark, S. J., Statham, A., Stirzaker, C., et al. (2006). DNA methylation: Bisulphite modification and analysis. Nature Protocols, 1, 2353–2364.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Cokus, S. J., Feng, S., Zhang, X., et al. (2008). Shotgun bisul-phite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature, 452, 215–219.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Comer, J. R., Zomlefer, W. B., Barrett, C. F., et al. (2015). Resolving relationships within the palm subfamily Arecoideae (Arecaceae) using plastid sequences derived from next-generation sequencing. American Journal of Botany, 102, 888–899.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Cronn, R., Liston, A., Parks, M., et al. (2008). Multiplex sequencing of plant chloroplast genomes using solexa sequencing-by-synthesis technology. Nucleic Acids Research, 36, e122.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Dasgupta, M. G., Dharanishanthi, V., Agarwal, I., et al. (2015). Development of genetic markers in Eucalyptus species by target enrichment and exome sequencing. PLoS One, 10, 1–30.Google Scholar
  25. Davik, J., Sargent, D. J., Brurberg, M. B., et al. (2015). A ddRAD based linkage map of the cultivated strawberry, Fragaria xananassa. PLoS One, 10, e0137746.CrossRefPubMedPubMedCentralGoogle Scholar
  26. de Sousa, F., Bertrand, Y. J. K., Nylinder, S., et al. (2014). Phylogenetic properties of 50 nuclear loci in medicago (Leguminosae) generated using multiplexed sequence capture and next-generation sequencing. PLoS One, 9, e109704.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Delker, C., & Quint, M. (2011). Expression level polymorphisms: Heritable traits shaping natural variation. Trends in Plant Science, 16, 481–488.PubMedPubMedCentralGoogle Scholar
  28. Durstewitz, G., Polley, A., Plieske, J., et al. (2010). SNP discovery by amplicon sequencing and multiplex SNP genotyping in the allopolyploid species Brassica napus. Genome, 53, 948–956.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Egan, A. N., Schlueter, J., & Spooner, D. M. (2012). Applications of next-generation sequencing in plant biology. American Journal of Botany, 99, 175–185.CrossRefGoogle Scholar
  30. Elshire, R. J., Glaubitz, J. C., Sun, Q., et al. (2011). A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One, 6, e19379.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Filichkin, S. A., Priest, H. D., Givan, S. A., et al. (2009). Genome-wide mapping of alternative splicing in Arabidopsis thaliana. Genome Research, 20, 45–58.CrossRefGoogle Scholar
  32. Fu, Y., Springer, N. M., Gerhardt, D. J., et al. (2010). Repeat subtraction-mediated sequence capture from a complex genome. Plant Journal, 62, 898–909.CrossRefGoogle Scholar
  33. Galvão, V. C., Nordström, K. J. V., Lanz, C., et al. (2012). Synteny-based mapping-by-sequencing enabled by targeted enrichment. Plant Journal, 71, 517–526.PubMedGoogle Scholar
  34. Gan, X., Stegle, O., Behr, J., et al. (2011). Multiple reference genomes and transcriptomes for Arabidopsis thaliana. Nature, 477, 419–423.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Gao, L., Kielsmeier-Cook, J., Bajgain, P., et al. (2015). Development of genotyping by sequencing (GBS)- and array-derived SNP markers for stem rust resistance gene Sr42. Molecular Breeding, 35, 207.  https://doi.org/10.1007/s11032-015-0404-4.CrossRefGoogle Scholar
  36. Garber, K. (2008). Fixing the front end. Nature Biotechnology, 26, 1101–1104.CrossRefGoogle Scholar
  37. Gardiner, L. J., Gawronski, P., Olohan, L., et al. (2014). Using genic sequence capture in combination with a syntenic pseudo genome to map a deletion mutant in a wheat species. The Plant Journal, 80, 895–904.CrossRefGoogle Scholar
  38. Gasc, C., Peyretaillade, E., & Peyret, P. (2016). Sequence capture by hybridization to explore modern and ancient genomic diversity in model and nonmodel organisms. Nucleic Acids Research, 44, 4504–4518.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Gnirke, A., Melnikov, A., Maguire, J., et al. (2009). Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nature Biotechnology, 27, 182–189.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Gore, M. A., Chia, J. M., Elshire, R. J., et al. (2009). A first-generation haplotype map of maize. Science, 326, 1115–1117.CrossRefGoogle Scholar
