Advertisement

Diversity of Arbuscular Mycorrhizal Fungi in Relation to Sustainable Plant Production Systems

  • Manju M. Gupta
  • Dipanti Chourasiya
  • Mahaveer P. Sharma
Chapter

Abstract

Arbuscular mycorrhizal fungi (AMF) have been suggested as an important component of sustainable plant production systems, where restoration and conservation of resources, including environment, is the mainstay. Present chapter highlights recent developments on AMF diversity with reference to its importance for sustainable production systems. The important aspects of taxonomic, genetic and functional diversity of AMF in relation to host-plant interaction, plant nutrient uptake, growth and productivity benefits along with soil nurturing properties such as aggregation are discussed. Influence of several agronomic practices on diversity of these fungi is reviewed with reference to its potential for future exploitation as a commercial biofertilizer.

Keywords

Arbuscular mycorrhizal fungi AMF diversity Plant responses Soil management practices 

Notes

Acknowledgements

One of us (MMG) duly acknowledges the financial support from the University Grants Commission as a major research project (MRP-MAJOR-BOTA-2013-21235).

References

  1. Aguilar JC, Barea AM (1997) Arbuscular mycorrhizas and biological control of soil-borne plant pathogens – an overview of the mechanisms involved. Mycorrhiza 6:457–464CrossRefGoogle Scholar
  2. Akiyama K, Matsuzaki KI, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435(7043):824CrossRefGoogle Scholar
  3. Angelard C, Colard A, Niculita-Hirzel H, Croll D, Sanders IR (2010) Segregation in a mycorrhizal fungus alters rice growth and symbiosis-specific gene transcription. Curr Biol 20:1216–1221CrossRefPubMedGoogle Scholar
  4. Bagayoko M, George E, Römheld V, Buerkert A (2000) Effects of mycorrhizae and phosphorus on growth and nutrient uptake of millet, cowpea and sorghum on a West African soil. Agr Sci 135(4):399–407CrossRefGoogle Scholar
  5. Barea JM, Pozo MJ, Lopez-Raez JA, Aroca R, Ruíz-Lozano JM, Ferrol N, Azcón-Aguilar C (2013) Arbuscular mycorrhizas and their significance in promoting soil-plant systems sustainability against environmental stresses. Ecol Appl:353–387Google Scholar
  6. Basu S, Rabara RC, Negi S (2018) AMF: the future prospect for sustainable agriculture. Physiol Mol Plant Pathol 105:36–45CrossRefGoogle Scholar
  7. Bedini S, Pellegrino E, Avio L, Pellegrini S, Bazzoffi P, Argese E, Giovannetti M (2009) Changes in soil aggregation and glomalin-related soil protein content as affected by the arbuscular mycorrhizal fungal species Glomus mosseae and Glomus intraradices. Soil Biol Biochem 41(7):1491–1496CrossRefGoogle Scholar
  8. Bender SF, Wagg C, van der Heijden MG (2016) An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability. Trends Ecol Evolut 31(6):440–452CrossRefGoogle Scholar
  9. Blaszkowski J (2012) Glomeromycota. W. Szafer Institute of Botany, Polish Academy of Sciences, KrakówGoogle Scholar
  10. Bonfante P, Genre A (2010) Mechanisms underlying beneficial plant–fungus interactions in mycorrhizal symbiosis. Nat Commun 1:48CrossRefPubMedGoogle Scholar
  11. Bouwmeester HJ, Roux C, Lopez-Raez JA, Bécard G (2007) Rhizosphere communication of plants, parasitic plants and AM fungi. Trends Plant Sci 12:224–230CrossRefGoogle Scholar
  12. Brundrett MC (2008). Mycorrhizal associations: the web resource. Date accessed. mycorrhizas. infoGoogle Scholar
