Advertisement

Microbe-Based Novel Biostimulants for Sustainable Crop Production

  • Rahul Singh Rajput
  • Ratul Moni Ram
  • Anukool Vaishnav
  • Harikesh Bahadur Singh
Chapter

Abstract

The emerging status and scope of microbial products for better plant growth and prevention of diseases have attracted attention of researchers, industrialists to promote this field and farmers to utilize them as microbial stimulants. The hazardous impact of chemical fungicides in our ecosystem can also be mitigated through these strategies. Owing to the multifarious applications of biostimulants, agriculturally important microorganisms (AIMs) have been incorporated in agricultural system as biofertilizers and biopesticides. AIMs employed multiple mechanisms including nutrient solubilization, production of siderophores, phytohormone, antimicrobial compounds and volatiles, ACC deaminase and exopolysaccharide to work as biostimulant for alleviation of abiotic and biotic stresses in plants. In the present chapter, a comprehensive study on microbial biostimulants has been emphasized to confer their growth promoting and stress alleviation activities in plants. This would surely facilitate in a profound perception about mechanism of the plant-microbe interaction. Once a better knowledge developed about the governing action mechanisms of the microbe-based biostimulants is made, it will be easy to target next generation of biostimulants which may have multitargeted approach.

Keywords

AIMs Biostimulants Biofertilizer Biopesticide Plant growth promotion 

Notes

Acknowledgement

RSR and AV are grateful to UGC and SERB-NPDF (PDF/2017/000689), respectively, for providing financial assistance. HB Singh is grateful to DST for allocation of funds (BT/PR5990/AGR/5/587/2012).

References

  1. Abaid-Ullah M, Hassan MN, Jamil M, Brader G, Shah MK, Sessitsch A, Hafeez FY (2015) Plant growth promoting rhizobacteria: an alternate way to improve yield and quality of wheat (Triticum aestivum). Int J Agric Biol 17:51–60Google Scholar
  2. Aguado-Santacruz GA, Moreno-Gomez B, Jimenez-Francisco B, Garcia-Moya E, Preciado-Ortiz RE (2012) Impact of the microbial siderophores and phytosiderophores on the iron assimilation by plants: a synthesis. Rev Fitotec Mex 35(1):9–21Google Scholar
  3. Ahanger MA, Hashem A, Abd-Allah EF, Ahmad P (2014) Arbuscular mycorrhiza in crop improvement under environmental stress. In: Emerging technologies and management of crop stress tolerance, vol 2, pp 69–95CrossRefGoogle Scholar
  4. Ahmad M, Zahir ZA, Asghar HN, Asghar M (2011) Inducing salt tolerance in mung bean through co-inoculation with rhizobia and plant-growth-promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate deaminase. Can J Microbiol 57:578–589CrossRefPubMedGoogle Scholar
  5. Ahmad P, Hashem A, Abd-Allah EF, Alqarawi AA, John R, Egamberdieva D (2015) Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L) through antioxidative defense system. Front Plant Sci 6:868PubMedPubMedCentralGoogle Scholar
  6. Ahmad M, Nadeem SM, Naveed M, Zahir ZA (2016) Potassium-solubilizing bacteria and their application in agriculture. In: Potassium solubilizing microorganisms for sustainable agriculture. Springer, New DelhiGoogle Scholar
  7. Alabouvette C (1999) Fusarium wilt suppressive soils: an example of disease-suppressive soils. Aust Plant Pathol 28:57–64CrossRefGoogle Scholar
  8. Alabouvette C, Rouxel F, Louvet J (1979) Characteristics of Fusarium wilt-suppressive soils and prospects for their utilization in biological control. In: Soil-borne plant pathogens. Academic, New York, pp 165–182Google Scholar
  9. Alami Y, Achouak W, Marol C, Heulin T (2000) Rhizosphere soil aggregation and plant growth promotion of sunflowers by an exopolysaccharide-producing Rhizobium sp. strain isolated from sunflower roots. App Environ Microbiol 66(8):3393–3398CrossRefGoogle Scholar
  10. Ali S, Charles TC, Glick BR (2012) Delay of flower senescence by bacterial endophytes expressing 1-aminocyclopropane-1-carboxylate deaminase. J Appl Microbiol 113:1139–1144CrossRefPubMedGoogle Scholar
  11. Ambethgar V (2009) Potential of entomopathogenic fungi in insecticide resistance management (IRM): a review. J Biopest 2:177–193Google Scholar
  12. Anonymous (2013) Biostimulants market-by active ingredients, applications, crop types & geography- global trends & forecasts to 2018. Markets and markets. http://www.Marketsandmarkets.com/Market-Reports/biostimulantmarket1081.html?gclid=CJfhh9TvorgCFcU5QgodkTMApw
  13. Arshad M, Sharoona B, Mahmood T (2008) Inoculation with Pseudomonas spp. containing ACC deaminase partially eliminate the effects of drought stress on growth, yield and ripening of pea (Pisum sativum L.). Pedosphere 18:611–620CrossRefGoogle Scholar
  14. Asch F, Padham JL (2005) Root associated bacteria suppress symptoms of iron toxicity in lowland rice. In: Tielkes E, Hülsebusch C, Häuser I, Deininger A, Becker K (eds) The global food & product chain – dynamics, innovations, conflicts, strategies. MDD GmbH, Stuttgart, p 276Google Scholar
  15. Ashraf M, Hasnain S, Berge O, Mahmood T (2004) Inoculating wheat seeds with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress. Biol Fertil Soil 40:157–162Google Scholar
  16. Audrain B, Farag MA, Ryu CM, Ghigo JM (2015) Role of bacterial volatile compounds in bacterial biology. FEMS Microbiol Rev 39(2):222–233CrossRefPubMedGoogle Scholar
  17. Babu AG, Kim JD, Oh BT (2013) Enhancement of heavy metal phytoremediation by Alnus firma with endophytic Bacillus thuringiensis GDB-1. J Hazard Mater 250:477–483CrossRefPubMedGoogle Scholar
  18. Barka EA, Nowak J, Clement C (2006) Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans strain PsJN. App Environ Microbiol 72:7246–7252CrossRefGoogle Scholar
  19. Beneduzi A, Ambrosini A, Passaglia LM (2012) Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet Molbiol 35(4):1044–1051Google Scholar
  20. Benhamou N, Garand C, Goulet A (2002) Ability of nonpathogenic Fusarium oxysporum strain Fo47 to induce resistance against Pythium ultimum infection in cucumber. Appl Environ Microbiol 68:4044–4460CrossRefPubMedPubMedCentralGoogle Scholar
  21. Berman-Frank I, Lundgren P, Falkowski P (2003) Nitrogen fixation and photosynthetic oxygen evolution in cyanobacteria. Res Microbiol 154:157–164CrossRefPubMedGoogle Scholar