  41. Grativol, C., Regulski, M., Bertalan, M., et al. (2014). Sugarcane genome sequencing by methylation filtration provides tools for genomic research in the genus Saccharum. The Plant Journal, 79, 162–172.CrossRefGoogle Scholar
  42. Gugger, P. F., Fitz-Gibbon, S., Pellegrini, M., et al. (2016). Species-wide patterns of DNA methylation variation in Quercus lobata and its association with climate gradients. Molecular Ecology, 25, 1665–1680.CrossRefGoogle Scholar
  43. Guo, Y., Yuan, H., Fang, D., et al. (2014). An improved 2b-RAD approach (I2b-RAD) offering genotyping tested by a rice (Oryza sativa L.) F2 population. BMC Genomics, 15, 956–913.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Hamilton, J. P., Hansey, C. N., Whitty, B. R., et al. (2011). Single nucleotide polymorphism discovery in elite North American potato germplasm. BMC Genomics, 12, 302.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Hamilton, J. P., Sim, S.-C., Stoffel, K., et al. (2012). Single nucleotide polymorphism discovery in cultivated tomato via sequencing by synthesis. Plant Genome, 5, 17–29.CrossRefGoogle Scholar
  46. Harper, A. L., Trick, M., Higgins, J., et al. (2012). Associative transcriptomics of traits in the polyploid crop species Brassica napus. Nature Biotechnology, 30, 798–802.CrossRefGoogle Scholar
  47. Hartl, D. L. (2000). Molecular melodies in high and low C. Nature Reviews, 1, 145–149.CrossRefGoogle Scholar
  48. Harvey, M. G., Smith, B.T., Glenn, T. C., et al. (2013). Sequence capture versus restriction sited associated DNA sequencing for phylogeography. https://arxiv.org/abs/1312.6439.
  49. Haun, W. J., Hyten, D. L., Xu, W. W., et al. (2011). The composition and origins of genomic variation among individuals of the soybean reference Cultivar Williams 82. Plant Physiology, 155, 645–655.CrossRefGoogle Scholar
  50. Havlickova, L., He, Z., Wang, L., et al. (2018). Validation of an updated associative transcriptomics platform for the polyploid crop species Brassica napus by dissection of the genetic architecture of erucic acid and tocopherol isoform variation in seeds. The Plant Journal, 93, 181–192.CrossRefGoogle Scholar
  51. Hegarty, M., Yadav, R., Lee, M., et al. (2013). Genotyping by RAD sequencing enables mapping of fatty acid composition traits in perennial ryegrass (Lolium perenne (L.)). Plant Biotechnology Journal, 11, 572–581.CrossRefGoogle Scholar
  52. Henry, I. M., Nagalakshmi, U., Lieberman, M. C., et al. (2014). Efficient genome-wide detection and cataloging of EMS-induced mutations using exome capture and next-generation sequencing. The Plant Cell, 26, 1382–1397.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Hsu, F. M., Yen, M. R., Wang, C. T., et al. (2017). Optimized reduced representation bisulfite sequencing reveals tissue-specific mCHH islands in maize. Epigenetics and Chromatin, 10, 42.  https://doi.org/10.1186/s13072-017-0148-y.CrossRefPubMedGoogle Scholar
  54. Huang, X., Feng, Q., Qian, Q., et al. (2009). Highthroughput genotyping by whole-genome resequencing. Genome Research, 19, 1068–1076.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Huang, X., Yan, H. D., & Zhang, X. Q. (2016). De novo transcriptome analysis and molecular marker development of two Hemarthria species. Frontiers in Plant Sciences, 7, 496.  https://doi.org/10.3389/fpls.2016.00496.CrossRefGoogle Scholar
  56. Hughes, T. R., Mao, M., & Jones, A. R. (2001). Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nature Biotechnology, 19, 342–347.CrossRefGoogle Scholar
  57. Islam, M. S., Thysen, G. N., Jenkins, J. N., et al. (2015). Detection, validation and application of genotyping-by-sequencing based single nucleotide polymorphisms in upland cotton. The Plant Genome, 8.  https://doi.org/10.3835/plantgenome2014.07.0034.