  13. Brundrett MC (2017) Global diversity and importance of mycorrhizal and nonmycorrhizal plants. In: Tedersoo L (ed) Biogeography of mycorrhizal symbiosis. Springer, Cham, pp 533–556CrossRefGoogle Scholar
  14. Brundrett MC, Piche Y, Peterson RL (1985) A developmental study of the early stages in vesicular–arbuscular mycorrhiza formation. Can J Bot 63(2):184–194CrossRefGoogle Scholar
  15. Bucking H, Kafle A (2015) Role of arbuscular mycorrhizal fungi in the nitrogen uptake of plants: current knowledge and research gaps. Agronomy 5(4):587–612CrossRefGoogle Scholar
  16. Casazza G, Lumini E, Ercole E, Dovana F, Guerrina M, Arnulfo A, Minuto L, Fusconi A, Mucciarelli M (2017) The abundance and diversity of arbuscular mycorrhizal fungi are linked to the soil chemistry of screes and to slope in the Alpic paleo-endemic Berardia subacaulis. PLoS One 12(2):e0171866.  https://doi.org/10.1371/journal.pone.0171866CrossRefPubMedPubMedCentralGoogle Scholar
  17. Cavagnaro TR, Bender SF, Asghari HR, van der Heijden MG (2015) The role of arbuscular mycorrhizas in reducing soil nutrient loss. Trends Plant Sci 20(5):283–290CrossRefGoogle Scholar
  18. Ceballos I, Ruiz M, Fernández C, Peña R, Rodríguez A, Sanders IR (2013) The In vitro mass-produced model mycorrhizal fungus, Rhizophagus irregularis significantly increases yields of the globally important food security crop cassava. PLoS One 8(8):70633.  https://doi.org/10.1371/journal.pone.0070633CrossRefGoogle Scholar
  19. Chun LY, Zhang F, Zhang JD, Srivastava AK, Wu SQ, Zou NY (2018) Mycorrhiza stimulates root-hair growth and IAA synthesis and transport in trifoliate orange under drought stress. Sci Rep 8:1978CrossRefGoogle Scholar
  20. Clark RB, Zeto SK (2000) Mineral acquisition by arbuscular mycorrhizal plants. J Plant Nutr 23(7):867–902CrossRefGoogle Scholar
  21. Cordier C, Pozo MJ, Barea JM, Gianinazzi S, Gianinazzi–Pearson V (1998) Cell defense responses associated with localized and systemic resistance to Phytophthora induced in tomato by an arbuscular mycorrhizal fungus. Mol Plant-Microbe Interact 11:1017–1028CrossRefGoogle Scholar
  22. Dai M, Hamel C, Bainard LD, Arnaud MS, Grant CA, Lupwayi NZ, Lemke R (2014) Negative and positive contributions of arbuscular mycorrhizal fungal taxa to wheat production and nutrient uptake efficiency in organic and conventional systems in the Canadian prairie. Soil Biol Biochem 74:156–166CrossRefGoogle Scholar
  23. Davison J, Moora M, Opik M, Adholeya A, Ainsaar L, Ba A, Johnson NC (2015) Global assessment of arbuscular mycorrhizal fungal diversity reveals very low endemism. Science 349(6251):970–973CrossRefPubMedGoogle Scholar
  24. Dodd JC (2000) The role of arbuscular mycorrhizal fungi in agro- and natural ecosystems. Out Agric 29:55–62CrossRefGoogle Scholar
  25. Dong Y, Zhu YG, Smith FA, Wang Y, Chen B (2008) Arbuscular mycorrhiza enhanced arsenic resistance of both white clover (Trifolium repens Linn.) and ryegrass (Lolium perenne L.) plants in an arsenic-contaminated soil. Environ Pollut 155(1):174–181CrossRefPubMedGoogle Scholar
  26. Feddermann N, Finlay R, Boller T, Elfstrand M (2010) Functional diversity in arbuscular mycorrhiza—the role of gene expression, phosphorus nutrition and symbiotic efficiency. Fungal Ecol 3:1–8.  https://doi.org/10.1016/j.funeco.2009.07.003CrossRefGoogle Scholar
  27. Gianinazzi SG (2014) Domestication of beneficial soil microorganisms: an innovative technology for agriculture. Int Congr Mycorrhizae, Marrakesh, p 26Google Scholar
  28. Giri B, Mukerji KG (2004) Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake. Mycorrhiza 14(5):307–312CrossRefPubMedGoogle Scholar