  22. Bidyarani N, Prasanna R, Babu S, Hossain F, Saxena AK (2016) Enhancement of plant growth and yields in chickpea (Cicer arietinum L.) through novel cyanobacterial and biofilmed inoculants. Microbiol Res 188:97–105CrossRefPubMedGoogle Scholar
  23. Bisen K, Keswani C, Patel JS, Sarma BK, Singh HB (2016) Trichoderma spp.: efficient inducers of systemic resistance in plants. In: Chaudhary DK, Verma A (eds) Microbial-mediated induced systemic resistance in plants. Springer, Singapore, pp 185–195CrossRefGoogle Scholar
  24. Biswas DR, Narayanasamy G (2006) Rock phosphate enriched compost: an approach to improve low-grade Indian rock phosphate. Bioresour Technol 97:2243–2251CrossRefPubMedGoogle Scholar
  25. Bresson J, Varoquaux F, Bontpart T, Touraine B, Vile D (2013) The PGPR strain Phyllobacterium brassicacearum STM196 induces a reproductive delay and physiological changes that result in improved drought tolerance in Arabidopsis. New Phytol 200:558–569CrossRefPubMedGoogle Scholar
  26. Bruinsma J (2017) World agriculture: towards 2015/2030: an FAO study. Routledge, AbingdonGoogle Scholar
  27. Carvalho TLG, Balsemão-Pires E, Saraiva RM, Ferreira PCG, Hemerly AS (2014) Nitrogen signalling in plant interactions with associative and endophytic diazotrophic bacteria. J Exp Bot 65:5631–5642CrossRefPubMedGoogle Scholar
  28. Chandler D, Bailey AS, Tatchell GM, Davidson G, Greaves J, Grant WP (2011) The development, regulation and use of biopesticides for integrated pest management. Philos Trans Royal Soc B 366:1987–1998CrossRefGoogle Scholar
  29. Chen L, Luo S, Li X, Wan Y, Chen J, Liu C (2014) Interaction of Cd hyperaccumulator Solanum nigrum L. and functional endophyte Pseudomonas sp. Lk9 on soil heavy metals uptake. Soil Biol Biochem 68:300–308CrossRefGoogle Scholar
  30. Chen Y, Gozzi K, Yan F, Chai Y (2015) Acetic acid acts as a volatile signal to stimulate bacterial biofilm formation. MBio 6:e00392PubMedPubMedCentralGoogle Scholar
  31. Cheng Z, Woody OZ, McConkey BJ, Glick BR (2012) Combined effects of the plant growth-promoting bacterium Pseudomonas putida UW4 and salinity stress on the Brassica napus proteome. Appl Soil Ecol 61:255–263CrossRefGoogle Scholar
  32. Chiron N, Michelot D (2005) Odeurs des champignons: chimieetroledans les interactions biotiques-une revue. Cryptogamie, Mycologie 26:299–364Google Scholar
  33. Cho K, Toler H, Lee J, Ownley B, Stutz JC, Moore JL, Auge RM (2006) Mycorrhizal symbiosis and response of sorghum plants to combined drought and salinity stresses. J Plant Physiol 163:517–528CrossRefPubMedGoogle Scholar
  34. Cho SM, Kang BR, Han SH, Anderson AJ, Park JY, Lee YH (2008) 2R, 3R-butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. Mol Plant-Microbe Interact 21:1067–1075CrossRefPubMedGoogle Scholar
  35. Choudhary DK, Johri BN (2009) Interactions of Bacillus spp. and plants–with special reference to induced systemic resistance (ISR). Microbiol Res 164(5):493–513CrossRefPubMedGoogle Scholar
  36. Choudhary DK, Johri BN, Prakash A (2008) Volatiles as priming agents that initiate plant growth and defence responses. Curr Sci 10:595–604Google Scholar
  37. Choudhary DK, Kasotia A, Jain S, Vaishnav A, Kumari S, Sharma KP, Varma A (2016) Bacterial-mediated tolerance and resistance to plants under abiotic and biotic stresses. J Plant Growth Regul 35:276–300CrossRefGoogle Scholar
  38. Cohen AC, Bottini R, Piccoli PN (2008) Azospirillum brasilense Sp 245 produces ABA in chemically defined culture medium and increases ABA content in Arabidopsis plants. Plant Growth Regul 54:97–103CrossRefGoogle Scholar
  39. Cornelis P (2010) Iron uptake and metabolism in pseudomonads. Appl Microbiol Biotech 86(6):1637–1645CrossRefGoogle Scholar
  40. Couillerot O, Prigent-Combaret C, Caballero-Mellado J, Moenne-Loccoz Y (2009) Pseudomonas fluorescens and closely-related fluorescent pseudomonads as biocontrol agents of soil-borne phytopathogens. Lett Appl Microbiol 48:505–512CrossRefPubMedGoogle Scholar
  41. Creus CM, Sueldo RJ, Barassi CA (2004) Water relations and yield in Azospirillum-inoculated wheat exposed to drought in the field. Can J Bot 82:273–228CrossRefGoogle Scholar
  42. Creus CM, Graziano M, Casanovas EM, Pereyra MA, Simontacchi M, Puntarulo S, Barassi CA, Lamattina L (2005) Nitric oxide is involved in the Azospirillum brasilense induced lateral root formation in tomato. Planta 221:297–303CrossRefPubMedGoogle Scholar
  43. Cronin D, Moenne-Loccoz Y, Fenton A, Dunne C, Dowling DN, O’gara F (1997) Role of 2, 4-diacetylphloroglucinol in the interactions of the biocontrol pseudomonad strain F113 with the potato cyst nematode Globodera rostochiensis. J Appl Environ Microbiol 63(4):1357–1361Google Scholar
  44. Crowley DE (2006) Microbial siderophores in the plant rhizosphere. In: Barton LL, Abadía J (eds) Iron nutrition in plants and rhizospheric microorganisms. Springer, Dordrecht, pp 169–198CrossRefGoogle Scholar
  45. Datta A, Shrestha S, Ferdous Z, Win CC (2015) Strategies for enhancing phosphorus efficiency in crop production systems. In: Nutrient use efficiency: from basics to advances. Springer, New Delhi, pp 59–71CrossRefGoogle Scholar
  46. de Santiago A, Quintero JM, Avilés M, Delgado A (2011) Effect of Trichoderma asperellum strain T34 on iron, copper, manganese, and zinc uptake by wheat grown on a calcareous medium. Plant Soil 342:97–104CrossRefGoogle Scholar
  47. Dickschat JS, Wenzel SC, Bode HB, Müller R, Schulz S (2004) Biosynthesis of volatiles by the myxobacterium Myxococcus xanthus. Chem Bio Chem 5(6):778–787CrossRefPubMedGoogle Scholar
  48. Dickschat JS, Martens T, Brinkhoff T, Simon M, Schulz S (2005) Volatiles released by a Streptomyces species isolated from the North Sea. Chem Biodivers 2(7):837–865CrossRefPubMedGoogle Scholar
  49. Dimkpa C, Weinand T, Asch F (2009) Plant-rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ 32:1682–1694CrossRefPubMedGoogle Scholar
  50. Dodd IC, Belimov AA, Sobeih WY, Safronova VI, Grierson D, Davies WJ (2005) Will modifying plant ethylene status improve plant productivity in water-limited environments? In: 4th international crop science congressGoogle Scholar
  51. Donald T, Shoshannah ROTH, Deyrup ST, Gloer JB (2005) A protective endophyte of maize: Acremonium zeae antibiotics inhibitory to Aspergillus flavus and Fusarium verticillioides. Mycol Res 109(5):610–618CrossRefGoogle Scholar
