Bacteria-Inducing Legume Nodules Involved in the Improvement of Plant Growth, Health and Nutrition

  • Encarna VelázquezEmail author
  • Lorena Carro
  • José David Flores-Félix
  • Esther Menéndez
  • Martha-Helena Ramírez-Bahena
  • Alvaro Peix


Bacteria-inducing legume nodules are known as rhizobia and belong to the class Alphaproteobacteria and Betaproteobacteria. They promote the growth and nutrition of their respective legume hosts through atmospheric nitrogen fixation which takes place in the nodules induced in their roots or stems. In addition, rhizobia have other plant growth-promoting mechanisms, mainly solubilization of phosphate and production of indoleacetic acid, ACC deaminase and siderophores. Some of these mechanisms have been reported for strains of rhizobia which are also able to promote the growth of several nonlegumes, such as cereals, oilseeds and vegetables. Less studied are the mechanisms that have the rhizobia to promote the plant health; however, these bacteria are able to exert biocontrol of some phytopathogens and to induce the plant resistance. In this chapter, we revised the available data about the ability of the legume nodule-inducing bacteria for improving the plant growth, health and nutrition of both legumes and nonlegumes. These data showed that rhizobia meet all the requirements of sustainable agriculture to be used as bio-inoculants allowing the total or partial replacement of chemicals used for fertilization or protection of crops.


Bacteria Root nodule Plant growth Sustainable agriculture 



The authors would like to thank their numerous collaborators and students involved in this research over the years. Funding was provided by “Ministerio de Economía, Ciencia, Industria y Competitividad (MINECO)” through the Projects AGL2010-17380 and AGL2013-48098-P, by “Junta de Castilla y León” through the project SA058U16 and by the “Diputación de Salamanca (local Government)” through the Projects V113/463AC06 and 18VB2I/463AC06.


  1. Aamir M, Aslam A, Khan MY, Jamshaid MU, Ahmad M, Asghar HN, Zahir ZA (2013) Co-inoculation with rhizobium and plant growth promoting rhizobacteria (PGPR) for inducing salinity tolerance in mung bean under field condition of semi-arid climate. Asian J Agri Biol 1:7–12Google Scholar
  2. Abd-Alla MH (1998) Growth and siderophore production in vitro of Bradyrhizobium (Lupin) strains under iron limitation. Eur J Soil Biol 34:99–104CrossRefGoogle Scholar
  3. Abd-Alla MH, El-Enany AWE, Nafady NA, Khalaf DM, Morsy FM (2014) Synergistic interaction of Rhizobium leguminosarum bv. viciae and arbuscular mycorrhizal fungi as a plant growth promoting biofertilizers for faba bean (Vicia faba L.) in alkaline soil. Microbiol Res 169:49–58PubMedCrossRefPubMedCentralGoogle Scholar
  4. Abhilash PC, Dubey RK, Tripathi V, Gupta VK, Singh HB (2016) Plant growth-promoting microorganisms for environmental sustainability. Trends Biotechnol 34:847–850PubMedCrossRefPubMedCentralGoogle Scholar
  5. Abril A, Zurdo-Piñeiro JL, Peix A, Rivas R, Velázquez E (2007) Solubilization of phosphate by a strain of Rhizobium leguminosarum bv. Trifolii isolated from Phaseolus vulgaris in El Chaco Arido soil (Argentina). In: Velázquez E, Rodríguez-Barrueco C (eds) First international meeting on microbial phosphate solubilization. Developments in plant and soil sciences, vol 102. Springer, Dordrecht, pp 135–138CrossRefGoogle Scholar
  6. Ahmad M, Zahir ZA, Asghar HN, Asghar M (2011a) Inducing salt tolerance in mung bean through coinoculation with rhizobia and plant-growth-promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate deaminase. Can J Microbiol 57:578–589PubMedCrossRefPubMedCentralGoogle Scholar
  7. Ahmad M, Zahir ZA, Asghar HN, Asghar M (2011b) The combined application of rhizobial strains and plant growth promoting rhizobacteria improves growth and productivity of mung bean (Vigna radiata L.) under salt-stressed conditions. Ann Microbiol 62:1321–1330CrossRefGoogle Scholar
  8. Ahmad M, Zahir ZA, Khalid M, Nazli F, Arshad M (2013) Efficacy of Rhizobium and Pseudomonas strains to improve physiology, ionic balance and quality of mung bean under salt-affected conditions on farmer’s fields. Plant Physiol Biochem 63:170–176PubMedCrossRefPubMedCentralGoogle Scholar
  9. Ahnia H, Bourebaba Y, Durán D, Boulila F, Palacios JM, Rey L, Ruiz-Argüeso T, Boulila A, Imperial J (2018) Bradyrhizobium algeriense sp. nov., a novel species isolated from effective nodules of Retama sphaerocarpa from Northeastern Algeria. Syst Appl Microbiol 41:333–339PubMedCrossRefPubMedCentralGoogle Scholar
  10. Akhtar MS, Siddiqui ZA (2008) Biocontrol of a root-rot disease complex of chickpea by Glomus intraradices, Rhizobium sp. and Pseudomonas striata. Crop Prot 27:410–417CrossRefGoogle Scholar
  11. Akhtar MS, Shakeel U, Siddiqui ZA (2010) Biocontrol of Fusarium wilt by Bacillus pumilus, Pseudomonas, Alcaligenes and Rhizobium sp. on lentil. Turk J Biol 34:1–7Google Scholar
  12. Alami Y, Achouak W, Marol C, Heulin T (2000) Rhizosphere soil aggregation and plant growth promotion of sunflowers by an exopolysaccharide-producing Rhizobium sp. strain isolated from sunflower roots. Appl Environ Microbiol 66:3393–3398PubMedPubMedCentralCrossRefGoogle Scholar
  13. Al-Ani RA, Adhab MA, Mahdi MH, Abood HM (2012) Rhizobium japonicum as a biocontrol agent of soybean root rot disease caused by Fusarium solani and Macrophomina phaseolina. Plant Protect Sci 48:149–155CrossRefGoogle Scholar
  14. Ali Q, Zahir ZA, Asghar HN, Jamil A (2017) Inoculation with rhizobial consortium for improving the growth, yield and quality of maize under salt-stressed conditions. Pak J Agric Sci 54:97–105Google Scholar
  15. Alikhani HA, Saleh-Rastin N, Antoun H (2007) Phosphate solubilization activity of rhizobia native to Iranian soils. In: Velázquez E, Rodríguez-Barrueco C (eds) First international meeting on microbial phosphate solubilization. Developments in plant and soil sciences, vol 102. Springer, Dordrecht, pp 35–41CrossRefGoogle Scholar
  16. Angus AA, Lee A, Lum MR, Shehayeb M, Hessabi R, Fujishige NA, Yerrapragada S, Kano S, Song N, Yang P, Estrada de los Santos P, de Faria SM, Dakora FD, Weinstock G, Hirsch AM (2013) Nodulation and effective nitrogen fixation of Macroptilium atropurpureum (siratro) by Burkholderia tuberum, a nodulating and plant growth promoting beta-proteobacterium, are influenced by environmental factors. Plant Soil 369:543–562CrossRefGoogle Scholar
  17. Ansari PG, Rao DLN (2014) Soybean rhizobia in Indian soils: populations, host specificity and competitiveness. Proc Natl Acad Sci, India Section B: Biol Sci 84:457–464CrossRefGoogle Scholar
  18. Antoun H, Bordeleau LM, Gagnon C (1978) Antagonisme entre Rhizobium meliloti at Fusarium oxysporum en relation avec lefficacite symbiotique. Can J Plant Sci 58:75–78CrossRefGoogle Scholar
  19. Antoun H, Beauchamp CJ, Goussard N, Chabot R, Lalande R (1998) Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on non-legumes: effect on radishes (Raphanus sativus L.). Plant Soil 204:57–67CrossRefGoogle Scholar
  20. Araújo J, Díaz-Alcántara CA, Velázquez E, Urbano B, González-Andrés F (2015) Bradyrhizobium yuanmingense related strains form nitrogen-fixing symbiosis with Cajanus cajan L. in Dominican Republic and are efficient biofertilizers to replace N fertilization. Sci Hortic 192:421–428CrossRefGoogle Scholar
  21. Araújo J, Flores-Félix JD, Igual JM, Peix A, González-Andrés F, Díaz-Alcántara CA, Velázquez E (2017) Bradyrhizobium cajani sp. nov. isolated from nodules of Cajanus cajan. Int J Syst Evol Microbiol 67:2236–2241PubMedCrossRefPubMedCentralGoogle Scholar
  22. Ardley JK, Parker MA, De Meyer SE, Trengove RD, O’Hara GW, Reeve WG, Yates RJ, Dilworth MJ, Willems A, Howieson JG (2012) Microvirga lupini sp. nov., Microvirga lotononidis sp. nov. and Microvirga zambiensis sp. nov. are alphaproteobacterial root-nodule bacteria that specifically nodulate and fix nitrogen with geographically and taxonomically separate legume hosts. Int J Syst Evol Microbiol 62:2579–2588PubMedCrossRefPubMedCentralGoogle Scholar
  23. Arfaoui A, Sifi B, Boudabous A, Hadrami IE, Chérif M (2006) Identification of Rhizobium isolates possessing antagonistic activity against Fusarium oxysporum f. sp. ciceris, the causal agent of Fusarium wilt of chickpea. J Plant Pathol 88:67–75Google Scholar
  24. Arfaoui A, El Hadrami A, Mabrouk Y, Sifi B, Boudabous A, El Hadrami I, Daayf F, Chérif M (2007) Treatment of chickpea with Rhizobium isolates enhances the expression of phenylpropanoid defense-related genes in response to infection by Fusarium oxysporum f. sp. ciceris. Plant Physiol Biochem 45:470–479PubMedCrossRefPubMedCentralGoogle Scholar
  25. Arora NK, Kang SC, Maheshwari DK (2001) Isolation of siderophore-producing strains of Rhizobium meliloti and their biocontrol potential against Macrophomina phaseolina that causes charcoal rot of groundnut. Curr Sci 81:673–677Google Scholar
  26. Aserse AA, Woyke T, Kyrpides NC, Whitman WB, Lindström K (2017) Draft genome sequences of Bradyrhizobium shewense sp. nov. ERR11T and Bradyrhizobium yuanmingense CCBAU 10071T. Stand Genomic Sci 12:74PubMedPubMedCentralCrossRefGoogle Scholar
  27. Babudieri B (1950) Natura delle cosidette “S-formen” delle leptospire. Loro identificazione con Hyphomicrobium vulgare Stutzer e Hartleb. Studio di quest. Ultimo germe. R.C. 1st Supplement Sanita Roma 13:580–591Google Scholar
  28. Bai B, Suri VK, Kumar A, Choudhary AK (2017) Tripartite symbiosis of PisumGlomusRhizobium leads to enhanced productivity, nitrogen and phosphorus economy, quality, and biofortification in garden pea in a Himalayan acid alfisol. J Plant Nutr 40:600–613CrossRefGoogle Scholar
  29. Balasundaran V, Sarbhoy A (1988) Inhibition of plant pathogenic fungi by Rhizobium japonicum. Indian Phytopathol 41:128–130Google Scholar
  30. Bardin SD, Huang H-C, Pinto J, Amundsen EJ, Erickson RS (2004) Biological control of Pythium damping-off of pea and sugar beet by Rhizobium leguminosarum bv. Viceae. Can J Bot 82:291–296CrossRefGoogle Scholar
  31. Barros LRN, Barbosa de Oliveira L, Barros Magalhães W, Oliveira Médici L, Pimentel C (2018) Interaction of biological nitrogen fixation with sowing nitrogen fertilization on common bean in the two seasons of cultivation in Brazil. J Plant Nutr 41:774–781CrossRefGoogle Scholar
  32. Beijerinck MW (1888) Cultur des Bacillus radicicola aus den Knöllchen. Bot Ztg 46:740–750Google Scholar
  33. Berendsen RL, Pieterse CMJ, Bakker PAHM (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486CrossRefGoogle Scholar
  34. Berg G (2009) Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18CrossRefGoogle Scholar
  35. Berg G, Köberl M, Rybakova D, Müller H, Grosch R, Smalla K (2017) Plant microbial diversity is suggested as the key to future biocontrol and health trends. FEMS Microbiol Ecol 93.
