The Continuous Story of Truffle-Plant Interaction

  • Ghoson Mosbah Daba
  • Waill Ahmed Elkhateeb
  • Ting-Chi Wen
  • Paul William ThomasEmail author


Truffles are symbiotic, ectomycorrhizal fungi that grow in the specific climates over a wide range of host plants. Truffles belong to genus Tuber and some species are famous for their high market value. In this chapter, the interaction between the genus Tuber and their host plants was deliberated.


Truffle Tuber Life cycle Host plant 


  1. Aleksandar P, Stanković S, Saljnikov E, Krüger D, Buscot F, Tarkka M, Marjanović Ž (2013) Actinobacteria may influence white truffle (Tuber magnatum, Pico) nutrition, ascocarp degradation and interactions with other soil fungi [J]. Fungal Ecol 6(6):527–538CrossRefGoogle Scholar
  2. Belfiori B, Riccioni C, Tempesta S, Pasqualetti M, Paolocci F, Rubini A (2012) Comparison of ectomycorrhizal communities in natural and cultivated Tuber melanosporum truffle grounds. FEMS Microbiol Ecol 81:547–561CrossRefGoogle Scholar
  3. Bonito G, Smith ME, Nowak M, Healy RA, Guevara G, Cázares E, Kinoshita A, Nouhra ER, Domínguez LS, Tedersoo L, Murat C (2013) Historical biogeography and diversification of truffles in the Tuberaceae and their newly identified southern hemisphere sister lineage. PloS One 8(1):e52765CrossRefGoogle Scholar
  4. Burke R, Cairney J (2002) Laccases and other polyphenol oxidases in ecto-and ericoid mycorrhizal fungi. Mycorrhiza 12:105–116CrossRefGoogle Scholar
  5. Buzzini P, Gasparetti C, Turchetti B, Cramarossa MR, Vaughan-Martini A, Martini A, Pagnoni UM, Forti L (2005) Production of volatile organic compounds (VOCs) by yeasts isolated from the ascocarps of black (Tuber melanosporum Vitt.) and white (Tuber magnatum Pico) truffles. Arch Microbiol 184:187–193CrossRefGoogle Scholar
  6. Callot G (1999) La truffe, la terre, la vie, ed. INRA, París, 210 pGoogle Scholar
  7. Chague´ V, Elad Y, Barakat R, Tudzynski P, Sharon A (2002) Ethylene biosynthesis in Botrytis cinerea. FEMS Microbiol Ecol 40:143–149CrossRefGoogle Scholar
  8. Fassi B, Fontana A (1967) Sintesi micorrizica tra Pinus strobus e Tuber maculatum – I. Micorrize e sviluppo dei semenzali nel secondo anno. Allionia 13:177–186Google Scholar
  9. Frank AB (1885) Uber die auf Wurzelsymbiose beruhende Ernährung gewisser Bäume durch unterirdische Pilze. Ber Dtsch Bot Ges 3:128–145Google Scholar
  10. Frey-Klett P, Garbaye J, Tarkka M (2007) The mycorrhiza helper bacteria revisited. New Phytol 176:22–36CrossRefGoogle Scholar
  11. Fu SF, Wei JY, Chen HW, Liu YY, Lu HY, Chou JY (2015) Indole-3-acetic acid: A widespread physiological code in interactions of fungi with other organisms. Plant Signal Behavior 10(8):e1048052CrossRefGoogle Scholar
  12. Giomaro G, Zambonelli A, Sisti D, Cecchini M, Evangelista V, Stocchi V (2000) Anatomical and morphological characterization of mycorrhizas of five strains of Tuber borchii Vittad. Mycorrhiza 10:107–114CrossRefGoogle Scholar
  13. Hall I, Fitzpatrick N, Miros P, Zambonelli A (2017) Counter-season cultivation of truffles in the southern hemisphere: an update. Ital J Mycol 46:21–36Google Scholar
  14. Italian white truffles auctioned off for over $85K (2017) New York post, November 12Google Scholar
  15. Le Roux C, Tournier E, Lies A, Sanguin H, Chevalier G, Duponnois R, Mousain D, Prin Y (2016) Bacteria of the genus Rhodopseudomonas (Bradyrhizobiaceae): obligate symbionts in mycelial cultures of the black truffles Tuber melanosporum and Tuber brumale. Springer Plus 5:1085–1094CrossRefGoogle Scholar
  16. Le Tacon F, Zeller B, Plain C, Hossann C, Bre´chet C, Robin C (2013) Carbon transfer from the host to Tuber melanosporum mycorrhizas and ascocarps followed using a 13C pulse-labeling technique. PLoS One 8(5):e64626CrossRefGoogle Scholar
  17. Menotta M, Gioacchini A, Amicucci A, Buffalini M, Sisti D, Stocchi V (2004) Headspace solid-phase microextraction with gas chromatography and mass spectrometry in the investigation of volatile organic compounds in an ectomycorrhiza synthesis system. Rapid Commun Mass Spectrom 18:206–210CrossRefGoogle Scholar
  18. Menta C, García-Montero LG, Pinto S, Conti FD, Baroni G, Maresi M (2014) Does the natural “microcosm” created by Tuber aestivum, affect soil microarthropods? A new hypothesis based on Collembola in truffle culture [culture J]. Appl Soil Ecol 84(84):31–37CrossRefGoogle Scholar