  58. Jones, M. R., & Good, J. M. (2016). Targeted capture in evolutionary and ecological genomics. Molecular Ecology, 25, 185–202.CrossRefGoogle Scholar
  59. Jupe, F., Witek, K., Verweij, W., et al. (2013). Resistance gene enrichment sequencing (RenSeq) enables reannotation of the NB-LRR gene family from sequenced plant genomes and rapid mapping of resistance loci in segregating populations. The Plant Journal, 76, 530–544.CrossRefPubMedPubMedCentralGoogle Scholar
  60. King, R., Bird, N., Ramirez-Gonzalez, R., et al. (2015). Mutation scanning in wheat by exon capture and next-generation sequencing. PLoS One, 10, 1–18.Google Scholar
  61. Kinoti, W. M., Constable, F. E., Nancarrow, N., et al. (2017). Analysis of intrahost genetic diversity of Prunus necrotic ringspot virus (PNRSV) using amplicon next generation sequencing. PLoS One, 12, e0179284.  https://doi.org/10.1371/journal.pone.0179284.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Kirst, M., Johnson, A. F., Baucom, C., et al. (2003). Apparent homology of expressed genes from wood forming tissues of loblolly pine (Pinus taeda L.) with Arabidopsis thaliana. Proceedings of the National Academy of science, USA, 100, 7383–7388.CrossRefGoogle Scholar
  63. Klonowska, K., Handschuh, L., Swiercz, A., et al. (2016). MTTE: An innovative strategy for the evaluation of targeted/exome enrichment efficiency. Oncotarget, 7.  https://doi.org/10.18632/oncotarget.11646.
  64. Krasileva, K. V., Vasquez-Gross, H. A., Howell, T., et al. (2017). Uncovering hidden variation in polyploid wheat. Proceedings of the National Academy of Sciences U S A, 114, 913–921.CrossRefGoogle Scholar
  65. Lam, H. M., Xu, X., Liu, X., et al. (2011). Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nature Genetics, 42, 1053–1059.CrossRefGoogle Scholar
  66. Lee, E. J., Pei, L., Srivastava, G., et al. (2011). Targeted bisulfite sequencing by solution hybrid selection and massively parallel sequencing. Nucleic Acids Research, 39, e127.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Li, H., Peng, Z., Yang, X., et al. (2013). Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nature Genetics, 45, 43–50.CrossRefGoogle Scholar
  68. Liu, S., Yeh, C. T., Tang, H. M., et al. (2012a). Gene mapping via bulked segregant RNA-Seq (BSR-Seq). PLoS One, 7, e36406.  https://doi.org/10.1371/journal.pone.0036406.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Liu, S., Ying, K., Yeh, C. T., et al. (2012b). Changes in genome content generated via segregation of non-allelic homologs. Plant Journal, 72, 390–399.CrossRefGoogle Scholar
  70. Lu, F., Lipka, A. E., Glaubitz, J., et al. (2013). Switchgrass genomic diversity, ploidy, and evolution: Novel insights from a network-based SNP discovery protocol. PLoS Genetics, 9, e1003215.CrossRefPubMedPubMedCentralGoogle Scholar
  71. Majewski, J., & Pastinen, T. (2011). The study of eQTL variations by RNA-Seq: From SNPs to phenotypes. Trends in Genetics, 27, 72–79.CrossRefGoogle Scholar
  72. Mandel, J. R., Dikow, R. B., Funk, V. A., et al. (2014). A target enrichment method for gathering phylogenetic information from hundreds of loci: An example from the compositae. Applications in Plant Sciences, 2, 1300085.CrossRefGoogle Scholar
  73. Mascher, M., Richmond, T. A., & Gerhardt, D. J. (2013). Barley whole exome capture: A tool for genomic research in the genus Hordeum and beyond. Plant Journal, 76, 494–505.CrossRefGoogle Scholar