  52. Dohroo A, Sharma DR, Dohroo NP (2013) Occurrence of Arbuscular mycorrhizae in rhizospheric soils of different crops and agroclimatic zones of Himachal Pradesh, India. Indian J Agri Res 47(4)Google Scholar
  53. Duffy BK, Défago G (1997) Zinc improves biocontrol of Fusarium crown and root rot of tomato by Pseudomonas fluorescens and represses the production of pathogen metabolites inhibitory to bacterial antibiotic biosynthesis. Phytopathology 87(12):1250–1257CrossRefPubMedGoogle Scholar
  54. Egamberdiyeva D (2007) The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. App Soil Ecol 36:184–189CrossRefGoogle Scholar
  55. Farag MA, Ryu CM, Sumner LW, Pare PW (2006) GC-MS SPME profiling of rhizobacterial volatiles reveals prospective inducers of growth promotion and induced systemic resistance in plants. Phytochemistry 67:2262–2268CrossRefGoogle Scholar
  56. Fasciglione G, Casanovas EM, Quillehauquy V, Yommi AK, Goni MG, Roura SI, Barassi CA (2015) Azospirillum inoculation effects on growth, product quality and storage life of lettuce plants grown under salt stress. Sci Hortic 195:154–162CrossRefGoogle Scholar
  57. Fernando WD, Ramarathnam R, Krishnamoorthy AS, Savchuk SC (2005) Identification and use of potential bacterial organic antifungal volatiles in biocontrol. Soil Biol Biochem 37(5):955–964CrossRefGoogle Scholar
  58. Ferron P (1971) Modification of the development of Beauveria tenella mycosis in Melolontha melolontha larvae by means of reduced doses of organophosphorus insecticides. Entomol Exp Appl 14:457–466CrossRefGoogle Scholar
  59. Figueiredo MVB, Martinez CR, Burity HA, Chanway CP (2008) Plant growth - promoting rhizobacteria for improving nodulation and nitrogen fixation in the common bean (Phaseolus vulgaris L.). World J Microbiol Biotechnol 24(7):1187–1193CrossRefGoogle Scholar
  60. Fukushima T, Allred BE, Sia AK, Nichiporuk R, Andersen UN, Raymond KN (2013) Gram-positive siderophore-shuttle with iron-exchange from Fe-siderophore to apo-siderophore by Bacillus cereus Yxe B. Proc Natl Acad Sci 110(34):13821–13826CrossRefPubMedGoogle Scholar
  61. Gamalero E, Glick BR (2011) Mechanisms used by plant growth-promoting bacteria. In: Maheshwari DK (ed) Bacteria in agrobiology: plant nutrient management. Springer, Berlin/Heidelberg, pp 17–46CrossRefGoogle Scholar
  62. German MA, Burdman S, Okon Y, Kigel J (2000) Effects of Azospirillum brasilense on root morphology of common bean (Phaseolus vulgaris L.) under different water regimes. Biol Fertil Soil 32:259–264CrossRefGoogle Scholar
  63. Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190:63–68CrossRefPubMedGoogle Scholar
  64. Gopalakrishnan S, Sathya A, Vijayabharathi R, Varshney RK, Gowda CL, Krishnamurthy L (2015) Plant growth promoting rhizobia: challenges and opportunities. 3Biotech 5:355–377Google Scholar
  65. Gupta S, Seth R, Sharma A (2016) Plant growth-promoting rhizobacteria play a role as Phytostimulators for sustainable agriculture. In: Choudhary D, Varma A, Tuteja N (eds) Plant-microbe interaction: an approach to sustainable agriculture. Springer, SingaporeGoogle Scholar
  66. Gutierrez-Luna FM, López-Bucio J, Altamirano-Hernández J, Valencia-Cantero E, de la Cruz HR, Macías-Rodríguez L (2010) Plant growth-promoting rhizobacteria modulate root-system architecture in Arabidopsis thaliana through volatile organic compound emission. Symbiosis 51(1):75–83CrossRefGoogle Scholar
  67. Harper JK, Arif AM, Ford EJ, Strobel GA, Porco JA, Tomer DP, Oneill KL, Heider EM, Grant DM (2003) Pestacin: a 1, 3-dihydro isobenzofuran from Pestalotiopsis microspora possessing antioxidant and antimycotic activities. Tetrahedron 59:2471–2476CrossRefGoogle Scholar
  68. Harrier LA, Watson CA (2004) The potential role of arbuscular mycorrhizal (AM) fungi in the bioprotection of plants against soil-borne pathogens in organic and/or other sustainable farming systems. Pest Manag Sci 60:149–157CrossRefPubMedGoogle Scholar
  69. Hoffman AM, Mayer SG, Strobel GA, Hess WM, Sovocool GW, Grange AH, Harper JK, Arif AM, Grant DM, Kelley-Swift EG (2008) Purification, identification and activity of phomodione, a furandione from an endophytic Phoma species. Phytochemistry 69:1049–1056CrossRefPubMedGoogle Scholar
  70. Honma M, Shimomura T (1978) Metabolism of 1-aminocyclopropane-1-carboxylic acid. Agric Biol Chem 43:1825–1831Google Scholar
  71. Hussain MB, Zahir ZA, Asghar HN, Asghar M (2014) Exopolysaccharides producing rhizobia ameliorate drought stress in wheat. Int J Agric Biol 16:3–13Google Scholar
  72. Insecticide Act (1968) http://www.cibrc.nic.in
  73. Islam F, Yasmeen T, Ali Q, Ali S, Arif MS, Hussain S, Rizvi H (2014) Influence of Pseudomonas aeruginosa as PGPR on oxidative stress tolerance in wheat under Zn stress. Ecotoxicol Environ Saf 104:285–293CrossRefPubMedGoogle Scholar
  74. Jain A, Singh A, Singh BN, Singh S, Upadhyay RS, Sarma BK, Singh HB (2013) Biotic stress management in agricultural crops using microbial consortium. In: Maheshwari DK (ed) Bacteria in agrobiology: disease management, vol 5. Springer, Berlin/Heidelberg, pp 427–448CrossRefGoogle Scholar
  75. Jain S, Vaishnav A, Kasotia A, Kumari S, Choudhary DK (2014) Plant growth-promoting bacteria elicited induced systemic resistance and tolerance in plants. In: Ahmad P et al (eds) Emerging technologies and management of crop stress tolerance, vol 2. Elsevier, New YorkGoogle Scholar
  76. Jha Y, Subramanian RB (2014) PGPR regulate caspase-like activity, programmed cell death, and antioxidant enzyme activity in paddy under salinity. Physiol Mol Biol Plant 20:201–207CrossRefGoogle Scholar
  77. Ji Z, Wun W, Wang M, Gu A (2005) Identification of fungicidal compounds from endophytic fungi Fusarium proliferatum in Celastrus angulatus. J Northwest Sci Tech Univ Agric For (Nat Sci Ed) 33:61–64Google Scholar
  78. Jing YX, Yan JL, He HD, Yang DJ, Xia L, Zhong T, Yuan M, Cai D, Li SB (2014) Characterization of bacteria in the rhizosphere soils of Polygonum pubescens and their potential in promoting growth and cd, Pb, Zn uptake by Brassica napus. Int J Phytoremediation 16:321–333CrossRefPubMedGoogle Scholar
  79. Jnawali AD, Ojha RB, Marahatta S (2015) Role of Azotobacter in soil fertility and sustainability–a review. Adv Plants Agric Res 2:1–5Google Scholar