  19. Murcia MA, Martinez-Tome M, Jimenez AM, Vera AM, Honrubia M, Parras P (2002) Antioxidant activity of edible fungi (truffles and mushrooms): losses during industrial processing. J Food Prot 65:1614–1622CrossRefGoogle Scholar
  20. Patel S, Rauf A, Khan H, Khalid S, Mubarak MS (2017) Potential health benefits of natural products derived from truffles: a review. Trends Food Sci Technol 70:1–8CrossRefGoogle Scholar
  21. Payen T, Murat C, Bonito G (2014) Truffle phylogenomics: new insights into truffle evolution and truffle life cycle. Adv Bot Res 70:211–234CrossRefGoogle Scholar
  22. Peterson R, Bonfante P (1994) Comparative structure of vesicular arbuscular mycorrhizas and ectomycorrhizas. Plant Soil 159:79–88CrossRefGoogle Scholar
  23. Pinto S, Gatti F, Garcíamontero L, Menta C (2017) Does soil fauna like truffles just as humans do? One-year study of biodiversity in natural brûlés of Tuber aestivum Vittad. [J]. Sci Total Environ 584Google Scholar
  24. Reyna, S., Garcia-Barreda, S., 2014. Black truffle cultivation: a global reality. For. Syst. 23 (2), 317–328.CrossRefGoogle Scholar
  25. Samils N, Olivera A, Danell E, Alexander SJ, Fischer C, Colinas C (2008) The socioeconomic impact of truffle cultivation in rural Spain. Econ Bot 62(3):331–337CrossRefGoogle Scholar
  26. Smith S, Read D (1997) Mycorrhizal symbiosis, Ed 2. Academic Press, LondonGoogle Scholar
  27. Splivallo R, Bossi S, Maffei M, Bonfante P (2007a) Discrimination of truffle fruiting body versus mycelial aromas by stir bar sorptive extraction. Phytochem 68:2584e2598CrossRefGoogle Scholar
  28. Splivallo R, Novero M, Bertea CM, Bossi S, Bonfante P (2007b) Truffle volatiles inhibit growth and induce an oxidative burst in Arabidopsis thaliana. New Phytol 175:417–424CrossRefGoogle Scholar
  29. Splivallo R, Fischer U, Göbel C, Feussner I, Karlovsky P (2009) Truffles regulate plant root morphogenesis via the production of auxin and ethylene. Plant Physiol 150(4):2018–2029CrossRefGoogle Scholar
  30. Splivallo R, Ottonello S, Mello A, Karlovsky P (2011) Truffle volatiles: from chemical ecology to aroma biosynthesis. New Phytol 189:688–699CrossRefGoogle Scholar
  31. Splivallo R, Valdez N, Kirchhoff N, Ona MC, Schmidt JP, Feussner I, Karlovsky P (2012) Intraspecific genotypic variability determines concentrations of key truffle volatiles. New Phytol 194:823–835CrossRefGoogle Scholar
  32. Tarkka M, Piechulla B (2007) Aromatic weapons: truffles attack plants by the production of volatiles. New Phytol 175(3):381–383CrossRefGoogle Scholar
  33. Thoen D, Sougoufara B, Dommergues Y (1990) In vitro mycorrhization of Casuarina and Allocasuarina species by Pisolithus isolates. Can J Bot 86:2537–2542CrossRefGoogle Scholar
  34. Thomas, P., & Büntgen, U. (2019). A risk assessment of Europe’s black truffle sector under predicted climate change. Science of The Total Environment, 655, 27-34.Google Scholar
  35. Ursula K, Francis M (2011) On the road to understanding truffles in the underground. Fungal Genet Biol 48(6):555–560CrossRefGoogle Scholar
  36. Vita F, Taiti C, Pompeiano A, Bazihizina N, Lucarotti V, Mancuso S, Alpi A (2015) Volatile organic compounds in truffle (Tuber magnatum Pico): comparison of samples from different regions of Italy and from different seasons. Sci Rep 5:12629CrossRefGoogle Scholar
  37. Wenke K, Kai M, Piechulla B (2010) Belowground volatiles facilitate interactions between plant roots and soil organisms. Planta 231:499–506CrossRefGoogle Scholar
  38. Zambonelli A, Iotti M, Hall I (2015) Current status of truffle cultivation: recent results and future perspectives. Ital J Mycol 44(1):31–40Google Scholar
  39. Zeppa S, Gioacchini AM, Guidi C, Guescini M, Pierleoni R, Zambonelli A, Stocchi V (2004) Determination of specific volatile organic compounds synthesised during Tuber borchii fruit body development by solid-phase microextraction and gas chromatography/mass spectrometry. Rapid Commun Mass Spectrom 18:199–205CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Ghoson Mosbah Daba
    • 1
  • Waill Ahmed Elkhateeb
    • 1
  • Ting-Chi Wen
    • 2
  • Paul William Thomas
    • 3
    • 4
    Email author
  1. 1.Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries Researches DivisionNational Research CenterGizaEgypt
  2. 2.The Engineering Research Center of Southwest Bio–Pharmaceutical Resources, Ministry of EducationGuizhou UniversityGuiyangChina
  3. 3.Mycorrhizal Systems LtdLancashireUK
  4. 4.University of StirlingStirlingUK

Personalised recommendations