  74. Mascher, M., Jost, M., Kuon, J. E., et al. (2014). Mapping-by-sequencing accelerates forward genetics in barley. Genome Biology, 15, R78.CrossRefPubMedPubMedCentralGoogle Scholar
  75. Maughan, P. J., Yourstone, S. M., Jellen, E. N., et al. (2009). SNP discovery via genomic reduction, barcoding and 454-pyrosequencing in Amaranth. Plant Genome, 2, 260–270.CrossRefGoogle Scholar
  76. Maughan, P. J., Yourstone, S. M., Byers, R. L., et al. (2010). Single-nucleotide polymorphism genotyping in mapping populations via genomic reduction and next-generation sequencing: Proof of concept. Plant Genome, 3, 166–178.CrossRefGoogle Scholar
  77. Maxam, A. M., & Gilbert, W. (1977). A new method for sequencing DNA. Proceedings of the National Academy of Sciences U S A, 74, 560–564.CrossRefGoogle Scholar
  78. Meena, S., Kumar, S. R., Venkata Rao, D. K., et al. (2016). De Novo sequencing and analysis of lemongrass transcriptome provide first insights into the essential oil biosynthesis of aromatic grasses. Frontiers in Plant Sciences, 7, 1129.  https://doi.org/10.3389/fpls.2016.01129.CrossRefGoogle Scholar
  79. Meissner, A., Gnirke, A., & Bell, G. W. (2005). Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Research, 33, 5868–5877.CrossRefPubMedPubMedCentralGoogle Scholar
  80. Mertes, F., ElSharawy, A., Sauer, S., et al. (2011). Targeted enrichment of genomic DNA regions for next-generation sequencing. Briefings in Functional Genomics, 10, 374–386.CrossRefPubMedPubMedCentralGoogle Scholar
  81. Michel, S., Ametz, C., Gungor, H., et al. (2016). Genomic selection across multiple breeding cycles in applied bread wheat breeding. Theoretical Applied Genetics, 129, 1179–1189.CrossRefPubMedPubMedCentralGoogle Scholar
  82. Miller, M. R., Atwood, T. S., Eames, B. F., et al. (2007a). RAD marker microarrays enable rapid mapping of zebrafish mutations. Genome Biology, 8, R105.CrossRefPubMedPubMedCentralGoogle Scholar
  83. Miller, M. R., Dunham, J. P., & Amores, A. (2007b). Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Research, 17, 240–248.CrossRefPubMedPubMedCentralGoogle Scholar
  84. Myles, S., Chia, J. M., Hurwitz, B., et al. (2010). Rapid genomic characterization of the genus Vitis. PLoS One, 5, e8219.CrossRefPubMedPubMedCentralGoogle Scholar
  85. Neale, D. B., Wegrzyn, J. L., Stevens, K. A., et al. (2014). Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies. Genome Biology, 15, R59.CrossRefPubMedPubMedCentralGoogle Scholar
  86. Neves, L. G., Davis, J. M., Barbazuk, W. B., et al. (2014). A high-density gene map of loblolly pine ( Pinus taeda L.) based on exome sequence capture genotyping. G3: Genes|Genomes|Genetics, 4, 29–37.CrossRefPubMedPubMedCentralGoogle Scholar
  87. Njuguna, W., Liston, A., Cronn, R., et al. (2010). Multiplexed fragaria chloroplast genome sequencing. Acta Horticulturae, 859, 315–320.CrossRefGoogle Scholar
  88. Palmer, L. E., Rabinowciz, P. D., Shaughnessy, A. L. O., et al. (2003). Maize genome sequencing by methylation filtration. Science, 302, 2115–2117.CrossRefPubMedPubMedCentralGoogle Scholar
  89. Pankin, A., Campoli, C., Dong, X., et al. (2014). Mapping-by-sequencing identifies Hv Phytochrome C as a candidate gene for the early maturity 5 locus modulating the circadian clock and photoperiodic flowering in barley. Genetics, 198, 383–396.CrossRefPubMedPubMedCentralGoogle Scholar