  29. Graham JH, Abbott LK (2000) Wheat responses to aggressive and non-aggressive arbuscular mycorrhizal fungi. Plant Soil 220(1–2):207–218CrossRefGoogle Scholar
  30. Groth DE, Martinson CA (1983) Increased endomycorrhizal infection of maize and soybeans after soil treatment and metalaxyl. Plant Dis 67(1):377–378Google Scholar
  31. Gupta M (2017) Differential response of arbuscular mycorrhizal sporocarps in long-term trap culturing. Phytomorphology 67(3&1):1–11Google Scholar
  32. Gupta MM, Naqvi NS, Singh VK (2014) The state of arbuscular mycorrhizal fungal diversity in India: an analysis. Sydowia 66:265–288Google Scholar
  33. Gupta MM, Naqvi N, Kumar P (2017) iAMF–centralized database of arbuscular mycorrhizal distribution, phylogeny and taxonomy. J Recent Adv Appl Sci 30(1)Google Scholar
  34. Gupta MM, Aggarwal A, Asha (2018a) From mycorrhizosphere to rhizosphere microbiome: the paradigm shift. In: Root biology. Springer, Cham, pp 487–500CrossRefGoogle Scholar
  35. Gupta MM, Gupta A, Kumar P (2018b) Urbanization and biodiversity of arbuscular mycorrhizal fungi: the case study of Delhi, India. Rev Biol Trop 66(4):1563–1574CrossRefGoogle Scholar
  36. Harinikumar KM, Bagyaraj DJ (1989) Effect of cropping sequence, fertilizers and farmyard manure on vesicular-arbuscular mycorrhizal fungi in different crops over three consecutive seasons. Biol Fertil Soils 7(2):173–175CrossRefGoogle Scholar
  37. Harrier LA, Watson CA (2004) The potential role of arbuscular mycorrhizal (AM) fungi in the bioprotection of plants against soil-borne pathogens in organic and/or other sustainable farming systems. Pest Manag Sci 60:149–157.  https://doi.org/10.1002/ps.820CrossRefPubMedGoogle Scholar
  38. Hart MM, Forsythe JA (2012) Using arbuscular mycorrhizal fungi to improve the nutrient quality of crops; nutritional benefits in addition to phosphorus. Sci Hortic 148:206–214CrossRefGoogle Scholar
  39. Hart MM, Antunes PM, Abbott LK (2017) Unknown risks to soil biodiversity from commercial fungal inoculants. Nat Ecol Evol 1(4):0115CrossRefGoogle Scholar
  40. Hawkins H (2001) Reduced15N-nitrogen transport through arbuscular mycorrhizal hyphae to Triticum aestivum L. supplied with ammonium vs. nitrate nutrition. Ann Bot 87:303–311CrossRefGoogle Scholar
  41. Hijri M (2016) Analysis of a large dataset of mycorrhiza inoculation field trials on potato shows highly significant increases in yield. Mycorrhiza 26(3):209–214CrossRefPubMedGoogle Scholar
  42. Hodge A, Campbell CD, Fitter AH (2001) An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 413(6853):297CrossRefPubMedGoogle Scholar
  43. Hooper L, Cassidy A (2006) A review of the health care potential of bioactive compounds. J Sci Food Agric 86(12):1805–1813CrossRefGoogle Scholar
  44. Imadi SR, Shazadi K, Gul A, Hakeem KR (2016) Sustainable crop production system. In: Plant soil microbes, pp 103–116CrossRefGoogle Scholar
  45. Jacott CN, Murray JD, Ridout CJ (2017) Trade-offs in arbuscular mycorrhizal symbiosis: disease resistance, growth responses and perspectives for crop breeding. Agronomy 7(4):75CrossRefGoogle Scholar
  46. Joner EJ, Leyval C (1997) Uptake of 109 Cd by roots and hyphae of a Glomus mosseae/Trifolium subterraneum mycorrhiza from soil amended with high and low concentrations of cadmium. New Phytol 135(2):353–360CrossRefGoogle Scholar
  47. Kier DL (2015) Review of genotoxicity biomonitoring studies of glyphosate-based formulations. Crit Rev Toxicol 45(3):209–218CrossRefPubMedPubMedCentralGoogle Scholar