  36. Berraho EL, Lesueur D, Diem HG, Sasson A (1997) Iron requirement and siderophore production in Rhizobium ciceri during growth on an iron-deficient medium. World J Microbiol Biotechnol 13:501–510CrossRefGoogle Scholar
  37. Bertrand A, Dhont C, Bipfubus M, Chalifour FP, Drouin P, Beauchamp CJ (2015) Improving salt stress responses of the symbiosis in alfalfa using salt-tolerant cultivar and rhizobial strain. Appl Soil Ecol 87:108–117CrossRefGoogle Scholar
  38. Bhattacharjee S, Sharma GD (2012) Effect of dual inoculation of arbuscular mycorrhiza and rhizobium on the chlorophyll, nitrogen and phosphorus contents of pigeon pea (Cajanus cajan L.). Adv Microbiol 2:561–564CrossRefGoogle Scholar
  39. Bianco C, Defez R (2009) Medicago truncatula improves salt tolerance when nodulated by an indole-3-acetic acid-overproducing Sinorhizobium meliloti strain. J Exp Bot 60:3097–3107PubMedCrossRefPubMedCentralGoogle Scholar
  40. Boiero L, Perrig D, Masciarelli O, Penna C, Cassán F, Luna V (2007) Phytohormone production by three strains of Bradyrhizobium japonicum and possible physiological and technological implications. Appl Microbiol Biotechnol 74:874–880PubMedCrossRefPubMedCentralGoogle Scholar
  41. Bournaud C, Moulin L, Cnockaert M, Faria S, Prin Y, Severac D, Vandamme P (2017) Paraburkholderia piptadeniae sp. nov. and Paraburkholderia ribeironis sp. nov., two root-nodulating symbiotic species of Piptadenia gonoacantha in Brazil. Int J Syst Evol Microbiol 67:432–440PubMedCrossRefPubMedCentralGoogle Scholar
  42. Brígido C, Glick BR, Oliveira S (2017) Survey of plant growth-promoting mechanisms in native Portuguese chickpea Mesorhizobium isolates. Microb Ecol May 73:900–915CrossRefGoogle Scholar
  43. Bünger W, Grönemeyer JL, Sarkar A, Reinhold-Hurek B (2018) Bradyrhizobium ripae sp. nov., a nitrogen-fixing symbiont isolated from nodules of wild legumes in Namibia. Int J Syst Evol Microbiol. PubMedCrossRefPubMedCentralGoogle Scholar
  44. Carson KC, Dilworth MJ, Glenn AR (1992) Siderophore production and iron transport in Rhizobium leguminosarum bv. viciae MNF710. J Plant Nutr 15:2203–2220CrossRefGoogle Scholar
  45. Carson KC, Meyer JM, Dilworth MJ (2000) Hydroxamate siderophores of root nodule bacteria. Soil Biol Biochem 32:11–21CrossRefGoogle Scholar
  46. Catroux G, Hartmann A, Revellin C (2001) Trends in rhizobial inoculant production and use. Plant Soil 230:21–30CrossRefGoogle Scholar
  47. Cerezini P, Harumi Kuwano B, Barbosa dos Santos M, Terassi F, Hungria M, Nogueira MA (2016) Strategies to promote early nodulation in soybean under drought. Field Crops Res 196:160–167CrossRefGoogle Scholar
  48. Chabot R, Antoun H, Cescas MP (1996) Growth promotion of maize and lettuce by phosphate-solubilizing Rhizobium leguminosarum biovar. phaseoli. Plant Soil 184:311–321CrossRefGoogle Scholar
  49. Chakraborty U, Chakraborty BN (1989) Interaction of Rhizobium leguminosarum and Fusarium solani f. sp. pisi on pea affecting disease development and phytoalexin production. Can J Bot 67:1698–1701CrossRefGoogle Scholar
  50. Chakraborty U, Purkayastha RP (1984) Role of rhizobitoxine in protecting soybean roots from Macrophomina phaseolina infection. Can J Microbiol 30:285–289PubMedCrossRefPubMedCentralGoogle Scholar
  51. Challougui I, Chibou FM, Saadani O, Jebara M, Jebara SH (2015) Impact of dual inoculation with Rhizobium and PGPR on growth and antioxidant status of Vicia faba L. under copper stress. Compt Rend Biol 338:241–254CrossRefGoogle Scholar
  52. Chandra S, Choure K, Dubey RC, Maheshwari DK (2007) Rhizosphere competent Mesorhizobium loti MP6 induces root hair curling, inhibits Sclerotinia sclerotiorum and enhances growth of Indian mustard (Brassica campestris). Braz J Microbiol 38:124–130CrossRefGoogle Scholar
  53. Checcucci A, DiCenzo GC, Bazzicalupo M, Mengoni A (2017) Trade, diplomacy, and warfare: the quest for elite rhizobia inoculant strains. Front Microbiol 8:2207PubMedPubMedCentralCrossRefGoogle Scholar
  54. Chen WM, James EK, Prescott AR, Kierans M, Sprent JI (2003) Nodulation of Mimosa spp. by the beta-proteobacterium Ralstonia taiwanensis. Mol Plant-Microbe Interact 16:1051–1061PubMedCrossRefPubMedCentralGoogle Scholar
  55. Chen WH, Yang SH, Li ZH, Zhang XX, Sui XH, Wang ET, Chen WX, Chen WF (2017) Ensifer shofinae sp. nov., a novel rhizobial species isolated from root nodules of soybean (Glycine max). Syst Appl Microbiol 40:144–149PubMedCrossRefPubMedCentralGoogle Scholar
  56. Conn HJ (1938) Taxonomic relationships of certain non-sporeforming rods in soil. J Bacteriol 36:320–321Google Scholar
  57. Cordeiro AB, Ribeiro RA, Helene LCF, Hungria M (2017) Rhizobium esperanzae sp. nov., a N2-fixing root symbiont of Phaseolus vulgaris from Mexican soils. Int J Syst Evol Microbiol 67:3937–3945PubMedCrossRefPubMedCentralGoogle Scholar
  58. Crespo Flores G, Ramírez JF, González PJ, Hernández I (2014) Co-inoculation of Rhizobium strains and one of the arbuscular mycorrhizal fungus on Stylosanthes guianensis cv. CIAT-184. Cuban J Agric Sci 48:297–300Google Scholar
  59. da Conceição Jesus E, de Almeida Leite R, do Amaral Bastos R, da Silva Aragão OO, Araújo AD (2018) Co-inoculation of Bradyrhizobium stimulates the symbiosis efficiency of Rhizobium with common bean. Plant Soil 425:201–215CrossRefGoogle Scholar
  60. da Piedade Melo A, Lopes Olivares F, Oliveira Médici L, Torres-Neto A, Barros Dobbss L, Pasqualoto Canellas L (2017) Mixed rhizobia and Herbaspirillum seropedicae inoculations with humic acid-like substances improve water-stress recovery in common beans. Chem Biol Techn Agric 4:6CrossRefGoogle Scholar
  61. Dahale SK, Prashanthi SK, Krishnaraj PU (2016) Rhizobium mutant deficient in mineral phosphate solubilization activity shows reduced nodulation and plant growth in green gram. Proc Natl Acad Sci, India Section B: Biol Sci 86:723–734CrossRefGoogle Scholar
  62. Dar GH, Zargar MY, Beigh GM (1997) Biocontrol of Fusarium root rot in the common bean (Phaseolus vulgaris L.) by using symbiotic Glomus mosseae and Rhizobium leguminosarum. Microb Ecol 34:74–80CrossRefGoogle Scholar
  63. Das K, Prasanna R, Saxena AK (2017) Rhizobia: a potential biocontrol agent for soilborne fungal pathogens. Folia Microbiol 62:425–435CrossRefGoogle Scholar
  64. Datta C, Basu PS (2000) Indole acetic acid production by a Rhizobium species from root nodules of a leguminous shrub, Cajanus cajan. Microbiol Res 155:123–127PubMedCrossRefPubMedCentralGoogle Scholar
  65. Datta B, Chakrabartty PK (2014) Siderophore biosynthesis genes of Rhizobium sp. isolated from Cicer arietinum L. 3 Biotech 4:391–401PubMedCrossRefPubMedCentralGoogle Scholar
  66. de Lajudie P, Laurent-Fulele WA, Torck U, Coopman R, Collins MD, Kersters K, Dreyfus B, Gillis M (1998) Allorhizobium undicola gen. nov., sp. nov., nitrogen-fixing bacteria that efficiently nodulate Neptunia natans in Senegal. Int J Syst Bacteriol 48:1277–1290PubMedCrossRefPubMedCentralGoogle Scholar
  67. de Matos GF, Zilli JE, de Araújo JLS, Parma MM, Melo IS, Radl V, Baldani JI, Rouws LFM (2017) Bradyrhizobium sacchari sp. nov., a legume nodulating bacterium isolated from sugarcane roots. Arch Microbiol 199:1251–1258PubMedCrossRefPubMedCentralGoogle Scholar
  68. de Oliveira Longatti SM, Marra LM, de Souza Moreira FM (2013) Evaluation of plant growth-promoting traits of Burkholderia and Rhizobium strains isolated from Amazon soils for their co-inoculation in common bean. Afr J Microbiol Res 7:948–959CrossRefGoogle Scholar
  69. Thakur D, Kaushal R, Shyam V (2014) Phosphate solubilising microorganisms: role in phosphorus nutrition of crop plants-a review. Agric Rev 35:159–171CrossRefGoogle Scholar
  70. Defez R, Andreozzi A, Dickinson M, Charlton A, Tadini L, Pesaresi P, Bianco C (2017) Improved drought stress response in alfalfa plants nodulated by an IAA over-producing Rhizobium strain. Front Microbiol 8:2466PubMedPubMedCentralCrossRefGoogle Scholar