  90. Parks, M., Cronn, R., & Liston, A. (2009). Increasing phylogenetic resolution at low taxonomic levels using massively parallel sequencing of chloroplast genomes. BMC Biology, 7, 84.  https://doi.org/10.1186/1741-7007-7-84.CrossRefPubMedPubMedCentralGoogle Scholar
  91. Pegadaraju, V., Nipper, R., Hulke, B., et al. (2013). De novo sequencing of sunflower genome for SNP discovery using RAD (restriction site associated DNA) approach. BMC Genomics, 14, 556.CrossRefPubMedPubMedCentralGoogle Scholar
  92. Peterson, D. G., Wessler, S. R., & Paterson, A. H. (2002). Efficient capture of unique sequences from eukaryotic genomes. Trends in Genetics, 18, 547–550.CrossRefPubMedPubMedCentralGoogle Scholar
  93. Peterson, B. K., Weber, J. N., & Kay, E. H. (2012). Double digest RADseq: An inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS One, 7, e37135.CrossRefPubMedPubMedCentralGoogle Scholar
  94. Pfender, W. F., Saha, M. C., Johnson, E. A., et al. (2011). Mapping with RAD (restriction-site associated DNA) markers to rapidly identify QTL for stem rust resistance in Lolium perenne. Theoretical and Applied Genetics, 122, 1467–1480.CrossRefPubMedPubMedCentralGoogle Scholar
  95. Poland, J. A., Brown, P. J., Sorrells, M. E., et al. (2012). Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS One, 7, e32253.CrossRefPubMedPubMedCentralGoogle Scholar
  96. Pootakham, W., Ruang-Areerate, P., Jomchai, N., et al. (2015). Construction of a high-density integrated genetic linkage map of rubber tree (Hevea brasiliensis) using genotyping-by-sequencing (GBS). Frontiers in Plant Science, 6, 367.  https://doi.org/10.3389/fpls.2015.00367.CrossRefPubMedPubMedCentralGoogle Scholar
  97. Pootakham, W., Sonthirod, C., Naktang, C., et al. (2016). Effects of methylation-sensitive enzymes on the enrichment of genic SNPs and the degree of genome complexity reduction in a two-enzyme genotyping-by-sequencing (GBS) approach: A case study in oil palm (Elaeis guineensis). Molecular Breeding, 36, 154.  https://doi.org/10.1007/s11032-016-0572-x.CrossRefPubMedPubMedCentralGoogle Scholar
  98. Rabinowicz, P. D., Schutz, K., Dedhia, N., Yordan, C., Parnell, L. D., Stein, L., McCombie, W. R., & Martienssen, R. A. (1999). Differential methylation of genes and retrotransposons facilitates shotgun sequencing of the maize genome. Nature Genetics, 23, 305–308.Google Scholar
  99. Rabinowicz, P. D., Citek, R., Budiman, M. A., et al. (2005). Differential methylation of genes and repeats in land plants. Genome Research, 15, 1431–1440.CrossRefPubMedPubMedCentralGoogle Scholar
  100. Raman, H., Raman, R., Kilian, A., et al. (2014). Genome-wide delineation of natural variation for pod shatter resistance in Brassica napus. PLoS One, 9, e101673.  https://doi.org/10.1371/journal.pone.0101673.CrossRefPubMedPubMedCentralGoogle Scholar
  101. Russell, J., Hackett, C., Hedley, P., et al. (2014). The use of genotyping by sequencing in blackcurrant (Ribes nigrum): Developing high-resolution linkage maps in species without reference genome sequences. Molecular Breeding, 33, 835.CrossRefGoogle Scholar
  102. Saintenac, C., Jiang, D., & Akhunov, E. D. (2011). Targeted analysis of nucleotide and copy number variation by exon capture in allotetraploid wheat genome. Genome Biology, 12, R88.CrossRefPubMedPubMedCentralGoogle Scholar