  48. Koide RT, Elliott G (1989) Cost, benefit and efficiency of the vesicular-arbuscular mycorrhizal symbiosis. Funct Ecol 3(2):252–255Google Scholar
  49. Kucey RMN, Bonetti R (1988) VA mycorrhizae and soil fertility. Can J Soil Sci 68:143–149CrossRefGoogle Scholar
  50. Leake J, Johnson D, Donnelly D, Muckle G, Boddy L, Read D (2004) Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Can J Bot 82(8):1016–1045CrossRefGoogle Scholar
  51. Lee EH, Eo JK, Ka KH, Eom AH (2013) Diversity of arbuscular mycorrhizal fungi and their roles in ecosystems. Mycobiology 41(3):121–125CrossRefPubMedPubMedCentralGoogle Scholar
  52. Lehmann A, Rillig MC (2015) Arbuscular mycorrhizal contribution to copper, manganese and iron nutrient concentrations in crops–a meta-analysis. Soil Boil Biochem 81:147–158CrossRefGoogle Scholar
  53. Lehmann A, Veresoglou SD, Leifheit EF, Rillig MC (2014) Arbuscular mycorrhizal influence on zinc nutrition in crop plants–a meta-analysis. Soil Boil Biochem. 69:123–131CrossRefGoogle Scholar
  54. Leifheit EF, Veresoglou SD, Lehmann A, Morris EK, Rillig MC (2014) Multiple factors influence the role of arbuscular mycorrhizal fungi in soil aggregation—a meta-analysis. Plant Soil 374(1–2):523–537CrossRefGoogle Scholar
  55. Lenoir I, Lounes-Hadj Sahraoui A, Fontaine J (2016) Arbuscular mycorrhizal fungal-assisted phytoremediation of soil contaminated with persistent organic pollutants: a review. Eur J Soil Sci 67(5):624–640CrossRefGoogle Scholar
  56. Liu J, Maldonado-Mendoza I, Lopez-Meyer M, Cheung F, Town CD, Harrison MJ (2007) Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots. Plant J 50:529–544CrossRefPubMedGoogle Scholar
  57. López-Ráez JA, Charnikhova T, Fernández I, Bouwmeester H, Pozo MJ (2011) Arbuscular mycorrhizal symbiosis decreases strigolactone production in tomato. J Plant Physiol 168(3):294–297CrossRefPubMedGoogle Scholar
  58. Mäder P, Edenhofer S, Boller T, Wiemken A, Niggli U (2000) Arbuscular mycorrhizae in a long-term field trial comparing low-input (organic, biological) and high-input (conventional) farming systems in a crop rotation. Biol Fertil Soils 31(2):150–156CrossRefGoogle Scholar
  59. Mäder P, Fliessbach A, Dubois D, Gunst L, Fried P, Niggli U (2002) Soil fertility and biodiversity in organic farming. Science 296(5573):1694–1697CrossRefPubMedGoogle Scholar
  60. Manjhi BK, Pal S, Meena SK, Yadav RS, Farooqui A, Singh HB. & Rakshit A(2016) Mycorrhizoremediation of nickel and cadmium: a promising technology. Nat Environ Pollut Technol 15(2):647Google Scholar
  61. Marschner P, Timonen S (2005) Interactions between plant species and mycorrhizal colonization on the bacterial community composition in the rhizosphere. Appl Soil Ecol 28(1):23–36CrossRefGoogle Scholar
  62. Mathimaran N, Ruh R, Jama B, Verchot L, Frossard E, Jansa J (2007) Impact of agricultural management on arbuscular mycorrhizal fungal communities in Kenyan ferralsol. Agric Ecosyst Environ 119(1–2):22–32CrossRefGoogle Scholar
  63. Mcgonigle TP, Miller MH (1996) Development of fungi below ground in association with plants growing in disturbed and undisturbed soils. Soil Biol Biochem 28(3):263–269CrossRefGoogle Scholar
  64. Menéndez AB, Scervino JM, Godeas AM (2001) Arbuscular mycorrhizal populations associated with natural and cultivated vegetation on a site of Buenos Aires province, Argentina. Biol Fertil Soils 33(5):373–381CrossRefGoogle Scholar
  65. Menge JA, Johnson ELV, Platt RG (1978) Mycorrhizal dependency of several citrus cultivars under three nutrient regimes. New Phytol 81(3):553–559CrossRefGoogle Scholar