  71. Demissie N, Degefu T, Ergena A, Ojiewo C (2018) Phenotypic characteristics of rhizobial and non-rhizobial isolates recovered from root nodules of chickpea (Cicer arietinum L.) grown in Ethiopia. Afr J Microbiol Res 12:73–85CrossRefGoogle Scholar
  72. Deshwal VK, Dubey RC, Maheshwari DK (2003a) Isolation of plant growth-promoting strains of Bradyrhizobium (Arachis) sp. with biocontrol potential against Macrophomina phaseolina causing charcoal rot of peanut. Curr Sci 84:443–448Google Scholar
  73. Deshwal V, Pandey P, Kang S, Maheshwari D (2003b) Rhizobia as a biological control agent against soil borne plant pathogenic fungi. Indian J Exp Biol 41:1160–1164PubMedPubMedCentralGoogle Scholar
  74. Diez-Mendez A, Menéndez E, García-Fraile P, Celador-Lera L, Rivas R, Mateos PF (2015) Rhizobium cellulosilyticum as a co-inoculant enhances Phaseolus vulgaris grain yield under greenhouse conditions. Symbiosis 67:135–141CrossRefGoogle Scholar
  75. Dobritsa AP, Samadpour M (2016) Transfer of eleven species of the genus Burkholderia to the genus Paraburkholderia and proposal of Caballeronia gen. nov. to accommodate twelve species of the genera Burkholderia and Paraburkholderia. Int J Syst Evol Microbiol 66:2836–2846PubMedCrossRefPubMedCentralGoogle Scholar
  76. Dreyfus B, Garcia JL, Gillis M (1988) Characterization of Azorhizobium caulinodans gen. nov., sp. nov., a stem-nodulating nitrogen-fixing bacterium isolated from Sesbania rostrata. Int J Syst Bacteriol 38:89–98CrossRefGoogle Scholar
  77. Duan J, Müller KM, Charles TC, Vesely S, Glick BR (2009) 1-aminocyclopropane-1-carboxylate (ACC) deaminase genes in rhizobia from southern Saskatchewan. Microb Ecol 57:423–436PubMedCrossRefPubMedCentralGoogle Scholar
  78. Dubey RC, Maheshwari DK, Kumar H, Choure K (2010) Assessment of diversity and plant growth promoting attributes of rhizobia isolated from Cajanus cajan L. African J Biotechnol 9:8619–8629Google Scholar
  79. Dutta S, Mishra AK, Kumar BSD (2008) Induction of systemic resistance against fusarial wilt in pigeon pea through interaction of plant growth promoting rhizobacteria and rhizobia. Soil Biol Biochem 40:452–461CrossRefGoogle Scholar
  80. Eberl L, Vandamme P (2016) Members of the genus Burkholderia: good and bad guys. F1000 Res 5:1007CrossRefGoogle Scholar
  81. Egamberdieva D, Berg G, Lindström K, Räsänen LA (2010) Co-inoculation of Pseudomonas spp. with Rhizobium improves growth and symbiotic performance of fodder galega (Galega orientalis Lam.). Eur J Soil Biol 46:269–272CrossRefGoogle Scholar
  82. Egamberdieva D, Jabborova D, Berg G (2016a) Synergistic interactions between Bradyrhizobium japonicum and the endophyte Stenotrophomonas rhizophila and their effects on growth, and nodulation of soybean under salt stress. Plant Soil 405:35–45CrossRefGoogle Scholar
  83. Egamberdieva D, Li L, Lindström K, Räsänen LA (2016b) A synergistic interaction between salt-tolerant Pseudomonas and Mesorhizobium strains improves growth and symbiotic performance of liquorice (Glycyrrhiza uralensis Fish.) under salt stress. Appl Microbiol Biotechnol 100:2829–2841PubMedCrossRefPubMedCentralGoogle Scholar
  84. Egamberdieva D, Reckling M, Wirtha S (2017) Biochar-based Bradyrhizobium inoculum improves growth of lupin (Lupinus angustifolius L.) under drought stress. Eur J Soil Biol 78:38–42CrossRefGoogle Scholar
  85. Ekimova GA, Fedorov DN, Tani A, Doronina NV, Trotsenko YA (2018) Distribution of 1-aminocyclopropane-1-carboxylate deaminase and D-cysteine desulfhydrase genes among type species of the genus Methylobacterium. Antonie Van Leeuwenhoek. PubMedCrossRefPubMedCentralGoogle Scholar
  86. El-Akhal MR, Rincón A, Coba de la Peña T, Lucas MM, El Mourabit N, Barrijal S, Pueyo JJ (2013) Effects of salt stress and rhizobial inoculation on growth and nitrogen fixation of three peanut cultivars. Plant Biol (Stuttg) 15:415–421CrossRefGoogle Scholar
  87. Elbadry M, Taha RM, Eldougdoug KA, Gamal-Eldin H (2006) Induction of systemic resistance in faba bean (Vicia faba L.) to bean yellow mosaic potyvirus (BYMV) via seed bacterization with plant growth promoting rhizobacteria. J Plant Dis Protect 113:247–251CrossRefGoogle Scholar
  88. Estevez de Jensen C, Percich JA, Graham PH (2002) Integrated management strategies of bean root rot with Bacillus subtilis and Rhizobium in Minnesota. Field Crops Res 74:107–115CrossRefGoogle Scholar
  89. Faghire M, Mandri B, Oufdou K, Bargaz A, Ghoulam C, Ramírez-Bahena MH, Velázquez E, Peix A (2012) Identification at the species and symbiovar levels of strains nodulating Phaseolus vulgaris in saline soils of the Marrakech region (Morocco) and analysis of the otsA gene putatively involved in osmotolerance. Syst Appl Microbiol 35:156–164PubMedCrossRefPubMedCentralGoogle Scholar
  90. Fatnassi IC, Chiboub M, Saadani O, Jebara M, Jebara SH (2015) Phytostabilization of moderate copper contaminated soils using co-inoculation of Vicia faba with plant growth promoting bacteria. J Basic Microbiol 55:303–311PubMedCrossRefPubMedCentralGoogle Scholar
  91. Flores-Félix JD, Menéndez E, Rivera LP, Marcos-García M, Martínez-Hidalgo P, Mateos PF, Martínez-Molina E, Velázquez E, García-Fraile P, Rivas R (2013) Use of Rhizobium leguminosarum as a potential biofertilizer for Lactuca sativa and Daucus carota crops. J Plant Nutr Soil Sci 176:876–882CrossRefGoogle Scholar
  92. Flores-Félix JD, Marcos-García M, Silva LR, Menéndez E, Martínez-Molina E, Mateos PF, Velázquez E, García-Fraile P, Andrade P, Rivas R (2015) Rhizobium as plant probiotic for strawberry production under microcosm conditions. Symbiosis 67:25–32CrossRefGoogle Scholar
  93. Flores-Félix JD, Velázquez E, García-Fraile P, González-Andrés F, Silva LR, Rivas R (2018) Rhizobium and Phyllobacterium bacterial inoculants increase bioactive compounds and quality of strawberries cultivated in field conditions. Food Res Int 111:416–422PubMedCrossRefPubMedCentralGoogle Scholar
  94. Frank B (1889) Ueber die Pilzsymbiose der Leguminosen. Bet Dtsch Bot Ges 7:332–346Google Scholar
  95. Fukami J, de la Osa C, Ollero FJ, Megías M, Hungria M (2017) Co-inoculation of maize with Azospirillum brasilense and Rhizobium tropici as a strategy to mitigate salinity stress. Funct Plant Biol 45:328–339CrossRefGoogle Scholar
  96. Gaiero JR, McCall CA, Thompson KA, Day NJ, Best AS, Dunfield KE (2013) Inside the root microbiome: bacterial root endophytes and plant growth promotion. Am J Bot 100:1738–1750PubMedCrossRefPubMedCentralGoogle Scholar
  97. Ganesan S, Kuppusamy RG, Sekar R (2007) Integrated management of stem rot disease (Sclerotium rolfsii) of groundnut (Arachis hypogaea L.) using Rhizobium and Trichoderma harzianum (ITCC-4572). Turk J Agric For 31:103–108Google Scholar
  98. Gao X, Lu X, Wu M, Zhang H, Pan R, Tian J, Li S, Liao H (2012) Co-inoculation with rhizobia and AMF inhibited soybean red crown rot: from field study to plant defense-related gene expression analysis. PLoS One 7:e33977PubMedPubMedCentralCrossRefGoogle Scholar
  99. Gao P, Guo Y, Li Y, Duan T (2018a) Effects of dual inoculation of AMF and rhizobium on alfalfa (Medicago sativa) root rot caused by Microdochium tabacinum. Australas Plant Pathol 47:195–203CrossRefGoogle Scholar
  100. Gao P, Li Y, Guo Y, Duan T (2018b) Co-inoculation of lucerne (Medicago sativa) with an AM fungus and a Rhizobium reduces occurrence of spring black stem and leaf spot caused by Phoma medicaginis. Crop Pasture Sci 69:933–943CrossRefGoogle Scholar
  101. García-Fraile P, Carro L, Robledo M, Ramírez-Bahena MH, Flores-Félix JD, Fernández MT, Mateos PF, Rivas R, Igual JM, Martínez-Molina E, Peix A, Velázquez E (2012) Rhizobium promotes non-legumes growth and quality in several production steps: towards a biofertilization of edible raw vegetables healthy for humans. PLoS One 7:e38122PubMedPubMedCentralCrossRefGoogle Scholar