  80. Kai M, Haustein M, Molina F, Petri A, Scholz B, Piechulla B (2009) Bacterial volatiles and their action potential. Appl Microbiol Biotechnol 81(6):1001–1012CrossRefPubMedGoogle Scholar
  81. Kanchiswamy CN, Malnoy M, Maffei ME (2015) Chemical diversity of microbial volatiles and their potential for plant growth and productivity. Front Plant Sci 6:151CrossRefPubMedPubMedCentralGoogle Scholar
  82. Karthikeyan B, Joe MM, Islam MR, Sa T (2012) ACC deaminase containing diazotrophic endophytic bacteria ameliorate salt stress in Catharanthus roseus through reduced ethylene levels and induction of antioxidative defense systems. Symbiosis 56:77–86CrossRefGoogle Scholar
  83. Keswani C, Singh SP, Singh HB (2013) A superstar in biocontrol enterprise: Trichoderma spp. Biotech Today 3:27–30CrossRefGoogle Scholar
  84. Keswani C, Mishra S, Sarma BK, Singh SP, Singh HB (2014) Unraveling the efficient applications of secondary metabolites of various Trichoderma spp. Appl Microbiol Biotechnol 98:533–544CrossRefPubMedGoogle Scholar
  85. Khan MS, Zaidi A, Ahmad E (2014) Mechanism of phosphate solubilization and physiological functions of phosphate-solubilizing microorganisms. In: Phosphate solubilizing microorganisms. Springer, ChamCrossRefGoogle Scholar
  86. Khan A, Singh P, Srivastava A (2017) Synthesis, nature and utility of universal iron chelator− siderophore: a review. Microbiol Res 212:103–111PubMedGoogle Scholar
  87. Kishimoto K, Matsui K, Ozawa R, Takabayashi J (2007) Volatile 1-octen-3-ol induces a defensive response in Arabidopsis thaliana. J Gen Plant Pathol 73(1):35–72CrossRefGoogle Scholar
  88. Kohler J, Hernaındez JA, Caravaca F, Roldaın A (2008) Plant-growth promoting rhizobacteria and arbuscular mycorrhizal fungi modify alleviation biochemical mechanisms in water stressed plants. Funct Plant Biol 35:141–151CrossRefGoogle Scholar
  89. Korpi A, Järnberg J, Pasanen AL (2009) Microbial volatile organic compounds. Crit Rev Toxicol 39(2):139–193CrossRefPubMedGoogle Scholar
  90. Krewulak KD, Vogel HJ (2008) Structural biology of bacterial iron uptake. Biochem Biophys Acta 1778(9):1781–1804CrossRefPubMedGoogle Scholar
  91. Kumar VV (2018) Biofertilizers and biopesticides in sustainable agriculture. In: Role of rhizospheric microbes in soil. Springer, SingaporeGoogle Scholar
  92. Kumari S, Vaishnav A, Jain S, Varma A, Choudhary DK (2015) Bacterial-mediated induction of systemic tolerance to salinity with expression of stress alleviating enzymes in soybean (Glycine max L. Merrill). J Plant Growth Regul 34:558–573CrossRefGoogle Scholar
  93. Kumari S, Varma A, Tuteja N, Choudhary DK (2016a) Bacterial ACC-deaminase: an eco-friendly strategy to cope abiotic stresses for sustainable agriculture. In: Choudhary D, Varma A, Tuteja N (eds) Plant-microbe interaction: an approach to sustainable agriculture. Springer, SingaporeGoogle Scholar
  94. Kumari S, Vaishnav A, Jain S, Varma A, Choudhary DK (2016b) Induced drought tolerance through wild and mutant bacterial strain Pseudomonas simiae in mung bean (Vigna radiata L.). World J Microbiol Biotechnol 32:1–10CrossRefGoogle Scholar
  95. Lee SO, Kim HY, Choi GJ, Lee HB, Jang KS, Choi YH, Kim JC (2009) Mycofumigation with Oxyporus latemarginatus EF069 for control of postharvest apple decay and Rhizoctonia root rot on moth orchid. J Appl Microbiol 106(4):1213–1219CrossRefPubMedGoogle Scholar
  96. Li JY, Strobel G, Harper J, Lobkovsky E, Clardy J (2000) Cryptocin, a potent tetramic acid antimycotic from the endophytic fungus Cryptosporiopsis cf. quercina. Org Lett 2(6):767–770CrossRefPubMedGoogle Scholar
  97. Li Z, Alves SB, Roberts DW, Fan M, Delalibera I, Tang J, Lopes RB, Faria M, Rangel DEM (2010) Biological control of insects in Brazil and China: history, current programs and reasons for their success using entomopathogenic fungi. Biocontrol Sci Tech 20:117–136CrossRefGoogle Scholar
  98. Li RX, Cai F, Pang G, Shen QR, Li R, Chen W (2015) Solubilisation of phosphate and micronutrients by Trichoderma harzianum and its relationship with the promotion of tomato plant growth. PLoS One 10:e0130081CrossRefPubMedPubMedCentralGoogle Scholar
  99. Lim JH, Kim SD (2013) Induction of drought stress resistance by multifunctional PGPR Bacillus licheniformis K11 in pepper. Plant Pathol J 29:201–208CrossRefPubMedPubMedCentralGoogle Scholar
  100. Liu W, Mu W, Zhu B, Liu F (2008) Antifungal activities and components of VOCs produced by Bacillus subtilis G8. Curr Res Bacteriol 1:28–34CrossRefGoogle Scholar
  101. Liu F, Xing S, Ma H, Du Z, Ma B (2013) Cytokinin-producing, plant growth-promoting rhizobacteria that confer resistance to drought stress in Platycladus orientalis container seedlings. Appl Microbiol Biotechnol 97(20):9155–9164CrossRefPubMedGoogle Scholar
  102. Loaces I, Fe L, Ana FS (2011) Dynamics, diversity and function of endophytic siderophore-producing bacteria in rice. Microbial Ecol 61:606–618CrossRefGoogle Scholar
  103. Lone R, Shuab R, Khan S, Ahmad J, Koul KK (2017) Arbuscular mycorrhizal fungi for sustainable agriculture. In: Probiotics and plant health. Springer, SingaporeGoogle Scholar
  104. Lu H, Zou WX, Meng JC, Hu J, Tan RX (2000) New bioactive metabolites produced by Colletotrichum sp., an endophytic fungus in Artemisia annua. Plant Sci 151(1):67–73CrossRefGoogle Scholar
  105. Luntz AM (2003) Arthropod semiochemicals: mosquitoes, midges and sealice. Biochem Soc Trans 31:128–133CrossRefPubMedGoogle Scholar
  106. Mackie AE, Wheatley RE (1999) Effects and incidence of volatile organic compound interactions between soil bacterial and fungal isolates. Soil Biol Biochem 31(3):375–385CrossRefGoogle Scholar
  107. Mantelin S, Touraine B (2004) Plant growth-promoting rhizobacteria and nitrate availability: impacts on root development and nitrate uptake. J Exp Bot 55:27–34CrossRefGoogle Scholar
  108. Masalha J, Kosegarten H, Elmaci Ö, Mengel K (2000) The central role of microbial activity for iron acquisition in maize and sunflower. Biol Fertil Soils 30(6):433–439CrossRefGoogle Scholar
  109. Mathew DC, Ho YN, Gicana RG, Mathew GM, Chien MC, Huang CC (2015) A rhizosphere-associated symbiont, Photobacterium spp. strain MELD1, and its targeted synergistic activity for phytoprotection against mercury. PLoS One 10:e0121178CrossRefPubMedPubMedCentralGoogle Scholar