  66. Morton JB (1988) Taxonomy of VA mycorrhizal fungi: classification, nomenclature, and identification. Mycotaxon 32:267–324Google Scholar
  67. Morton JB, Benny GL (1990) Revised classification of arbuscular mycorrhizal fungi (Zygomycetes): a new order, Glomales, two new suborders, Glomineae and Gigasporineae, and two new families, Acaulosporaceae and Gigasporaceae, with an emendation of Glomaceae. Mycotaxon 37:471–491Google Scholar
  68. Muchovej JJ, Muchovej RM, Gonçalves EJ (1991) Effect of kind and method of fungicidal treatment of bean seed on infections by the VA-mycorrhizal fungus Glomus macrocarpum and by the pathogenic fungus Fusarium solani. Plant Soil 132(1):47–51CrossRefGoogle Scholar
  69. Muller A, Ngwene B, Peiter E, George E (2017) Quantity and distribution of arbuscular mycorrhizal fungal storage organs within dead roots. Mycorrhiza 27(3):201–210CrossRefPubMedGoogle Scholar
  70. Mulligan MF, Smucker AJM, Safir GF (1985) Tillage modifications of dry edible bean root colonization by VAM fungi. Agron J 77:140–144CrossRefGoogle Scholar
  71. Munkvold L, Kjøller R, Vestberg M, Rosendahl S, Jakobsen I (2004) High functional diversity within species of arbuscular mycorrhizal fungi. New Phytol 164:357–364.  https://doi.org/10.1111/j.1469-8137.2004.01169.xCrossRefGoogle Scholar
  72. Murillo-Williams A, Pedersen P (2008) Arbuscular mycorrhizal colonization response to three seed-applied fungicides. Agron J 100:795–800CrossRefGoogle Scholar
  73. Nichols KA (2008) Indirect contributions of AM fungi and soil aggregation to plant growth and protection. In: Siddiqui ZA, Akhtar MS, Futai K (eds) Mycorrhizae: sustain Agric for. Springer, Berlin, pp 177–194CrossRefGoogle Scholar
  74. Oehl F, Sieverding E, Ineichen K, Mader P, Boller T, Wiemken A (2003) Impact of land use intensity on the species diversity of arbuscular mycorrhizal fungi in agro ecosystems of Central Europe. Appl Environ Microbiol 69:2816–2824CrossRefPubMedPubMedCentralGoogle Scholar
  75. Oehl F, Sieverding E, Mäder P, Dubois D, Ineichen K, Boller T, Wiemken A (2004) Impact of long-term conventional and organic farming on the diversity of arbuscular mycorrhizal fungi. Oecologia 138:574–583CrossRefPubMedGoogle Scholar
  76. Opik M, Metsis M, Daniell TJ, Zobel M, Moora M (2009) Large-scale parallel 454 sequencing reveals host ecological group specificity of arbuscular mycorrhizal fungi in a boreonemoral forest. New Phytol 184:424–437CrossRefPubMedGoogle Scholar
  77. Öpik M, Vanatoa A, Vanatoa E, Moora M, Davison J, Kalwij JM, Zobel M (2010) The online database Maarj AM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol 188(1):223–241CrossRefPubMedGoogle Scholar
  78. Öpik M, Davison J, Moora M, Zobel M (2013) DNA-based detection and identification of Glomeromycota: the virtual taxonomy of environmental sequences. Botany 92(2):135–147CrossRefGoogle Scholar
  79. Oyewole OB, Olawuyi JO, Odebode CA, Abiala AM (2017) Influence of Arbuscular mycorrhiza fungi (AMF) on drought tolerance and charcoal rot disease of cowpea. Biotechnol Rep 14:8–15CrossRefGoogle Scholar
  80. Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6(10):763CrossRefPubMedGoogle Scholar
  81. Pellegrino E, Bedini S (2014) Enhancing ecosystem services in sustainable agriculture: biofertilization and biofortification of chickpea (Cicer arietinum L.) by arbuscular mycorrhizal fungi. Soil Biol Biochem 68:429–439CrossRefGoogle Scholar
  82. Querejeta J, Egerton-Warburton LM, Allen MF (2009) Topographic position modulates the mycorrhizal response of oak trees to interannual rainfall variability. Ecology 90(3):649–662CrossRefPubMedGoogle Scholar