  102. Garrity GM, Bell JA, Lilburn T (2005) Family VII. Bradyrhizobiaceae fam. nov. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, second edition, vol. 2 (the Proteobacteria), part C (the Alpha-, Beta-, Delta-, and Epsilonproteobacteria). Springer, New York, pp 438–443Google Scholar
  103. Ge JC, Yoon SK, Choi NJ (2017) Using canola oil biodiesel as an alternative fuel in diesel engines: a review. Appl Sci 7:881CrossRefGoogle Scholar
  104. Ghosh PK, De TK, Maiti TK (2015) Production and metabolism of indole acetic acid in root nodules and symbiont (Rhizobium undicola) isolated from root nodule of aquatic medicinal legume Neptunia oleracea Lour. J Bot 2015. ID 575067Google Scholar
  105. Gopalakrishnan S, Sathya A, Vijayabharathi R, Varshney RK, Laxmipathi Gowda CL, Krishnamurthy L (2015) Plant growth promoting rhizobia: challenges and opportunities. 3 Biotech 5:355–377PubMedCrossRefPubMedCentralGoogle Scholar
  106. Granada CE, Arruda L, Brito Lisboa B, Passaglia LMP, Vargas LK (2014) Diversity of native rhizobia isolated in South Brazil and their growth promotion effect on white clover (Trifolium repens) and rice (Oryza sativa) plants. Biol Fertility Soils 50:123–132CrossRefGoogle Scholar
  107. Gross DC, Vidaver AK (1978) Bacteriocin-like substances produced by Rhizobium japonicum and other slow-growing rhizobia. Appl Environ Microbiol 36:936–943PubMedPubMedCentralGoogle Scholar
  108. Gutiérrez-Zamora ML, Martínez-Romero E (2001) Natural endophytic association between Rhizobium etli and maize (Zea mays L.). J Biotechnol 91:117–126PubMedCrossRefPubMedCentralGoogle Scholar
  109. Hafeez FY, Naeem FI, Naeem R, Zaidi AH, Malik KA (2005) Symbiotic effectiveness and bacteriocin production by Rhizobium leguminosarum bv. viciae isolated from agriculture soils in Faisalabad. Environ Exp Botany 54:142–147CrossRefGoogle Scholar
  110. Haro H, Sanon KB, Le Roux C, Duponnois R, Traoré AS (2018) Improvement of cowpea productivity by rhizobial and mycorrhizal inoculation in Burkina Faso. Symbiosis 74:107–120CrossRefGoogle Scholar
  111. Hasan M, Bano A, Hassan SG, Iqbal J, Awan U, Rong-ji D, Khan KA (2014) Enhancement of rice growth and production of growth-promoting phytohormones by inoculation with Rhizobium and other rhizobacteria. World Appl Sci J 31:1734–1743Google Scholar
  112. Helene LCF, Delamuta JRM, Ribeiro RA, Hungria M (2017) Bradyrhizobium mercantei sp. nov., a nitrogen-fixing symbiont isolated from nodules of Deguelia costata (syn. Lonchocarpus costatus). Int J Syst Evol Microbiol 67:1827–1834PubMedCrossRefPubMedCentralGoogle Scholar
  113. Hellriegel and Wilfarth H (1888) Untersuchungen über die stickstoffnahrung der gramineen und leguminosen. Beilageheft zu der Zeitschrift des Vereins Rübenzucker-Industrie Deutschen Reiches 1–234Google Scholar
  114. Hemid M, Abdel-Waha AA, El-Enany E, Allam N, David N, Khalaf M, Morsy FM (2014) Synergistic interaction of Rhizobium leguminosarum bv. viciae and arbuscular mycorrhizal fungi as a plant growth promoting biofertilizers for faba bean (Vicia faba L.) in alkaline soil. Microbiol Res 169:49–58CrossRefGoogle Scholar
  115. Hemissi I, Mabrouk Y, Abdi N, Bouraoui M, Saidi M, Sifi B (2011) Effects of some Rhizobium strains on chickpea growth and biological control of Rhizoctonia solani. Afr J Microbiol Res 5:4080–4090Google Scholar
  116. Hemmat Jou MH, Besalatpour AA (2018) Interactive effects of co-inoculation of Bradyrhizobium japonicum strains and mycorrhiza species on soybean growth and nutrient contents in plant. J Plant Nutr 41:10–18CrossRefGoogle Scholar
  117. Htwe AZ, Moh SM, Moe K, Yamakawa T (2018) Effects of co-inoculation of Bradyrhizobium japonicum SAY3-7 and Streptomyces griseoflavus P4 on plant growth, nodulation, nitrogen fixation, nutrient uptake, and yield of soybean in a field condition. Soil Sci Plant Nutr 64:222–229CrossRefGoogle Scholar
  118. Hungria M, Nogueira MA, Silva Araújo R (2013) Co-inoculation of soybeans and common beans with rhizobia and azospirilla: strategies to improve sustainability. Biol Fertil Soils 49:791–801CrossRefGoogle Scholar
  119. Imen H, Neila A, Adnane B, Manel B, Mabrouk Y, Saidi M, Bouaziz S (2015) Inoculation with phosphate solubilizing Mesorhizobium strains improves the performance of chickpea (Cicer arietinum L.) under phosphorus deficiency. J Plant Nutr 38:1656–1671CrossRefGoogle Scholar
  120. Jarvis BDW, van Berkum P, Chen WX, Nour SM, Fernandez MP, Cleyet-Marel JC, Gillis M (1997) Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum, and Rhizobium tianshanense to Mesorhizobium gen. nov. Int J Syst Bacteriol 47:895–898CrossRefGoogle Scholar
  121. Jiao YS, Yan H, Ji ZJ, Liu YH, Sui XH, Zhang XX, Wang ET, Chen WX, Chen WF (2015) Phyllobacterium sophorae sp. nov., a symbiotic bacterium isolated from root nodules of Sophora flavescens. Int J Syst Evol Microbiol 65:399–406PubMedCrossRefPubMedCentralGoogle Scholar
  122. Jiménez-Gómez A, Flores-Félix JD, García-Fraile P, Mateos PF, Menéndez E, Velázquez E, Rivas R (2018) Probiotic activities of Rhizobium laguerreae on growth and quality of spinach. Sci Rep 8:295PubMedPubMedCentralCrossRefGoogle Scholar
  123. Jordan DC (1982) Transfer of Rhizobium japonicum Buchanan 1980 to Bradyrhizobium gen. nov., a genus of slow-growing, root nodule bacteria from leguminous plants. Int J Syst Bacteriol 32:136–139CrossRefGoogle Scholar
  124. Kaur S, Khanna V (2016) Evaluation of synergistic potential of plant growth promoting rhizobacteria with Rhizobium in mungbean (Vigna radiata L.). J Appl Nat Sci 8:995–998CrossRefGoogle Scholar
  125. Kelemu S, Thomas RJ, Moreno CX, Ocampo GI (1995) Strains of Bradyrhizobium from tropical forage legumes inhibit Rhizoctonia solani AG-1 in vitro. Australas Plant Pathol 24:168–172CrossRefGoogle Scholar
  126. Khandelwal S, Manwar AV, Chaudhari BL, Chincholkar SB (2002) Siderophoregenic Bradyrhizobia boost yield of soybean. Appl Biochem Biotechnol 102:155–168PubMedCrossRefPubMedCentralGoogle Scholar
  127. Khanna V, Sharma P (2011) Potential for enhancing lentil (Lens culinaris) productivity by co-inoculation with PSB, plant growth-promoting rhizobacteria and Rhizobium. Indian J Agric Sci 81:932–934Google Scholar
  128. Kohlmeier MG, Yudistira H, Zhang XL, Fristensky B, Levin DB, Sparling R, Oresnik IJ (2015) Draft genome sequence of the bacteriocin-producing Bradyrhizobium japonicum strain FN1. Genome Announc 3:e00812–e00815PubMedPubMedCentralCrossRefGoogle Scholar
  129. Kong Z, Glick BR, Duan J, Ding S, Tian J, McConkey BJ, Wei G (2015) Effects of 1-aminocyclopropane-1-carboxylate (ACC) deaminase-overproducing Sinorhizobium meliloti on plant growth and copper tolerance of Medicago lupulina. Plant Soil 391:383–398CrossRefGoogle Scholar
  130. Koskey G, Mburu SW, Njeru EM, Kimiti JM, Ombori O, Maingi JM (2017) Potential of native rhizobia in enhancing nitrogen fixation and yields of climbing beans (Phaseolus vulgaris L.) in contrasting environments of Eastern Kenya. Front Plant Sci 8:443PubMedPubMedCentralCrossRefGoogle Scholar
  131. Kumar PR, Ram MR (2012) Production of indole acetic acid by Rhizobium isolates from Vigna trilobata (L) Verdc. African J Microbiol Res 6:5536–5541Google Scholar
  132. Kumar H, Bajpai VK, Dubey RC, Maheshwari DK, Kang SC (2010) Wilt disease management and enhancement of growth and yield of Cajanus cajan (L) var. Manak by bacterial combinations amended with chemical fertilizer. Crop Prot 29:591–598CrossRefGoogle Scholar
  133. Kumar H, Dubey RC, Maheshwari DK (2011) Effect of plant growth promoting rhizobia on seed germination, growth promotion and suppression of Fusarium wilt of fenugreek (Trigonella foenum-graecum L.). Crop Prot 30:1396–1403CrossRefGoogle Scholar
  134. Laranjo M, Alexandre A, Oliveira S (2014) Legume growth-promoting rhizobia: an overview on the Mesorhizobium genus. Microbiol Res 169:2–17PubMedCrossRefPubMedCentralGoogle Scholar