  103. Sambrook, J., & Russell, D. W. (2001). Molecular cloning. A laboratory manual. New York: Cold Spring Harbor Laboratory Press.Google Scholar
  104. Sanger, F., Nicklen, S., & Coulson, A. R. (1977). DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences U S A, 74, 5463–5467.CrossRefGoogle Scholar
  105. Scaglione, D., Acquadro, A., Portis, E., et al. (2012). RAD tag sequencing as a source of SNP markers in Cynara cardunculus L. BMC Genomics, 13, 3.CrossRefPubMedPubMedCentralGoogle Scholar
  106. Schmidt, M., Bell, M. V., & Woloszynska, M. (2017). Plant-RRBS, a bisulfite and next-generation sequencing-based methylome profiling method enriching for coverage of cytosine positions. BMC Plant Biology, 17, 115.CrossRefPubMedPubMedCentralGoogle Scholar
  107. Schnable, P. S., Liu, S., & Wu, W. (2013). Genotyping by next-generation sequencing (U.S. Patent Appl. No. 13/739,874).Google Scholar
  108. Schneeberger, K., Ossowski, S., Ott, F., et al. (2011). Reference-guided assembly of four diverse Arabidopsis thaliana genomes. Proceedings of the National Academy of Sciences U S A, 108, 10249–10254.CrossRefGoogle Scholar
  109. Shulaev, V., Sargent, D. J., Crowhurst, R. N., et al. (2011). The genome of woodland strawberry (Fragaria vesca). Nature Genetics, 43, 109–119.CrossRefGoogle Scholar
  110. Slavov, G. T., Nipper, R., Robson, P., et al. (2014). Genome-wide association studies and prediction of 17 traits related to phenology, biomass and cell wall composition in the energy grass Miscanthus sinensis. New Phytologist, 201, 1227–1239.CrossRefGoogle Scholar
  111. Sonah, H., Bastien, M., Iquira, E., et al. (2013). An improved genotyping by sequencing (GBS) approach offering increased versatility and efficiency of SNP discovery and genotyping. PLoS One, 8, e54603.CrossRefPubMedPubMedCentralGoogle Scholar
  112. Song, J., Yang, X., Resende, M. F. R., et al. (2016). Natural allelic variations in highly polyploidy Saccharum complex. Frontiers in Plant Science, 7, 1–18.Google Scholar
  113. Southern, E. M. (1975). Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology, 98, 503–517.CrossRefPubMedPubMedCentralGoogle Scholar
  114. Steuernagel, B., Periyannan, S. K., Hernández-Pinzón, I., et al. (2016). Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture. Nature Biotechnology, 34, 652–655.CrossRefPubMedPubMedCentralGoogle Scholar
  115. Stolle, E., & Moritz, R. F. A. (2013). RESTseq- efficient benchtop population genomics with RESTriction fragment SEQuencing. PLoS One, 8, e63960.  https://doi.org/10.1371/journal.pone.0063960.CrossRefPubMedPubMedCentralGoogle Scholar
  116. Straub, S. C. K., Parks, M., Weitemier, K., et al. (2012). Navigating the tip of the genomic iceberg: Next-generation sequencing for plant systematics. American Journal of Botany, 99, 349–364.CrossRefPubMedPubMedCentralGoogle Scholar
  117. Sun, X., Liu, D., Zhang, X., et al. (2013). SLAF-seq: An efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing. PLoS One, 8, e58700.CrossRefPubMedPubMedCentralGoogle Scholar
  118. Sutherland, E., Coe, L., & Raleigh, E. A. (1992). McrBC: A multisubunit GTP-dependent restriction endonuclease. Journal of Molecular Biology, 225, 327–348.CrossRefPubMedPubMedCentralGoogle Scholar