  110. Mayak S, Tirosh T, Glick BR (2004a) Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci 166:525–530CrossRefGoogle Scholar
  111. Mayak S, Tirosh T, Glick BR (2004b) Plant growth-promoting bacteria that confer resistance in tomato to salt stress. Plant Physiol Biochem 42:565–572CrossRefPubMedGoogle Scholar
  112. McLellan CA, Turbyville TJ, Wijeratne K, Kerschen A, Vierling E, Queitsch C, Whiteshell L, Gunatilaka AA (2007) A rhizosphere fungus enhances Arabidopsis thermotolerance through production of an HSP90 inhibitor. Plant Physiol 145:174–182CrossRefPubMedPubMedCentralGoogle Scholar
  113. Meena KK, Kumar M, Kalyuzhnaya MG, Yandigeri MS, Singh DP, Saxena AK (2012) Epiphytic pink-pigmented methylotrophic bacteria enhance germination and seedling growth of wheat (Triticum aestivum) by producing phytohormone. Antonie Van Leeuwenhoek 101:777–786CrossRefPubMedGoogle Scholar
  114. Meldau DG, Meldau S, Hoang LH, Underberg S, Wunsche H, Baldwin IT (2013) Dimethyl disulfide produced by the naturally associated bacterium Bacillus sp B55 promotes Nicotiana attenuata growth by enhancing sulfur nutrition. Plant Cell 25:2731–2747CrossRefPubMedPubMedCentralGoogle Scholar
  115. Mishra S, Singh A, Keswani C, Saxena A, Sarma BK, Singh HB (2015) Harnessing plant-microbe interactions for enhanced protection against phytopathogens. In: Arora NK (ed) Plant microbe symbiosis – applied facets. Springer, New Delhi, pp 111–125Google Scholar
  116. Molina-Favero C, Creus CM, Simontacchi M, Puntarulo S, Lamattina L (2008) Aerobic nitric oxide production by Azospirillum brasilense Sp245 and its influence on root architecture in tomato. Mol Plant Microb Interact 2:1001–1009CrossRefGoogle Scholar
  117. Moscardi F (1999) Assessment of the application of baculoviruses for control of Lepidoptera. Annu Rev Entomol 44:257–289CrossRefPubMedGoogle Scholar
  118. Nadeem SM, Zahir ZA, Naveed M, Arshad M (2007) Preliminary investigations on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC deaminase activity. Can J Microbiol 53:1141–1149CrossRefPubMedGoogle Scholar
  119. Nadeem SM, Zahir ZA, Naveed M, Arshad M (2009) Rhizobacteria containing ACC-deaminase confer salt tolerance in maize grown on salt-affected fields. Can J Microbiol 55:1302–1309CrossRefPubMedGoogle Scholar
  120. Nadeem SM, Ahmad M, Zahir ZA, Javaid A, Ashraf M (2014) The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol Adv 32:429–448CrossRefPubMedGoogle Scholar
  121. Naseem H, Bano A (2014) Role of plant growth-promoting rhizobacteria and their exopolysaccharide in drought tolerance of maize. J Plant Interact 9:689–701CrossRefGoogle Scholar
  122. Nautiyal CS, Bhadauria S, Kumar P, Lal H, Mondal R, Verma D (2000) Stress induced phosphate solubilization in bacteria isolated from alkaline soils. FEMS Microbiol Lett 182:291–296CrossRefPubMedGoogle Scholar
  123. Naveed M, Mitter B, Reichenauer TG, Wieczorek K, Sessitsch A (2014) Increased drought stress resilience of maize through endophytic colonization by Burkholderia phytofirmans PsJN and Enterobacter sp FD17. Environ Exp Bot 97:30–39CrossRefGoogle Scholar
  124. Neilands JB, Nakamura K (1991) Detection, determination, isolation, characterization and regulation of microbial iron chelates. In: Winkelman G (ed) CRC handbook of microbial iron chelates. CRC Press, Boca Raton, pp 1–14Google Scholar
  125. Nia SH, Zarea MJ, Rejali F, Varma A (2012) Yield and yield components of wheat as affected by salinity and inoculation with Azospirillum strains from saline or non-saline soil. J Saudi Soc Agric Sci 11(2):113–121Google Scholar
  126. Nieto-Jacobo MF, Steyaert JM, Salazar-Badillo FB, Nguyen DV, Rostás M, Braithwaite M, De Souza JT, Jimenez-Bremont JF, Ohkura M, Stewart A, Mendoza-Mendoza A (2017) Environmental growth conditions of Trichoderma spp. affects indole acetic acid derivatives, volatile organic compounds, and plant growth promotion. Front Plant Sci 8:102CrossRefPubMedPubMedCentralGoogle Scholar
  127. Niu Q, Huang X, Zhang L, Xu J, Yang D, Wei K, Niu X, An Z, Bennett JW, Zou C, Yang J (2010) A Trojan horse mechanism of bacterial pathogenesis against nematodes. Proc Natl Acad Sci 107(38):16631–16636CrossRefPubMedGoogle Scholar
  128. Omar MNA, Osman MEH, Kasim WA, Abd El-Daim IA (2009) Improvement of salt tolerance mechanisms of barley cultivated under salt stress using Azospirillum brasiliense. Tasks Veg Sci 44:133–147CrossRefGoogle Scholar
  129. Ômura H, Kuwahara Y, Tanabe T (2002) 1-Octen-3-ol together with geosmin: new secretion compounds from a polydesmid millipede, Niponia nodulosa. J Chem Ecol 28(12):2601–2612CrossRefPubMedGoogle Scholar
  130. Ortas I, Rafique M, Ahmed İA (2017) Application of arbuscular mycorrhizal fungi into agriculture. In: Arbuscular mycorrhiza and stress tolerance of plants. Springer, Singapore, pp 305–327CrossRefGoogle Scholar
  131. Panlada T, Pongdet P, Aphakorn L, Rujirek NN, Nantakorn B, Neung T (2013) Alleviation of the effect of environmental stresses using co-inoculation of mungbean by Bradyrhizobium and rhizobacteria containing stress-induced ACC deaminase enzyme. Soil Sci Plant Nutr 59:559–571CrossRefGoogle Scholar
  132. Park JH, Choi GJ, Lee HB, Kim KM, Jung HS, Lee SW, Jang KS, Cho KY, Kim JC (2005a) Griseofulvin from Xylaria sp. strain F0010, an endophytic fungus of Abies holophylla and its antifungal activity against plant pathogenic fungi. J Microbiol Biotechnol 15:112–117Google Scholar
  133. Park M, Kim C, Yang J, Lee H, Shin W, Kim S, Sa T (2005b) Isolation and characterization of diazotrophic growth promoting bacteria from rhizosphere of agricultural crops of Korea. Microbiol Res 160(2):127–133CrossRefGoogle Scholar
  134. Penuelas J, Asensio D, Tholl D, Wenke K, Rosenkranz M, Piechulla B, Schnitzler JP (2014) Biogenic volatile emissions from the soil. Plant Cell Environ 37(8):1866–1891CrossRefPubMedGoogle Scholar
  135. Pieterse CM, Van Wees SC, Ton J, Van Pelt JA, Van Loon LC (2002) Signalling in rhizobacteria-induced systemic resistance in Arabidopsis thaliana. Plant Biol 4(5):535–544CrossRefGoogle Scholar
  136. Porcel R, Aroca R, Ruiz-Lozano JM (2012) Salinity stress alleviation using arbuscular mycorrhizal fungi – a review. Agron Sustain Dev 32:181–200CrossRefGoogle Scholar