  83. Remy W, Taylor TN, Hass H, Kerp H (1994) Four hundred-million-year-old vesicular arbuscular mycorrhizae. Proc Natl Acad Sci U S A 91(25):11841–11843CrossRefPubMedPubMedCentralGoogle Scholar
  84. Rich MK, Nouri E, Courty PE, Reinhardt D (2017) Diet of arbuscular mycorrhizal fungi: bread and butter? Trends Plant Sci 22(8):652–660CrossRefPubMedGoogle Scholar
  85. Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171(1):41–53CrossRefPubMedGoogle Scholar
  86. Rillig MC, Wright S, Shaw MR, Field CB (2002) Artificial climate warming positively affects arbuscular mycorrhizae but decreases soil aggregate water stability in an annual grassland. Oikos 97(1):52–58CrossRefGoogle Scholar
  87. Rillig MC, Sosa-Hernández MA, Roy J, Aguilar-Trigueros CA, Vályi K, Lehmann A (2016) Towards an integrated mycorrhizal technology: harnessing mycorrhiza for sustainable intensification in agriculture. Front Plant Sci 7:1625CrossRefPubMedPubMedCentralGoogle Scholar
  88. Rosikiewicz P, Bonvin J, Sanders IR (2017) Cost-efficient production of in vitro Rhizophagus irregularis. Mycorrhiza 27(5):477–486CrossRefPubMedPubMedCentralGoogle Scholar
  89. Ryan HM, Van Herwaarden FA, Jo Angus FJ, John A, Kirkegaard AJ (2005) Reduce growth of autumn-sown wheat in a low-P soil is associated with high colonisation by arbuscular mycorrhizal fungi. Plant Soil 270:275–286CrossRefGoogle Scholar
  90. Schüßler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105(12):1413–1421CrossRefGoogle Scholar
  91. Schutzendubel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Eexp Bot 53(372):1351–1365Google Scholar
  92. Schwartz MW, Hoeksema JD, Gehring CA, Klironomos JN, Johnson NC et al (2006) The promise and the potential consequences of the global transport of mycorrhizal fungal inoculum. Ecol Lett 9:501–515CrossRefPubMedGoogle Scholar
  93. Seeram NP (2008) Berry fruits: compositional elements, biochemical activities, and the impact of their intake on human health, performance, and disease. J Agric Food Chem 56:627–629CrossRefPubMedGoogle Scholar
  94. Senés-Guerrero C, Schüßler A (2016) A conserved arbuscular mycorrhizal fungal core-species community colonizes potato roots in the Andes. Fungal Divers 77(1):317–333CrossRefGoogle Scholar
  95. Sharma MP, Adholeya A (2015) Parameters for selecting efficient arbuscular mycorrhizal fungi for plants under microcosm conditions. Proc Nat Acad Sci: Ser B Biol Sci 85:77–83Google Scholar
  96. Sharma MP, Buyer JS (2015) Comparison of biochemical and microscopic methods for quantification of mycorrhizal fungi in soil and roots. App Soil Ecol 95:86–89CrossRefGoogle Scholar
  97. Sharma MP, Gupta S, Sharma SK, Vyas AK (2012) Effect of tillage and crop sequences on arbuscular mycorrhizal symbiosis and soil enzyme activities in soybean (Glycine max L. Merril) rhizosphere. Indian J Agric Sci 82:25–30Google Scholar
  98. Siddiqui ZA, Pichtel J (2008) Mycorrhizae: an overview. In: Mycorrhizae: sustainable agriculture and forestry. Springer, Dordrecht, pp 1–35CrossRefGoogle Scholar
  99. Sieverding E (1990) Ecology of VAM fungi in tropical agrosystems. Agric Ecosyst Environ 29:369–390CrossRefGoogle Scholar
  100. Silva SD, Siqueira JO, Soares CRFS (2006) Mycorrhizal fungi influence on brachiaria grass growth and heavy metal extraction in a contaminated soil. Pesqu Agropecu Bras 41(12):1749–1757CrossRefGoogle Scholar
  101. Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic Press, LondonGoogle Scholar