  119. Tanwar, U. K., Pruthi, V., & Randhawa, G. S. (2017). RNA-Seq of Guar (Cyamopsis tetragonoloba, L. Taub.) leaves: De novo transcriptome assembly, functional annotation and development of genomic resources. Frontiers in Plant Science, 8, 91.  https://doi.org/10.3389/fpls.2017.00091.CrossRefPubMedPubMedCentralGoogle Scholar
  120. Teng, C., Du, D., Xiao, L., et al. (2017). Mapping and identifying a candidate gene (Bnmfs) for female-male sterility through whole-genome resequencing and RNA-Seq in rapeseed (Brassica napus L.). Frontiers in Plant Science, 8, 2086.  https://doi.org/10.3389/fpls.2017.02086.CrossRefPubMedPubMedCentralGoogle Scholar
  121. Tewhey, R., Warner, J., Nakano, M., et al. (2009). Microdroplet-based PCR amplification for large scale targeted sequencing. Nature Biotechnology, 27, 1025–1031.CrossRefPubMedPubMedCentralGoogle Scholar
  122. The 3,000 Rice Genomes Project. (2014). GigaScience, 3, 7.  https://doi.org/10.1186/2047-217X-3-7.CrossRefGoogle Scholar
  123. The International Wheat Genome Sequencing Consortium. (2014). A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science, 345, 1251788.  https://doi.org/10.1126/science.1251788.CrossRefGoogle Scholar
  124. Tian, F., Bradbury, P. J., Brown, P. J., et al. (2011). Genome-wide association study of leaf architecture in the maize nested association mapping population. Nature Genetics, 43, 159–162.CrossRefGoogle Scholar
  125. Toonen, R. J., Puritz, J. B., Forsman, Z. H., et al. (2013). ezRAD: A simplified method for genomic genotyping in non-model organisms. Peer Journal, 1, e203.  https://doi.org/10.7717/peerj.203.CrossRefGoogle Scholar
  126. Turner, E. H., Ng, S. B., Nickerson, D. A., et al. (2009). Methods for genomic partitioning. Annual Review of Genomics and Human Genetics, 10, 263–284.CrossRefGoogle Scholar
  127. Uitdewilligen, J. G. A. M., Wolters, A. M. A., D’hoop, B. B., et al. (2013). A next-generation sequencing method for genotyping-by-sequencing of highly heterozygous autotetraploid potato. PLoS One, 8, e62355.CrossRefPubMedPubMedCentralGoogle Scholar
  128. Uribe-Convers, S., Duke, J. R., Moore, M. J., et al. (2014). A long PCR–based approach for DNA enrichment prior to next-generation sequencing for systematic studies. Applications in Plant Sciences, 2, 1300063.  https://doi.org/10.3732/apps.1300063.CrossRefGoogle Scholar
  129. Van Orsouw, N. J., Hogers, R. C. J., Janssen, A., et al. (2007). Complexity reduction of polymorphic sequences (CRoPSTM): A novel approach for large-scale polymorphism discovery in complex genomes. PLoS One, 2, e1172.  https://doi.org/10.1371/journal.pone.0001172.CrossRefPubMedPubMedCentralGoogle Scholar
  130. Varshney, R. K., Song, C., Saxena, R. K., et al. (2013). Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nature Biotechnology, 31, 240–246.CrossRefGoogle Scholar
  131. Varshney, R. K., Saxena, R. K., Upadhyaya, H. D., et al. (2017). Whole-genome resequencing of 292 pigeonpea accessions identifies genomic regions associated with domestication and agronomic traits. Nature Genetics, 49, 1082–1088.CrossRefGoogle Scholar
  132. Wang, S., Meyer, E., McKay, J. K., et al. (2012). 2b-RAD: A simple and flexible method for genome-wide genotyping. Nature Methods, 9, 808–810.CrossRefGoogle Scholar
  133. Wei, L., Jian, H., Lu, K., et al. (2016). Genome-wide association analysis and differential expression analysis of resistance to Sclerotinia stem rot in Brassica napus. Plant Biotechnology Journal, 14, 1368–1380.CrossRefGoogle Scholar