  137. Quintana-Rodriguez E, Rivera-Macias LE, Adame-Alvarez RM, Torres JM, Heil M (2018) Shared weapons in fungus-fungus and fungus-plant interactions? Volatile organic compounds of plant or fungal origin exert direct antifungal activity in vitro. Fungal Ecol 33:115–121CrossRefGoogle Scholar
  138. Raaijmakers JM, Mazzola M (2012) Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. Annu Rev Phytopathol 50:403–424CrossRefPubMedGoogle Scholar
  139. Raaijmakers JM, Weller DM (1998) Natural plant protection by 2, 4-diacetylphloroglucinol-producing pseudomonas spp. in take-all decline soils. Mol Plant-Microbe Interact 11(2):144–152CrossRefGoogle Scholar
  140. Raaijmakers JM, Weller DM (2001) Exploiting genotypic diversity of 2, 4-Diacetylphloroglucinol-producing Pseudomonas spp. characterization of superior root-Colonizing P. fluorescens strain Q8r1-96. Appl Environ Microbiol 67(6):2545–2554CrossRefPubMedPubMedCentralGoogle Scholar
  141. Ram RM, Singh HB (2017) Microbial consortium in biological control: an explicit example of teamwork below ground. J Ecofriendly Agric 13:1–12Google Scholar
  142. Ram RM, Singh HB (2018) Trichoderma spp: Nature’s gift to mankind. In: Chaurasiya HK, Mishra DP (eds) Plant systematics & biotechnology: challenges and opportunities. Today and tomorrow’s printers and publishers, New Delhi, pp 133–141Google Scholar
  143. Ram RM, Keswani C, Mishra S, Tripathi R, Ray S, Singh SP, Singh HB (2016) Trichoderma secondary metabolites: applications and future prospects. In: Vaish SS (ed) Plant diseases and their sustainable management. Biotech Books, New Delhi, pp 113–127Google Scholar
  144. Ram RM, Keswani C, Bisen K, Tripathi R, Singh SP, Singh HB (2018) Biocontrol technology: eco-friendly approaches for sustainable agriculture. In: Omics technologies and bio-engineering. Academic, San Diego, pp 177–190CrossRefGoogle Scholar
  145. Ramegowda V, Senthil-Kumar M (2015) The interactive effects of simultaneous biotic and abiotic stresses on plants: mechanistic understanding from drought and pathogen combination. J Plant Physiol 176:47–54CrossRefGoogle Scholar
  146. Ramoni R, Vincent F, Grolli S, Conti V, Malosse C, Boyer FD, Nagnan-Le Meillour P, Spinelli S, Cambillau C, Tegoni M (2001) The insect attractant 1-octen-3-ol is the natural ligand of bovine odorant-binding protein. J Biol Chem 276:7150–7155CrossRefPubMedGoogle Scholar
  147. Reddy C, Saravanan RS (2013) Polymicrobial multi-functional approach for enhancement of crop productivity. Adv Appl Microbiol 82:53–113. AcademicCrossRefPubMedGoogle Scholar
  148. Renshaw JC, Robson GD, Trinci AP, Wiebe MG, Livens FR, Collison D, Taylor RJ (2002) Fungal siderophores: structures, functions and applications. Mycol Res 106(10):1123–1142CrossRefGoogle Scholar
  149. Rillig MC, Sosa-Hernandez MA, Roy J, Aguilar-Trigueros CA, Vályi K, Lehmann A (2016) Towards an integrated mycorrhizal technology: harnessing mycorrhiza for sustainable intensification in agriculture. Front Plant Sci 7:1625CrossRefPubMedPubMedCentralGoogle Scholar
  150. Roberson EB, Firestone MK (1992) Relationship between desiccation and exopolysaccharide production in soil Pseudomonas sp. Appl Environ Microbiol 58:1284–1291PubMedPubMedCentralGoogle Scholar
  151. Rungin S, Indananda C, Suttiviriya P, Kruasuwan W, Jaemsaeng R, Thamchaipenet A (2012) Plant growth enhancing effects by a siderophore-producing endophytic streptomycete isolated from a Thai jasmine rice plant (Oryza sativa L. cv. KDML105). Anton Von Leeuw 102:463–472CrossRefGoogle Scholar
  152. Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX, Pare PW (2003a) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci U S A 100:4927–4932CrossRefPubMedPubMedCentralGoogle Scholar
  153. Ryu CM, Hu CH, Reddy MS, Kloepper JW (2003b) Different signalling pathways of induced resistance by rhizobacteria in Arabidopsis thaliana against two pathovars of Pseudomonas syringae. New Phytol 160:413–420CrossRefGoogle Scholar
  154. Sahoo RK, Ansari MW, Dangar TK, Mohanty S, Tuteja N (2014a) Phenotypic and molecular characterisation of efficient nitrogen-fixing Azotobacter strains from rice fields for crop improvement. Protoplasm 251:511–523CrossRefGoogle Scholar
  155. Sahoo RK, Ansari MW, Pradhan M, Dangar TK, Mohanty S, Tuteja N (2014b) Novel Azotobacter vinelandii (SRIAz3) functions in salinity stress tolerance in rice. Plant Sig Behav 9(7):511–523CrossRefGoogle Scholar
  156. Sanchis V, Bourguet D (2008) Bacillus thuringiensis: applications in agriculture and insect resistance management- a review. Agron Sustain Dev 28:11–20CrossRefGoogle Scholar
  157. Sandhya V, Ali SZ, Grover M, Reddy G, Venkateswarlu B (2009) Alleviation of drought stress effects in sunflower seedlings by exopolysaccharides producing Pseudomonas putida strain P45. Biol Fertil Soils 46:17–26CrossRefGoogle Scholar
  158. Saravanakumar D, Samiyappan R (2007) ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants. J Appl Microbiol 102:1283–1292CrossRefPubMedGoogle Scholar
  159. Sergeeva E, Shah S, Glick BR (2006) Growth of transgenic canola (Brassica napus cv. Westar) expressing a bacterial 1-aminocyclopropane-1-carboxylate (ACC) deaminase gene on high concentrations of salt. World J Microbiol Biotechnol 22(3):277–282CrossRefGoogle Scholar
  160. Schenk PM, Carvalhais LC, Kazan K (2012) Unraveling plant–microbe interactions: can multi-species transcriptomics help? Trends Biotechnol 30:177–184CrossRefPubMedGoogle Scholar
  161. Schnider U, Keel C, Blumer C, Troxler J, Défago G, Haas D (1995) Amplification of the housekeeping sigma factor in Pseudomonas fluorescens CHA0 enhances antibiotic production and improves biocontrol abilities. J Bacteriol Mycol 177:5387–5392CrossRefGoogle Scholar
  162. Scholler CE, Gürtler H, Pedersen R, Molin S, Wilkins K (2002) Volatile metabolites from actinomycetes. J Agric Food Chem 50:2615–2621CrossRefPubMedGoogle Scholar
  163. Scholte EJ, Takken W, Knols BG (2007) Infection of adult Aedes aegypti and ae. Albopictus mosquitoes with the entomopathogenic fungus Metarhizium anisopliae. Acta Trop 102:151–158CrossRefPubMedGoogle Scholar
  164. Schwarzott D, Walker C, Schüßler A (2001) Glomus, the largest genus of the arbuscular mycorrhizal fungi (Glomales), is nonmonophyletic. Mol Phylogenet Evol 21:190–197CrossRefPubMedGoogle Scholar