  135. Leggett M, Diaz-Zorita M, Koivunen M, Bowman R, Pesek R, Stevenson C, Leister T (2017) Soybean response to inoculation with Bradyrhizobium japonicum in the United States and Argentina. Agron J 109:1031–1038CrossRefGoogle Scholar
  136. Lesueur D, Diem HG, Meyer JM (1993) Iron requirement and siderophore production in Bradyrhizobium strains isolated from Acacia mangium. J Appl Bacteriol 74:675–682CrossRefGoogle Scholar
  137. Lin DX, Wang ET, Tang H, Han TX, He YR, Guan SH, Chen WX (2008) Shinella kummerowiae sp. nov., a symbiotic bacterium isolated from root nodules of the herbal legume Kummerowia stipulacea. Int J Syst Evol Microbiol 58:1409–1413PubMedCrossRefPubMedCentralGoogle Scholar
  138. Lynch D, O’Brien J, Welch T, Clarke P, Ócuıv P, Crosa JH, O’Connell M (2001) Genetic organization of the region encoding regulation, biosynthesis, and transport of rhizobactin 1021, a siderophore produced by Sinorhizobium meliloti. J Bacteriol 183:2576–2585PubMedPubMedCentralCrossRefGoogle Scholar
  139. Ma W, Sebestianova SB, Sebestian J, Burd GI, Guinel FC, Glick BR (2003) Prevalence of 1-aminocyclopropane-1-carboxylate deaminase in Rhizobium spp. Antonie Van Leeuwenhoek 83:285–291PubMedCrossRefPubMedCentralGoogle Scholar
  140. Ma W, Charles TC, Glick BR (2004) Expression of an exogenous 1-aminocyclopropane-1-carboxylate deaminase gene in Sinorhizobium meliloti increases its ability to nodulate alfalfa. Appl Environ Microbiol 70:5891–5897PubMedPubMedCentralCrossRefGoogle Scholar
  141. Mabrouk Y, Mejri S, Belhadj O (2016) Biochemical mechanisms of induced resistance by rhizobial lipopolysaccharide in pea against crenate broomrape. Braz J Bot 39:107–114CrossRefGoogle Scholar
  142. Malajczuk N, Pearce M, Litchfield RT (1984) Interactions between Phytophthora cinnamomi and Rhizobium isolates. Trans Br Mycol Soc 82:491–500CrossRefGoogle Scholar
  143. Marcos-García M, Menéndez E, Ramírez-Bahena MH, Mateos PF, Peix Á, Velazquez E, Rivas R (2017) Mesorhizobium helmanticense sp. nov., isolated from Lotus corniculatus nodules. Int J Syst Evol Microbiol 67:2301–2305PubMedCrossRefPubMedCentralGoogle Scholar
  144. Martínez R, Espejo A, Sierra M, Ortiz-Bernad I, Correa D, Bedmar E, López-Jurado M, Porres JM (2015) Co-inoculation of Halomonas maura and Ensifer meliloti to improve alfalfa yield in saline soils. Appl Soil Ecol 87:81–86CrossRefGoogle Scholar
  145. Martins da Costa E, Azarias Guimarães A, Pereira Vicentin R, de Almeida Ribeiro PR, Ribas Leão AC, Balsanelli E, Lebbe L, Aerts M, Willems A, de Souza Moreira FM (2017) Bradyrhizobium brasilense sp. nov., a symbiotic nitrogen-fixing bacterium isolated from Brazilian tropical soils. Arch Microbiol 199:1211–1221PubMedCrossRefPubMedCentralGoogle Scholar
  146. Martins da Costa E, Azarias Guimarães A, Soares de Carvalho T, Louzada Rodrigues T, de Almeida Ribeiro PR, Lebbe L, Willems A, de Souza Moreira FM (2018) Bradyrhizobium forestalis sp. nov., an efficient nitrogen-fixing bacterium isolated from nodules of forest legume species in the Amazon. Arch Microbiol 200:743–752PubMedCrossRefPubMedCentralGoogle Scholar
  147. Martinuz A, Schouten A, Menjivar RD, Sikora RA (2012) Effectiveness of systemic resistance toward Aphis gossypii (Hom., Aphididae) as induced by combined applications of the endophytes Fusarium oxysporum Fo162 and Rhizobium etli G12. Biol Control 62:206–212CrossRefGoogle Scholar
  148. Maynaud G, Willems A, Soussou S, Vidal C, Mauré L, Moulin L, Cleyet-Marel JC, Brunel B (2012) Molecular and phenotypic characterization of strains nodulating Anthyllis vulneraria in mine tailings, and proposal of Aminobacter anthyllidis sp. nov., the first definition of Aminobacter as legume-nodulating bacteria. Syst Appl Microbiol 35:65–72PubMedCrossRefPubMedCentralGoogle Scholar
  149. McKevith B (2005) Nutritional aspects of oilseeds. Nutr Bull 30:13–26CrossRefGoogle Scholar
  150. Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663PubMedPubMedCentralCrossRefGoogle Scholar
  151. Menéndez E, Ramirez-Bahena MH, Peix A, Tejedor C, Mulas R, González-Andrés F, Martínez-Molina E, Velázquez E (2016) Analysis of cultivable endophytic bacteria in roots of maize in a soil from León province in mainland Spain. In: González-Andrés F, James E (eds) Biological nitrogen fixation and beneficial plant-microbe interaction. Springer, Cham, pp 45–53CrossRefGoogle Scholar
  152. Meng L, Zhang A, Wang F, Han X, Wang D, Li S (2015) Arbuscular mycorrhizal fungi and Rhizobium facilitate nitrogen uptake and transfer in soybean/maize intercropping system. Front Plant Sci 6:339PubMedPubMedCentralGoogle Scholar
  153. Michel DC, Passos SR, Simões-Araújo JL, Baraúna AC, da Silva K, Parma MM, Melo IS, De Meyer SE, O’Hara G, Zilli JE (2017) Bradyrhizobium centrolobii and Bradyrhizobium macuxiense sp. nov. isolated from Centrolobium paraense grown in soil of Amazonia, Brazil. Arch Microbiol 199:657–664PubMedCrossRefPubMedCentralGoogle Scholar
  154. Minamisawa K (1989) Comparison of extracellular polysaccharide composition, rhizobitoxine production, and hydrogenase phenotype among various strains of Bradyrhizobium japonicum. Plant Cell Physiol 30:877–884CrossRefGoogle Scholar
  155. Mohamad R, Willems A, Le Quéré A, Maynaud G, Pervent M, Bonabaud M, Dubois E, Cleyet-Marel JC, Brunel B (2017) Mesorhizobium delmotii and Mesorhizobium prunaredense are two new species containing rhizobial strains within the symbiovar anthyllidis. Syst Appl Microbiol 40:135–143PubMedCrossRefPubMedCentralGoogle Scholar
  156. Mondal HK, Mehta S, Kaur H, Gera R (2017) Characterization of abiotic stress tolerant rhizobia as PGPR of mothbean, clusterbean and mungbean grown in hyper-arid zone of Rajasthan. Int J Bio-Res & Stress Manag 8:309–315CrossRefGoogle Scholar
  157. Moulin L, Munive A, Dreyfus B, Boivin-Masson C (2001) Nodulation of legumes by members of the beta-subclass of Proteobacteria. Nature 411:948–950. Erratum in: Nature 412:926PubMedCrossRefPubMedCentralGoogle Scholar
  158. Mousavi SA, Österman J, Wahlberg N, Nesme X, Lavire C, Vial L, Paulin L, De Lajudie P, Lindström K (2014) Phylogeny of the Rhizobium-Allorhizobium-Agrobacterium clade supports the delineation of Neorhizobium gen. nov. Syst Appl Microbiol 37:208–215PubMedCrossRefPubMedCentralGoogle Scholar
  159. Mousavi SA, Willems A, Nesme X, de Lajudie P, Lindström K (2015) Revised phylogeny of Rhizobiaceae: proposal of the delineation of Pararhizobium gen. nov., and 13 new species combinations. Syst Appl Microbiol 38:84–90PubMedCrossRefPubMedCentralGoogle Scholar
  160. Mulas D, García-Fraile P, Carro L, Ramírez-Bahena MH, Casquero P, Velázquez E, González-Andrés F (2011) Distribution and efficiency of Rhizobium leguminosarum strains nodulating Phaseolus vulgaris in Northern Spanish soils: selection of native strains that replace conventional N fertilization. Soil Biol Biochem 43:2283–2293CrossRefGoogle Scholar
  161. Nambiar PTC, Sivaramakrishnan S (1987) Detection and assay of siderophores in cowpea rhizobia (Bradyrhizobium) using radioactive Fe (59Fe). Lett Appl Microbiol 4:37–40CrossRefGoogle Scholar
  162. Nascimento FX, Brígido C, Glick BR, Oliveira S (2012) ACC deaminase genes are conserved among Mesorhizobium species able to nodulate the same host plant. FEMS Microbiol Lett 336:26–37PubMedCrossRefPubMedCentralGoogle Scholar
  163. Nascimento FX, Rossi MJ, Soares CR, McConkey BJ, Glick BR (2014) New insights into 1-aminocyclopropane-1-carboxylate (ACC) deaminase phylogeny, evolution and ecological significance. PLoS One 9:e99168PubMedPubMedCentralCrossRefGoogle Scholar
  164. Nascimento FX, Rossi MJ, Glick BR (2018) Ethylene and 1-Aminocyclopropane-1-carboxylate (ACC) in plant-bacterial interactions. Front Plant Sci 9:114PubMedPubMedCentralCrossRefGoogle Scholar