  134. Weitemier, K., Shannon, C. K. S., Cronn, R. C., et al. (2014). HYB-Seq: Combining target enrichment and genome skimming for plant phylogenomics. Applications in Plant Sciences, 2, 1400042.CrossRefGoogle Scholar
  135. Wendler, N., Mascher, M., Nöh, C., et al. (2014). Unlocking the secondary gene-pool of barley with next-generation sequencing. Plant Biotechnology Journal, 12, 1122–1131.CrossRefGoogle Scholar
  136. Whitelaw, C. A., Barbazuk, W. B., Pertea, G., et al. (2003). Enrichment of gene-coding sequences in maize by genome filtration. Science, 302, 2118–2120.CrossRefGoogle Scholar
  137. Winfield, M. O., Wilkinson, P. A., Allen, A. M., et al. (2012). Targeted re-sequencing of the allohexaploid wheat exome. Plant Biotechnology Journal, 10, 733–742.CrossRefGoogle Scholar
  138. Winfield, M. O., Allen, A. M., Burridge, A. J., et al. (2016). High-density SNP genotyping array for hexaploid wheat and its secondary and tertiary gene pool. Plant Biotechnology Journal, 14, 1195–1206.CrossRefGoogle Scholar
  139. Xu, P., Xu, S., Wu, X., et al. (2014). Population genomic analyses from low-coverage RAD-Seq data: A case study on the non-model cucurbit bottle gourd. The Plant Journal, 77, 430–442.CrossRefGoogle Scholar
  140. Yang, S. S., Tu, Z. J., Cheung, F., et al. (2011). Using RNA-Seq for gene identification, polymorphism detection and transcript profiling in two alfalfa genotypes with divergent cell wall composition in stems. BMC Genomics, 12, 199.CrossRefPubMedPubMedCentralGoogle Scholar
  141. Yang, H., Tao, Y., Zheng, Z., et al. (2013). Rapid development of molecular markers by next-generation sequencing linked to a gene conferring phomopsis stem blight disease resistance for marker-assisted selection in lupin (Lupinus angustifolius L.) breeding. Theoretical and Applied Genetics, 126, 511–522.CrossRefGoogle Scholar
  142. Yuan, Y., SanMiguel, P. J., & Bennetzen, J. L. (2002). Methylation-spanning linker libraries link gene-rich regions and identify epigenetic boundaries in Zea mays. Genome Research, 12, 1345–1349.CrossRefPubMedPubMedCentralGoogle Scholar
  143. Zemach, A., McDaniel, I. E., Silva, P., et al. (2010). Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science, 328, 916–919.CrossRefGoogle Scholar
  144. Zhang, X., Yazaki, J., & Sundaresan, A. (2006). Genome-wide high-resolution mapping and functional analysis of DNA methylation in arabidopsis. Cell, 126, 1189–1201.CrossRefGoogle Scholar
  145. Zhou, L., & Holliday, J. A. (2012). Targeted enrichment of the black cottonwood (Populus trichocarpa) gene space using sequence capture. BMC Genomics, 13, 703.CrossRefPubMedPubMedCentralGoogle Scholar
  146. Zhou, X., Xia, Y., Ren, X., et al. (2014). Construction of a SNP-based genetic linkage map in cultivated peanut based on large scale marker development using next-generation double-digest restriction-site-associated DNA sequencing (ddRADseq). BMC Genomics, 15, 351.CrossRefPubMedPubMedCentralGoogle Scholar
  147. Zilberman, D., & Henikoff, S. (2007). Genome-wide analysis of DNA methylation patterns. Development, 134, 3959–3965.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.ICAR-National Institute for Plant BiotechnologyNew DelhiIndia
  2. 2.Punjab Agricultural UniversityLudhianaIndia

Personalised recommendations