  165. Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160(1):47–56CrossRefGoogle Scholar
  166. Sharifi R, Ryu CM (2018) Revisiting bacterial volatile-mediated plant growth promotion: lessons from the past and objectives for the future. Ann Bot 122:349.  https://doi.org/10.1093/aob/mcy108CrossRefPubMedPubMedCentralGoogle Scholar
  167. Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springer Plus 2:587CrossRefPubMedGoogle Scholar
  168. Shoebitz M, Ribaudo CM, Pardo MA, Cantore ML, Ciampi L, Curá JA (2009) Plant growth promoting properties of a strain of Enterobacter ludwigii isolated from Lolium perenne rhizosphere. Soil Biol Biochem 41:1768–1774CrossRefGoogle Scholar
  169. Shu RG, Wang FW, Yang YM, Liu YX, Tan RX (2004) Antibacterial and xanthine oxidase inhibitory cerebrosides from Fusarium sp. IFB-121, and endophytic fungus in Quercus variabilis. Lipids 39:667–673CrossRefPubMedGoogle Scholar
  170. Shukla N, Awasthi RP, Rawat L, Kumar J (2012a) Biochemical and physiological responses of rice (Oryza sativa L.) as influenced by Trichoderma harzianum under drought stress. Plant Physiol Biochem 54:78–88CrossRefPubMedGoogle Scholar
  171. Shukla PS, Agarwal PK, Jha B (2012b) Improved salinity tolerance of Arachis hypogaea (L.) by the interaction of halotolerant plant-growth-promoting rhizobacteria. J Plant Growth Regul 31:195–206CrossRefGoogle Scholar
  172. Simoes LC, Simoes M, Vieira MJ (2007) Biofilm interactions between distinct bacterial genera isolated from drinking water. Appl Environ Microbiol 73:6192–6200CrossRefPubMedPubMedCentralGoogle Scholar
  173. Singh HB (2014) Management of plant pathogens with microorganisms. Proc Natl Acad Sci 80:443–454Google Scholar
  174. Singh HB (2016) Seed biopriming: a comprehensive approach towards agricultural sustainability. Indian Phytopathol 69(3):203–209Google Scholar
  175. Singh G, Biswas DR, Marwaha TS (2010) Mobilization of potassium from waste mica by plant growth promoting rhizobacteria and its assimilation by maize (Zea mays) and wheat (Triticum aestivum L.): a hydroponics study under phytotron growth chamber. J Plant Nutr 33:1236–1251CrossRefGoogle Scholar
  176. Singh DP, Prabha R, Yandigeri MS, Arora DK (2011) Cyanobacteria mediated phenylpropanoids and phytohormones in rice (Oryza sativa) enhance plant growth and stress tolerance. Anton Leeuw 100:557–568CrossRefGoogle Scholar
  177. Singh HB, Singh BN, Singh SP, Sarma BK (2012) Exploring different avenues of Trichoderma as a potent bio-fungicidal and plant growth promoting candidate-an overview. Rev Plant Pathol 5:315–426Google Scholar
  178. Singh HB, Keswani C, Bisen K, Sarma BK, Chakrabarty PK (2016) Development and application of agriculturally important microorganisms in India. In: Agriculturally important microorganisms. Springer, Singapore, pp 167–181CrossRefGoogle Scholar
  179. Song YC, Li H, Ye YH, Shan CY, Yang YM, Tan RX (2004) Endophytic naphthopyrone metabolites are co-inhibitors of xanthine oxidase, SW1116 cell and some microbial growths. FEMS Microbiol Lett 241:67–72CrossRefPubMedGoogle Scholar
  180. Sorty AM, Meena KK, Choudhary K, Bitla UM, Minhas PS, Krishnani KK (2016) Effect of plant growth promoting bacteria associated with halophytic weed (Psoralea corylifolia L.) on germination and seedling growth of wheat under saline conditions. Appl Biochem Biotechnol 180:872–882CrossRefPubMedGoogle Scholar
  181. Souza RD, Ambrosini A, Passaglia LMP (2015) Plant growth-promoting bacteria as inoculants in agricultural soils. Genet Mol Biol 38:401–419CrossRefPubMedPubMedCentralGoogle Scholar
  182. Srivastava PC, Rawat D, Pachauri SP, Shrivastava M (2015) Strategies for enhancing zinc efficiency in crop plants. In: Nutrient use efficiency: from basics to advances. Springer, New Delhi, pp 87–101CrossRefGoogle Scholar
  183. Steenhoudt O, Vanderleyden J (2000) Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24:487–506CrossRefPubMedGoogle Scholar
  184. Stinson M, Ezra D, Hess WM, Sears J, Strobel G (2003) An endophytic Gliocladium sp. of Eucryphia cordifolia producing selective volatile antimicrobial compounds. Plant Sci 165:913–922CrossRefGoogle Scholar
  185. Strobel GA (2003) Endophytes as sources of bioactive products. Microb Infect 5:535–544CrossRefGoogle Scholar
  186. Strobel GA, Torczynski R, Bollon A (1997) Acremonium sp.—a leucinostatin a producing endophyte of European yew (Taxus baccata). Plant Sci 128:97–108CrossRefGoogle Scholar
  187. Strobel GA, Dirkse E, Sears J, Markworth C (2001) Volatile antimicrobials from Muscodor albus, a novel endophytic fungus. Microbiology 147:2943–2950CrossRefPubMedGoogle Scholar
  188. Sturz AV, Christie BR, Nowak J (2000) Bacterial endophytes: potential role in developing sustainable systems of crop production. Crit Rev Plant Sci 19(1):1–30CrossRefGoogle Scholar
  189. Sun Y, Cheng Z, Glick BR (2009) The presence of a 1-aminocyclopropane-1-carboxylate (ACC) deaminase deletion mutation alters the physiology of the endophytic plant growth-promoting bacterium Burkholderia phytofirmans PsJN. FEMS Microbiol Lett 296:131–136CrossRefPubMedGoogle Scholar
  190. Swaine EK, Swaine MD, Killham K (2007) Effects of drought on isolates of Bradyrhizobium elkanii cultured from Albizia adianthifolia seedlings on different provenances. Agrofor Syst 69:135–145CrossRefGoogle Scholar
  191. Temirov YV, Esikova TZ, Kashparov IA, Balashova TA, Vinokurov LM, Alakhov YB (2003) A catecholic siderophore produced by the thermoresistant Bacillus licheniformis VK21 strain. Russ J Bioorg Chem 29:542–549CrossRefGoogle Scholar
  192. Terre S, Asch F, Padham J, Sikora RA, Becker M (2007) Influence of root zone bacteria on root iron plaque formation in rice subjected to iron toxicity. In: Tielkes E (ed) Utilisation of diversity in land use systems: sustainable and organic approaches to meet human needs. Tropentag, Witzenhausen, p 446Google Scholar
  193. Timmusk S, El-Daim IAA, Copolovici L, Tanilas T, Kännaste A, Behers L, Nevo E, Seisenbaeva G, Stenström E, Niinemets Ü (2014) Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: enhanced biomass production and reduced emissions of stress volatiles. PLoS One 9(5):e96086CrossRefPubMedPubMedCentralGoogle Scholar
  194. Tiwari S, Singh P, Tiwari R, Meena KK, Yandigeri M, Singh DP (2011) Salt-tolerant rhizobacteria-mediated induced tolerance in wheat (Triticum aestivum) and chemical diversity in rhizosphere enhance plant growth. Biol Fertil Soils 47:907–916CrossRefGoogle Scholar