  165. Naveed M, Hussain MB, Mehboob I, Zahir ZA (2017) Rhizobial amelioration of drought stress in legumes. In: Zaidi A, Khan M, Musarrat J (eds) Microbes for legume improvement. Springer, Cham, pp 341–365CrossRefGoogle Scholar
  166. Nimnoi P, Pongsilp N, Lumyong S (2014) Co-inoculation of soybean (Glycine max) with actinomycetes and Bradyrhizobium japonicum enhances plant growth, nitrogenase activity and plant nutrition. J Plant Nutr 37:432–446CrossRefGoogle Scholar
  167. Noel TC, Sheng C, Yost CK, Pharis RP, Hynes MF (1996) Rhizobium leguminosarum as a plant growth-promoting rhizobacterium: direct growth promotion of canola and lettuce. Can J Microbiol 42:279–283PubMedCrossRefPubMedCentralGoogle Scholar
  168. Oliveira RS, Carvalho P, Marques G, Ferreira L, Nunes M, Rocha I, Ma Y, Carvalho MF, Vosátka M, Freitas H (2017) Increased protein content of chickpea (Cicer arietinum L.) inoculated with arbuscular mycorrhizal fungi and nitrogen-fixing bacteria under water deficit conditions. Sci Food Agric 97:4379–4385CrossRefGoogle Scholar
  169. Omar SA, Abd-Alla MH (1998) Biocontrol of fungal root rot diseases of crop plants by the use of rhizobia and bradyrhizobia. Folia Microbiol 43:431–437CrossRefGoogle Scholar
  170. Ormeño E, Torres R, Mayo J, Rivas R, Peix A, Velázquez E, Zúñiga D (2007) Phaseolus lunatus is nodulated by a phosphate solubilizing strain of Sinorhizobium meliloti in a Peruvian soil. In: Velázquez E, Rodríguez-Barrueco C (eds) First international meeting on microbial phosphate Solubilization. Springer, Heidelberg, pp 143–147CrossRefGoogle Scholar
  171. Othman H, Tamimi SM (2016) Characterization of rhizobia nodulating faba bean plants isolated from soils of Jordan for plant growth promoting activities and N2 fixation potential. Int J Adv Res Biol Sci 3:20–27Google Scholar
  172. Ozkoc I, Deliveli MH (2001) In vitro inhibition of the mycelial growth of some root rot fungi by Rhizobium leguminosarum biovar phaseoli isolates. Turk J Biol 25:435–445Google Scholar
  173. Patel HN, Chakraborty RN, Desai SB (1988) Isolation and partial characterization of phenolate siderophore from Rhizobium leguminosarum IARI 102. FEMS Microbiol Lett 56:131–134CrossRefGoogle Scholar
  174. Patil A, Kale A, Ajane G, Sheikh R, Patil S (2017) Plant growth-promoting Rhizobium: mechanisms and biotechnological prospective. In: Hansen A, Choudhary D, Agrawal P, Varma A (eds) Rhizobium biology and biotechnology. Soil Biology, vol 50. Springer, Cham, pp 105–134CrossRefGoogle Scholar
  175. Peix A, Rivas-Boyero AA, Mateos PF, Rodríguez-Barrueco C, Martınez-Molina E, Velázquez E (2001) Growth promotion of chickpea and barley by a phosphate solubilizing strain of Mesorhizobium mediterraneum under growth chamber conditions. Soil Biol Biochem 33:103–110CrossRefGoogle Scholar
  176. Pimentel D, Patzek TW (2005) Ethanol production using corn, switchgrass, and wood; biodiesel production using soybean and sunflower. Nat Resour 14:65–76CrossRefGoogle Scholar
  177. Prasanna R, Ramakrishnan B, Simranjit K, Ranjan K, Kanchan A, Hossain F, Nain L (2017) Cyanobacterial and rhizobial inoculation modulates the plant physiological attributes and nodule microbial communities of chickpea. Arch Microbiol 199:1311–1323PubMedCrossRefPubMedCentralGoogle Scholar
  178. Priyanka M, Wati L (2017) Screening of rhizobial isolates from Vigna radiata for plant growth promoting traits. Res Crops 18:190–195CrossRefGoogle Scholar
  179. Qureshi MA, Shakir MA, Iqbal A, Akhtar N, Khan A (2011) Co-inoculation of phosphate solubilizing bacteria and rhizobia for improving growth and yield of mungbean (Vigna radiata L.). J Anim Plant Sci 21:491–497Google Scholar
  180. Rabie GH (1998) Induction of fungal disease resistance in Vicia faba by dual inoculation with Rhizobium leguminosarum and vesicular-arbuscular mycorrhizal fungi. Mycopathologia 141:159–166PubMedCrossRefPubMedCentralGoogle Scholar
  181. Radl V, Simões-Araújo JL, Leite J, Passos SR, Martins LM, Xavier GR, Rumjanek NG, Baldani JI, Zilli JE (2014) Microvirga vignae sp. nov., a root nodule symbiotic bacterium isolated from cowpea grown in semi-arid Brazil. Int J Syst Evol Microbiol 64:725–730PubMedCrossRefPubMedCentralGoogle Scholar
  182. Rangel WM, de Oliveira Longatti SM, Ferreira PAA, Bonaldi DS, Guimarães AA, Thijs S, Weyens N, Vangronsveld J, Moreira FMS (2017) Leguminosae native nodulating bacteria from a gold mine as-contaminated soil: multi-resistance to trace elements, and possible role in plant growth and mineral nutrition. Int J Phytoremediation 19:925–936PubMedCrossRefPubMedCentralGoogle Scholar
  183. Reimann S, Hauschild R, Hildebrandt U, Sikora RA (2008) Interrelationships between Rhizobium etli G12 and Glomus intraradices and multitrophic effects in the biological control of the root-knot nematode Meloidogyne incognita on tomato. J Plant Dis Protect 115:108–113CrossRefGoogle Scholar
  184. Reitz M, Rudolph K, Schröder I, Hoffmann-Hergarten S, Hallmann J, Sikora RA (2000) Lipopolysaccharides of Rhizobium etli strain G12 act in potato roots as an inducing agent of systemic resistance to infection by the cyst nematode Globodera pallida. Appl Environ Microbiol 66:3515–3518PubMedPubMedCentralCrossRefGoogle Scholar
  185. Remigi P, Zhu J, Young JPW, Masson-Boivin C (2016) Symbiosis within symbiosis: evolving nitrogen-fixing legume symbionts. Trends Microbiol 24:63–75PubMedCrossRefPubMedCentralGoogle Scholar
  186. Ren CG, Bai YJ, Kong CC, Bian B, Xie ZH (2016) Synergistic interactions between salt-tolerant rhizobia and arbuscular mycorrhizal fungi on salinity tolerance of Sesbania cannabina plants. J Plant Growth Regul 35:1098–1107CrossRefGoogle Scholar
  187. Rivas R, Velázquez E, Willems A, Vizcaíno N, Subba-Rao NS, Mateos PF, Gillis M, Dazzo FB, Martínez-Molina E (2002) A new species of Devosia that forms a unique nitrogen-fixing root-nodule symbiosis with the aquatic legume Neptunia natans (L.f.) druce. Appl Environ Microbiol 68:5217–5222PubMedPubMedCentralCrossRefGoogle Scholar
  188. Rivas R, Peix A, Mateos PF, Trujillo ME, Martínez-Molina E, Velázquez E (2006) Biodiversity of populations of phosphate solubilizing rhizobia that nodulates chickpea in different Spanish soils. Plant Soil 287:23–33CrossRefGoogle Scholar
  189. Robleto EA, Scupham AJ, Triplett EW (1997) Trifolitoxin production in Rhizobium etli strain CE3 increases competitiveness for rhizosphere growth and root nodulation of Phaseolus vulgaris in soil. Mol Plant-Microbe Interact 10:228–233CrossRefGoogle Scholar
  190. Robleto EA, Borneman J, Triplett EW (1998) Effects of bacterial antibiotic production on rhizosphere microbial communities from a culture independent perspective. Appl Env Microbiol 64:5020–5022Google Scholar
  191. Rodríguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotech Adv 17:319–339CrossRefGoogle Scholar
  192. Rubio-Canalejas A, Celador-Lera L, Cruz-González X, Menéndez E, Rivas R (2016) Rhizobium as potential biofertilizer of Eruca Sativa. In: González-Andrés F, James E (eds) Biological nitrogen fixation and beneficial plant-microbe interaction. Springer, Heidelberg, pp 213–220CrossRefGoogle Scholar
  193. Saber WIA, Abd El-Hai KM, Ghoneem KM (2009) Synergistic effect of Trichoderma and Rhizobium on both biocontrol of chocolate spot disease and induction of nodulation, physiological activities and productivity of Vicia faba. Res J Microbiol 4:286–300CrossRefGoogle Scholar
  194. Saghafi D, Ghorbanpour M, Lajayer BA (2018) Efficiency of Rhizobium strains as plant growth promoting rhizobacteria on morpho-physiological properties of Brassica napus L. under salinity stress. J Soil Sci Plant Nutr 18:253–268Google Scholar
  195. Saha M, Sarkar S, Sarkar B, Kumar B, Bhattacharjee SS, Tribedi P (2016) Microbial siderophores and their potential applications: a review. Environ Sci Pollution Res 23:3984–3999CrossRefGoogle Scholar