  102. Smith S, Read D (2008) Colonization of roots and anatomy of arbuscular mycorrhiza. Mycorrhizal Symbiosis. Academic Press, London, pp 42–90Google Scholar
  103. Smith FA, Smith SE (1997) Tansley review no. 96 structural diversity in (vesicular)–arbuscular mycorrhizal symbioses. New Phytol 137(3):373–388CrossRefGoogle Scholar
  104. Smith SE, Facelli E, Pope S, Smith FA (2010) Plant performance in stressful environments: interpreting new and established knowledge of the roles of arbuscular mycorrhizas. Plant Soil 326(1–2):3–20CrossRefGoogle Scholar
  105. Solaiman ZM, Abbott LK, Varma A (eds) (2014) Mycorrhizal fungi: sustainable Agriculture land restoration (Vol. 41). Springer, Heidelberg/BerlinGoogle Scholar
  106. Spatafora JW, Chang Y, Benny GL, Lazarus K, Smith ME, Berbee ML, James TY (2016) A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 108(5):1028–1046CrossRefPubMedPubMedCentralGoogle Scholar
  107. Stan SD, Kar S, Stoner GD, Singh SV (2008) Bioactive food components and cancer risk reduction. J Cell Biochem 104:339–356CrossRefPubMedGoogle Scholar
  108. Takanishi I, Ohtomo R, Hayatsu M, Saito M (2009) Short-chain polyphosphate in arbuscular mycorrhizal roots colonized by Glomus spp.: a possible phosphate pool for host plants. Soil Biol Biochem 41(7):1571–1573CrossRefGoogle Scholar
  109. Tani C, Ohtomo R, Osaki M, Kuga Y, Ezawa T (2009) Polyphosphate synthesizing activity in extraradical hyphae of an arbuscular mycorrhizal fungus: ATP-dependent but proton gradient independent synthesis. Appl Environ Microbiol 75:7044–7050CrossRefPubMedPubMedCentralGoogle Scholar
  110. Taylor J, Helgason, T, Opik, M (2017). Chapter 1: Molecular community ecology of arbuscular mycorrhizal Fungi: its organization and role in the Ecosystem, John (editor James D & White FJ Edition). pp 1–26.  https://doi.org/10.1201/9781315119496-2Google Scholar
  111. Tisdall JM (1991) Fungal hyphae and structural stability of soil. Soil Res 29(6):729–743CrossRefGoogle Scholar
  112. Tisserant E, Kohler A, Dozolme-Seddas P, Balestrini R, Benabdellah K, Colard A, Ferrol N (2012) The transcriptome of the arbuscular mycorrhizal fungus Glomus intraradices (DAOM 197198) reveals functional tradeoffs in an obligate symbiont. New Phytol 193(3):755–769CrossRefPubMedGoogle Scholar
  113. Turk MA, Assaf TZ, Hameed KM, Al-Tawaha AM (2006) Significance of mycorrhizae. World J Agric Sci 2(1):16–20Google Scholar
  114. Van der Heijden GAM, Martin MF, Selosse AM, Sanders RI (2015) Mycorrhizal ecology and evolution: the past, the present, and the future. New Phtol 205(4):1406–1423CrossRefGoogle Scholar
  115. Verbruggen E, Roling WFM, Gamper HA, Kowalchuk GA, Verhoef HA, van der Heijden MGA (2010) Positive effects of organic farming on below-ground mutualists: large-scale comparison of mycorrhizal fungal communities in agricultural soils. New Phytol 186:968–979CrossRefPubMedGoogle Scholar
  116. Wright SF, Upadhyaya A (1996) Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi. Soil Sci 161(9):575–586CrossRefGoogle Scholar
  117. Yang Y, Liang Y, Han X, Chiu TY, Ghosh A, Chen H, Tang M (2016) The roles of arbuscular mycorrhizal fungi (AMF) in phytoremediation and tree-herb interactions in Pb contaminated soil. Sci Rep 6:20469CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Manju M. Gupta
    • 1
  • Dipanti Chourasiya
    • 2
  • Mahaveer P. Sharma
    • 2
  1. 1.Sri Aurobindo College, Delhi UniversityNew DelhiIndia
  2. 2.ICAR-Indian Institute of Soybean ResearchIndoreIndia

Personalised recommendations