  195. Vaid SK, Kumar B, Sharma A, Shukla AK, Srivastava PC (2014) Effect of Zn solubilizing bacteria on growth promotion and Zn nutrition of rice. J Soil Sci Plant Nutr 14:889–910Google Scholar
  196. Vaishnav A, Choudhary DK (2018) Regulation of drought responsive gene expressions in Glycine max L. Merrill is mediated through Pseudomonas simiae strain AU. J Plant Growth Regul.  https://doi.org/10.1007/s00344-018-9846ss
  197. Vaishnav A, Jain S, Kasotia A, Kumari S, Gaur RK, Choudhary DK (2014) Molecular mechanism of benign microbe-elicited alleviation of biotic and abiotic stresses for plants. In: Gaur RK et al (eds) Approaches to plant stress and their management. SpringerGoogle Scholar
  198. Vaishnav A, Kumari S, Jain S, Varma A, Choudhary DK (2015) Putative bacterial volatile- mediated growth in soybean (Glycine max L. Merrill) and expression of induced proteins under salt stress. J Appl Microbiol 119:539–551CrossRefPubMedGoogle Scholar
  199. Vaishnav A, Kumari S, Jain S, Varma A, Tuteja N, Choudhary DK (2016a) PGPR-mediated expression of salt tolerance gene in soybean through volatiles under sodium nitroprusside. J Basic Microbiol 56:1–15CrossRefGoogle Scholar
  200. Vaishnav A, Varma A, Tuteja N, Choudhary DK (2016b) PGPR-mediated amelioration of crops under salt stress. In: Plant-microbe interaction: an approach to sustainable agriculture. Springer, Singapore, pp 205–226CrossRefGoogle Scholar
  201. Vaishnav A, Hansen AP, Agrawal PK, Varma A, Choudhary DK (2017a) Biotechnological perspectives of legume–rhizobium symbiosis. In: Rhizobium biology and biotechnology, Soil biology, vol 50. Springer, ChamCrossRefGoogle Scholar
  202. Vaishnav A, Varma A, Tuteja N, Choudhary DK (2017b) Characterization of bacterial volatiles and their impact on plant health under abiotic stress. In: Choudhary DK et al (eds) Volatiles and food security. Springer, SingaporeGoogle Scholar
  203. Vaishnav A, Sharma SK, Choudhary DK, Sharma KP, Ahmad E, Sharma MP, Ramesh A, Saxena AK (2018a) Nitric oxide as a signaling molecule in plant-bacterial interactions. In: Plant microbiome: stress response. Springer, Singapore, pp 183–199CrossRefGoogle Scholar
  204. Vaishnav A, Shukla A, Sharma A, Kumar R, Choudhary DK (2018b) Endophytic bacteria in plant salt tolerance: current and future prospects. J Plant Growth Regul.  https://doi.org/10.1007/s00344-018-9880
  205. Vespermann A, Kai M, Piechulla B (2007) Rhizobacterial volatiles affect the growth of fungi and Arabidopsis thaliana. Appl Environ Microbiol 73(17):5639–5641CrossRefPubMedPubMedCentralGoogle Scholar
  206. Vurukonda SSKP, Vardharajula S, Shrivastava SZA (2016) Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol Res 184:13–24CrossRefGoogle Scholar
  207. Waghunde RR, Shelake RM, Sabalpara AN (2016) Trichoderma: a significant fungus for agriculture and environment. Afr J Agric Res 11:1952–1965Google Scholar
  208. Wang C, Yang W, Wang C, Gu C, Niu D, Liu H-X, Wang Y-P, Gua JH (2012) Induction of drought tolerance in cucumber plants by a consortium of three plant growth promoting rhizobacterium strains. PLoS One 7:e52565CrossRefPubMedPubMedCentralGoogle Scholar
  209. Wang H, Li H, Zhang M, Song Y, Huang J, Huang H, Shao M, Liu Y, Kang Z (2018) Carbon dots enhance the nitrogen fixation activity of Azotobacter Chroococcum. ACS Appl Mater Interfaces 10:16308–16314CrossRefPubMedGoogle Scholar
  210. Weinberg ED (2004) Suppression of bacterial biofilm formation by iron limitation. Medi hypotheses 63(5):863–865CrossRefGoogle Scholar
  211. Weindling R (1932) Trichoderma lignorum as a parasite of other soil fungi. Phytopathology 22:837–845Google Scholar
  212. Wilson MK, Abergel RJ, Raymond KN, Arceneaux JE, Byers BR (2006) Siderophores of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis. Biochem Biophys Res Commun 348(1):320–325CrossRefPubMedGoogle Scholar
  213. Winkelmann G (2007) Ecology of siderophores with special reference to the fungi. Biometals 20:379CrossRefPubMedGoogle Scholar
  214. Xie X, Zhang H, Pare P (2009) Sustained growth promotion in Arabidopsis with long-term exposure to the beneficial soil bacterium Bacillus subtilis (GB03). Plant Signal Behav 4(10):948–953CrossRefPubMedPubMedCentralGoogle Scholar
  215. Yakhin OI, Lubyanov AA, Yakhin IA, Brown PH (2017) Biostimulants in plant science: a global perspective. Front Plant Sci 7:2049CrossRefPubMedPubMedCentralGoogle Scholar
  216. Zahir ZA, Ghani U, Naveed M, Nadeem SM, Asghar HN (2009) Comparative effectiveness of Pseudomonas and Serratia sp. containing ACC-deaminase for improving growth and yield of wheat (Triticum aestivum L.) under salt-stressed conditions. Arch Microbiol 191:415–424CrossRefPubMedGoogle Scholar
  217. Zhang H, Kim MS, Sun Y, Dowd SE, Shi H, Pare PW (2008a) Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Mol Plant-Microbe Interact 21:737–744CrossRefPubMedGoogle Scholar
  218. Zhang H, Xie X, Kim MS, Kornyeyev DA, Holaday S, Pare PW (2008b) Soil bacteria augment Arabidopsis photosynthesis by decreasing glucose sensing and abscisic acid levels in planta. Plant J 56(2):264–273CrossRefPubMedGoogle Scholar
  219. Zhang H, Murzello C, Kim MS, Xie X, Jeter RM, Zak JC (2010) Choline and osmotic-stress tolerance induced in Arabidopsis by the soil microbe Bacillus subtilis (GB03). Mol Plant-Microbe Interact 23:1097–1104CrossRefPubMedGoogle Scholar
  220. Zhang YF, He LY, Chen ZJ, Wang QY, Qian M, Sheng XF (2011) Characterization of ACC deaminase-producing endophytic bacteria isolated from copper-tolerant plants and their potential in promoting the growth and copper accumulation of Brassica napus. Chemosphere 83:57–62CrossRefPubMedGoogle Scholar
  221. Zhang F, Huo Y, Cobb AB, Luo G, Zhou J, Yang G, Wilson GWT, Zhang Y (2018) Trichoderma biofertilizer links to altered soil chemistry, altered microbial communities, and improved grassland biomass. Front Microbiol 9:848CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Rahul Singh Rajput
    • 1
  • Ratul Moni Ram
    • 1
  • Anukool Vaishnav
    • 1
  • Harikesh Bahadur Singh
    • 1
  1. 1.Department of Mycology and Plant Pathology, Institute of Agricultural SciencesBanaras Hindu UniversityVaranasiIndia

Personalised recommendations