  196. Samago TY, Anniye EW, Dakora FD (2018) Grain yield of common bean (Phaseolus vulgaris L.) varieties is markedly increased by rhizobial inoculation and phosphorus application in Ethiopia. Symbiosis 75:245–255PubMedPubMedCentralCrossRefGoogle Scholar
  197. Sannazzaro AI, Torres Tejerizo G, Fontana MF, Cumpa Velásquez LM, Hansen LH, Pistorio M, Estrella MJ (2018) Mesorhizobium sanjuanii sp. nov., isolated from nodules of Lotus tenuis in the saline-alkaline lowlands of flooding Pampa, Argentina. Int J Syst Evol Microbiol 68:2936–2942PubMedCrossRefPubMedCentralGoogle Scholar
  198. Santoyo G, Moreno-Hagelsieb G, Orozco-Mosqueda Mdel C, Glick BR (2016) Plant growth-promoting bacterial endophytes. Microbiol Res 183:92–99PubMedCrossRefPubMedCentralGoogle Scholar
  199. Sawana A, Adeolu M, Gupta RS (2014) Molecular signatures and phylogenomic analysis of the genus Burkholderia: proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov. harboring environmental species. Front Genet 5:429PubMedPubMedCentralCrossRefGoogle Scholar
  200. Schwinghamer EA, Brockwell J (1978) Competitive advantage of bacteriocin and phage-producing strains of Rhizobium trifolii in mixed culture. Soil Biol Biochem 10:383–387CrossRefGoogle Scholar
  201. Shaban WI, El-Bramawy MA (2011) Impact of dual inoculation with Rhizobium and Trichoderma on damping off, root rot diseases and plant growth parameters of some legumes field crop under greenhouse conditions. Int Res J Agric Sci Soil Sci 1:98–108Google Scholar
  202. Sharma SR, Rao NK, Gokhale TS, Ismail S (2013) Isolation and characterization of salt-tolerant rhizobia native to the desert soils of United Arab Emirates. Emirates J Food Agric 25:102–108CrossRefGoogle Scholar
  203. Shinde BP, Thakur J (2016) The effect of co-inoculation of pea plants with arbuscular mycorrhizal fungi and rhizobium on the nodulation, growth and productivity. Int J Bioassays 10:4954–4957Google Scholar
  204. Siddiqui IA, Ehteshamul-Haque S, Zaki MJ, Ghaffar A (2000) Greenhouse evaluation of rhizobia as biocontrol agent of root-infecting fungi in okra. Acta Agrobot 53:13–22CrossRefGoogle Scholar
  205. Siddiqui ZA, Baghel G, Akhtar MS (2007) Biocontrol of Meloidogyne javanica by Rhizobium and plant growth-promoting rhizobacteria on lentil. World J Microbiol Biotechnol 23:435–441CrossRefGoogle Scholar
  206. Singh PK, Singh M, Vyas D (2010) Biocontrol of fusarium wilt of chickpea using arbuscular mycorrhizal fungi and Rhizobium leguminosarum biovar. Caryologia 63:349–353CrossRefGoogle Scholar
  207. Skerman VBD, McGowan V, Sneath PHA (1980) Approved lists of bacterial names. Int J Syst Bacteriol 30:225–420CrossRefGoogle Scholar
  208. Soliman AS, Shanan NT, Massoud ON, Swelim DM (2012) Improving salinity tolerance of Acacia saligna (Labill.) plant by arbuscular mycorrhizal fungi and Rhizobium inoculation. African J Biotechnol 11:1259–1266CrossRefGoogle Scholar
  209. Sridevi M, Mallaiah KV, Yadav NCS (2007) Phosphate solubilization by Rhizobium isolates from Crotalaria species. J Plant Sci 2:635–639CrossRefGoogle Scholar
  210. Staudinger C, Mehmeti-Tershani V, Gil-Quintana E, Gonzalez EM, Hofhansl F, Bachmann G, Wienkoop S (2016) Evidence for a rhizobia-induced drought stress response strategy in Medicago truncatula. J Proteome 136:202–213CrossRefGoogle Scholar
  211. Suárez-Moreno ZR, Caballero-Mellado J, Coutinho BG, Mendonça-Previato L, James EK, Venturi V (2012) Common features of environmental and potentially beneficial plant-associated Burkholderia. Microb Ecol 63:249–266PubMedCrossRefPubMedCentralGoogle Scholar
  212. Subramanian P, Ramasamy KK, Sundaram KS, Sa T (2015) Endophytic bacteria improve nodule function and plant nitrogen in soybean on co-inoculation with Bradyrhizobium japonicum MN110. Plant Growth Regul 76:327–332CrossRefGoogle Scholar
  213. Sy A, Giraud E, Jourand P, Garcia N, Willems A, de Lajudie P, Prin Y, Neyra M, Gillis M, Boivin-Masson C, Dreyfus B (2001) Methylotrophic Methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes. J Bacteriol 183:214–220PubMedPubMedCentralCrossRefGoogle Scholar
  214. Tajini F, Trabelsi M, Drevon JJ (2011) Co-inoculation with Glomus intraradices and Rhizobium tropici CIAT899 increases P use efficiency for N2 fixation in the common bean (Phaseolus vulgaris L.) under P deficiency in hydroaeroponic culture. Symbiosis 53:123CrossRefGoogle Scholar
  215. Tan KZ, Radziah O, Halimi MS, Khairuddin AR, Shamsuddin ZH (2015) Assessment of plant growth-promoting rhizobacteria (PGPR) and rhizobia as multi-strain biofertilizer on growth and N2 fixation of rice plant. Austr J Crop Sci 9:1257–1264Google Scholar
  216. Tarafder HK, Dey A, Dasgupta S (2016) Co-inoculation of phosphate solubilizing bacteria and rhizobia for improving growth and yield of mungbean (Vigna radiata L.). Asian J Soil Sci 11:207–212CrossRefGoogle Scholar
  217. Tavasolee A, Aliasgharzad N, SalehiJouzani G, Mardi M, Asgharzadeh A (2011) Interactive effects of arbuscular mycorrhizal fungi and rhizobial strains on chickpea growth and nutrient content in plant. Afr J Biotechnol 10:7585–7591Google Scholar
  218. Thakur D, Kaushal R, Shyam V (2014) Phosphate solubilising microorganisms: role in phosphorus nutrition of crop plants-a review. Agric Rev 35:159–171CrossRefGoogle Scholar
  219. Triplett EW, Barta TM (1987) Trifolitoxin production and nodulation are necessary for the expression of superior nodulation competitiveness by Rhizobium leguminosarum bv. Trifolii strain T24 on clover. Plant Physiol 85:335–342PubMedPubMedCentralCrossRefGoogle Scholar
  220. Trujillo ME, Willems A, Abril A, Planchuelo AM, Rivas R, Ludeña D, Mateos PF, Martínez-Molina E, Velázquez E (2005) Nodulation of Lupinus albus by strains of Ochrobactrum lupini sp. nov. Appl Environ Microbiol 71:1318–1327PubMedPubMedCentralCrossRefGoogle Scholar
  221. Tu JC (1978) Protection of soybean from severe Phytophthora root rot by Rhizobium. Physiol Plant Pathol 12:233–240CrossRefGoogle Scholar
  222. Ullah S, Khan MY, Asghar HN, Akhtar MJ, Zahir ZA (2017) Differential response of single and co-inoculation of Rhizobium leguminosarum and Mesorhizobium ciceri for inducing water deficit stress tolerance in wheat. Ann Microbiol 67:739–749CrossRefGoogle Scholar
  223. Validation List no. 107 (2006) Int J Syst Evol Microbiol 56:1–6CrossRefGoogle Scholar
  224. Valverde A, Velázquez E, Fernández-Santos F, Vizcaíno N, Rivas R, Mateos PF, Martínez-Molina E, Igual JM, Willems A (2005) Phyllobacterium trifolii sp. nov., nodulating Trifolium and Lupinus in Spanish soils. Int J Syst Evol Microbiol 55:1985–1989PubMedCrossRefPubMedCentralGoogle Scholar
  225. Vandamme P, Coenye T (2004) Taxonomy of the genus Cupriavidus: a tale of lost and found. Int J Syst Evol Microbiol 54:2285–2289PubMedCrossRefPubMedCentralGoogle Scholar
  226. Vargas LK, Volpiano CG, Lisboa BB, Giongo A, Beneduzi A, Passaglia LMP (2017) Potential of rhizobia as plant growth-promoting rhizobacteria. In: Zaidi A, Khan M, Musarrat J (eds) Microbes for legume improvement. Springer, Cham, pp 153–174CrossRefGoogle Scholar
  227. Vejan P, Abdullah R, Khadiran T, Ismail S, Nasrulhaq Boyce A (2016) Role of plant growth promoting Rhizobacteria in agricultural sustainability-a review. Molecules 21:piiE573CrossRefGoogle Scholar
  228. Velázquez E, Carro L, Flores-Félix JD, Martínez-Hidalgo P, Menéndez E, Ramírez-Bahena MH, Mulas R, González-Andrés F, Martínez-Molina E, Peix A (2017a) The legume nodule microbiome: a source of plant growth-promoting bacteria. In: Kumar V, Kumar M, Sharma S, Prasad R (eds) Probiotics and plant health. Springer, Singapore, pp 41–70CrossRefGoogle Scholar
  229. Velázquez E, García-Fraile P, Ramírez-Bahena MH, Rivas R, Martínez-Molina E (2017b) Current status of the taxonomy of bacteria able to establish nitrogen-fixing legume symbiosis. In: Zaidi A, Khan M, Musarrat J (eds) Microbes for legume improvement. Springer, Cham, pp 1–43Google Scholar
  230. Venter AP, Twelker S, Oresnik IJ, Hynes MF (2001) Analysis of the genetic region encoding a novel rhizobiocin from Rhizobium leguminosarum bv. Viciae strain 306. Can J Microbiol 47:495–502PubMedCrossRefPubMedCentralGoogle Scholar
  231. Verma JP, Yadav J, Tiwari KN (2012) Enhancement of nodulation and yield of chickpea by co-inoculation of indigenous Mesorhizobium spp. and plant growth–promoting rhizobacteria in Eastern Uttar Pradesh. Comm Soil Sci Plant Anal 43:605–621CrossRefGoogle Scholar
  232. Verma JP, Yadav J, Tiwaric KN, Kumarb A (2013) Effect of indigenous Mesorhizobium spp. and plant growth promoting rhizobacteria on yields and nutrients uptake of chickpea (Cicer arietinum L.) under sustainable agriculture. Ecol Eng 51:282–286CrossRefGoogle Scholar
  233. Vicario JC, Primo ED, Dardanelli MS, Giordano W (2016) Promotion of peanut growth by co-inoculation with selected strains of Bradyrhizobium and Azospirillum. J Plant Growth Regul 35:413–419CrossRefGoogle Scholar
  234. Vieira JD, da Silva PRD, Stefenon VM (2017) In vitro growth and indoleacetic acid production by Mesorhizobium loti SEMIA806 and SEMIA816 under the influence of copper ions. Microbiol Res 8:57–58CrossRefGoogle Scholar
  235. Villar-Igea M, Velázquez E, Rivas R, Willems A, van Berkum P, Trujillo ME, Mateos PF, Gillis M, Martínez-Molina E (2007) Phosphate solubilizing rhizobia originating from Medicago, Melilotus and Trigonella grown in a Spanish soil. In: Velázquez E, Rodríguez-Barrueco C (eds) First international meeting on microbial phosphate Solubilization. Springer, Heidelberg, pp 149–156CrossRefGoogle Scholar
  236. Vincent JM (1970) The cultivation, isolation and maintenance of rhizobia. In: Vincent JM (ed) A manual for the practical study of root-nodule. Blackwell Scientific Publications, Oxford, pp 1–13Google Scholar
  237. Wang Y, Zhang Z, Zhang P, Cao Y, Hu T, Yang P (2016) Rhizobium symbiosis contribution to short-term salt stress tolerance in alfalfa (Medicago sativa L.). Plant Soil 402:247–261CrossRefGoogle Scholar
  238. Wdowiak-Wróbel S, Małek W (2016) Properties of Astragalus sp. microsymbionts and their putative role in plant growth promotion. Arch Microbiol 198:793–801PubMedPubMedCentralCrossRefGoogle Scholar
  239. Wolde-meskel E, Heerwaarden J, Abdulkadir B, Kassa S, Aliyi I, Degefu T, Wakwey K, Kanampiu F, Giller KE (2018) Additive yield response of chickpea (Cicer arietinum L.) to Rhizobium inoculation and phosphorus fertilizer across smallholder farms in Ethiopia. Agric Ecosyst Environ 261:144–152PubMedPubMedCentralCrossRefGoogle Scholar
  240. Wright W, Little J, Liu F, Chakraborty R (2013) Isolation and structural identification of the trihydroxamate siderophore vicibactin and its degradative products from Rhizobium leguminosarum ATCC 14479 bv. trifolii. Bio Metals 26:271–283Google Scholar
  241. Xu L, Shi J, Li C, Zhu S, Li B (2017) Rhizobium hedysari sp. nov., a novel species isolated from a root nodule of Hedysarum multijugum in China. Antonie Van Leeuwenhoek 110:479–488PubMedCrossRefPubMedCentralGoogle Scholar
  242. Xu L, Zhang Y, Mohamad OA, Jiang C, Friman VP (2018) Mesorhizobium zhangyense sp. nov., isolated from wild Thermopsis lanceolate in northwestern China. Arch Microbiol 200:603–610PubMedCrossRefPubMedCentralGoogle Scholar
  243. Yadav J, Verma JP (2014) Effect of seed inoculation with indigenous Rhizobium and plant growth promoting rhizobacteria on nutrients uptake and yields of chickpea (Cicer arietinum L.). Eur J Soil Biol 63:70–77CrossRefGoogle Scholar
  244. Yan J, Li Y, Yan H, Chen WF, Zhang X, Wang ET, Han XZ, Xie ZH (2017a) Agrobacterium salinitolerans sp. nov., a saline-alkaline-tolerant bacterium isolated from root nodule of Sesbania cannabina. Int J Syst Evol Microbiol 67:1906–1911PubMedCrossRefPubMedCentralGoogle Scholar
  245. Yan J, Yan H, Liu LX, Chen WF, Zhang XX, Verástegui-Valdés MM, Wang ET, Han XZ (2017b) Rhizobium hidalgonense sp. nov., a nodule endophytic bacterium of Phaseolus vulgaris in acid soil. Arch Microbiol 199:97–104PubMedCrossRefPubMedCentralGoogle Scholar
  246. Yanni YG, Dazzo FB (2010) Enhancement of rice production using endophytic strains of Rhizobium leguminosarum bv. trifolii in extensive field inoculation trials within the Egypt Nile delta. Plant Soil 336:129–142CrossRefGoogle Scholar
  247. Yanni YG, Rizk RY, Corich V, Squartini A, Ninke K, Philip-Hollingsworth S, Orgambide G, de Bruijn F, Stoltzfus J, Buckley D, Schmidt TM, Mateos PF, Ladha JK, Dazzo FB (1997) Natural endophytic association between Rhizobium leguminosarum bv. trifolii and rice roots and assessment of its potential to promote rice growth. In: Ladha JK, de Bruijn FJ, Malik KA (eds) Opportunities for biological nitrogen fixation in rice and other non-legumes. Developments in plant and soil sciences, vol 75. Springer, Dordrecht, pp 99–114CrossRefGoogle Scholar
  248. Yanni YG, Rizk RY, Abd El-Fattah FK, Squartini A, Corich V, Giacomini A, de Bruijn F, Rademaker J, Maya-Flores J, Ostrom P, Vega-Hernandez M, Hollingsworth RI, Martínez-Molina E, Mateos P, Velázquez E, Wopereis J, Triplett E, Umali-García M, Anarna JA, Rolfe BG, Ladha JK, Hill J, Mujoo R, Ng PK, Dazzo FB (2001) The beneficial plant growth-promoting association of Rhizobium leguminosarum bv. trifolii with rice roots. Australian J Plant Physiol 28:845–870Google Scholar
  249. Yanni YG, Dazzo FB, Squartini A, Zanardo M, Zidan MI, Elsadany AEY (2016) Assessment of the natural endophytic association between Rhizobium and wheat and its ability to increase wheat production in the Nile delta. Plant Soil 407:367–383CrossRefGoogle Scholar
  250. Yanni Y, Zidan M, Dazzo F, Rizk R, Mehesen A, Abdelfattah F, Elsadany A (2018) Enhanced symbiotic performance and productivity of drought stressed common bean after inoculation with tolerant native rhizobia in extensive fields. Agric Ecosyst Environ 232:119–128CrossRefGoogle Scholar
  251. Yuhashi K, Ichikawa N, Ezura H, Akao S, Minakawa Y, Nukui N, Yasuta T, Minamisawa K (2000) Rhizobitoxine production by Bradyrhizobium elkanii enhances nodulation and competitiveness on Macroptilium atropurpureum. Appl Environ Microbiol 66:2658–2663PubMedPubMedCentralCrossRefGoogle Scholar
  252. Yuttavanichakul W, Lawongs P, Wongkaew S, Teaumroong N, Boonkerd N, Nomura N, Tittabutr P (2012) Improvement of peanut rhizobial inoculant by incorporation of plant growth promoting rhizobacteria (PGPR) as biocontrol against the seed borne fungus Aspergillus niger. Biol Control 63:87–97CrossRefGoogle Scholar
  253. Zhang J, Guo C, Chen W, de Lajudie P, Zhang Z, Shang Y, Wang ET (2018) Mesorhizobium wenxiniae sp. nov., isolated from chickpea (Cicer arietinum L.) in China. Int J Syst Evol Microbiol 68:1930–1936PubMedCrossRefPubMedCentralGoogle Scholar
  254. Zhu RF, Tang F, Liu J, Liu FQ, Deng XY, Chen JS (2016) Co-inoculation of arbuscular mycorrhizae and nitrogen fixing bacteria enhance alfalfa yield under saline conditions. Pak J Bot 48:763–769CrossRefGoogle Scholar
  255. Zurdo-Piñeiro JL, Rivas R, Trujillo ME, Vizcaíno N, Carrasco JA, Chamber M, Palomares A, Mateos PF, Martínez-Molina E, Velázquez E (2007) Ochrobactrum cytisi sp. nov., isolated from nodules of Cytisus scoparius in Spain. Int J Syst Evol Microbiol 57:784–788PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Encarna Velázquez
    • 1
    • 2
    Email author
  • Lorena Carro
    • 1
  • José David Flores-Félix
    • 1
  • Esther Menéndez
    • 1
  • Martha-Helena Ramírez-Bahena
    • 1
  • Alvaro Peix
    • 2
    • 3
  1. 1.Departamento de Microbiología y GenéticaUniversidad de SalamancaSalamancaSpain
  2. 2.Unidad Asociada Universidad de Salamanca- CSIC ‘Interacción Planta-Microorganismo’SalamancaSpain
  3. 3.IRNASA-CSICSalamancaSpain

Personalised recommendations