Advertisement

Diversity in Type III Secreting Systems (T3SSs) in Legume-Rhizobium Symbiosis

  • M. Senthilkumar
  • K. Swarnalakshmi
  • K. Annapurna
Chapter

Abstract

During nodule development, at least three sets of signals are exchanged between a legume host and its rhizobial partner. Apart from flavonoid and nod boxes, the third set of products are proteins exported by the type three secretion system (T3SS), which are necessary for continued infection thread development. The presence of active T3SS and its control of nodulation have been observed in Bradyrhizobium japonicum USDA110, Sinorhizobium fredii USDA257, Rhizobium sp. NGR234. However, the absence of active T3SS in the genomes of Rhizobium leguminosarum and Sinorhizobium meliloti argues against these effectors being modulators of nodulation. It is likely that alternative modulators exist, such as surface polysaccharides, which have similar or complementary roles to those proposed for effector proteins. Whether a secretion system facilitates symbiosis depends on both the legume and the bacterium, similar to what is seen in plant-pathogen interaction.

Keywords

T3SS Legume-rhizobium symbiosis Nodulation Effectors 

References

  1. Abby SS, Rocha EP (2012) The non-flagellar type III secretion system evolved from the bacterial flagellum and diversified into host-cell adapted systems. PLoS Genet 8(9):e1002983CrossRefPubMedPubMedCentralGoogle Scholar
  2. Alfano JR, Charkowski AO, Deng WL, Badel JL, Petnicki-Ocwieja T, van Dijk K et al (2000) The Pseudomonas syringae Hrp pathogenicity island has a tripartite mosaic structure composed of a cluster of type III secretion genes bounded by exchangeable effector and conserved effector loci that contribute to parasitic fitness and pathogenicity in plants. Proc Natl Acad Sci U S A 97:4856–4861CrossRefPubMedPubMedCentralGoogle Scholar
  3. Amadou C, Pascal G, Mangenot S, Glew M, Bontemps C, Capela D et al (2008) Genome sequence of the beta-rhizobium Cupriavidus taiwanensis and comparative genomics of rhizobia. Genome Res 18:1472–1483CrossRefPubMedPubMedCentralGoogle Scholar
  4. Annapurna K, Krishnan H (2003) Molecular aspects of soybean cultivar specific nodulation by Sinorhizobium fredii USDA257. Ind J Exp Biol 41:1114–1123Google Scholar
  5. Ausmees N, Kobayashi H, Deakin WJ, Marie C, Krishnan HB, Broughton WJ et al (2004) Characterization of NopP, a type III secreted effector of Rhizobium sp. strain NGR234. J Bacteriol 186:4774–4780CrossRefPubMedPubMedCentralGoogle Scholar
  6. Barret M, Egan F, O’Gara F (2013) Distribution and diversity of bacterial secretion systems across metagenomic datasets. Environ Microbiol Rep 5(1):117–126CrossRefPubMedGoogle Scholar
  7. Bartsev AV, Deakin WJ, Boukli NM, McAlvin CB, Stacey G, Malnoë P, Broughton WJ, Staehelin C (2004) NopL, an effector protein of Rhizobium sp. NGR234 thwarts activation of plant defense reactions. Plant Physiol 134:871–879CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bonfante P, Genre A (2010) Mechanisms underlying beneficial plant–fungus interactions in mycorrhizal symbiosis. Nat Commun 1:48CrossRefPubMedGoogle Scholar
  9. Brencic A, Winans SC (2005) Detection of and response to signals involved in host-microbe interactions by plant-associated bacteria. Microbiol Mol Biol Rev 69:155–194CrossRefPubMedPubMedCentralGoogle Scholar
  10. Broughton WJ, Hanin M, Relic B, Kopcinska J, Golinowski W, Simsek S, Ojanen-Reuhs T, Reuhs B, Marie C, Kobayashi H, Bordogna B, Le Quere A, Jabbouri S, Fellay R, Perret X, Deakin WJ (2006) Flavonoid-inducible modifications to Rhamnan O antigens are necessary for rhizobium sp. strain NGR234-legume symbioses. J Bacteriol 188(10):3654–3663CrossRefPubMedPubMedCentralGoogle Scholar
  11. Burkinshaw BJ, Strynadka NC (2014) Assembly and structure of the T3SS. Biochim Biophys Acta 1843:1649–1663CrossRefPubMedGoogle Scholar
  12. Dai WJ, Zeng Y, Xie ZP, Staehelin C (2008) Symbiosis promoting and deleterious effects of NopT, a novel type 3 effector of rhizobium sp. NGR234. J Bacteriol 190(14):5101–5110CrossRefPubMedPubMedCentralGoogle Scholar
  13. D’Antuono AL et al (2008) Defects in rhizobial cyclic glucan and lipo-polysaccharide synthesis alter legume gene expression during nodule development. Mol Plant Microbe Interact 21:50–60CrossRefPubMedGoogle Scholar
  14. de Lyra MC, Lopez-Baena FJ, Madinabeitia N, Vinardell JM, Espuny Mdel R, Cubo MT et al (2006) Inactivation of the Sinorhizobium fredii HH103 rhcJ gene abolishes nodulation outer proteins (Nops) secretion and decreases the symbiotic capacity with soybean. Int Microbiol 9:125–133Google Scholar
  15. Deakin WJ, Broughton WJ (2009) Symbiotic use of pathogenic strategies: rhizobial protein secretion systems. Nat Rev Microbiol 7:312–320CrossRefPubMedGoogle Scholar
  16. Deane JE, Cordes FS, Roversi P, Johnson S, Kenjale R, Picking WD, Picking WL, Lea SM, Blocker A (2006) Expression, purification, crystallization and preliminary crystallographic analysis of MxiH, a subunit of the Shigella flexneri type III secretion system needle. Acta Crystallogr Sect F Struct Biol Cryst Commun 62:302–305CrossRefPubMedPubMedCentralGoogle Scholar
  17. Demers JP, Habenstein B, Loquet A, Kumar Vasa S, Giller K, Becker S, Baker D, Lange A, Sgourakis NG (2014) High-resolution structure of the Shigella type-III secretion needle by solid-state NMR and cryo-electron microscopy. Nat Commun 5:4976CrossRefPubMedPubMedCentralGoogle Scholar
  18. Fauvart M, Verstraeten N, Dombrecht B, Venmans R, Beullens S, Heusdens C et al (2009) Rhizobium etli HrpW is a pectin-degrading enzyme and differs from phyto-pathogenic homologues in enzymically crucial tryptophan and glycine residues. Microbiology 155:3045–3054CrossRefPubMedGoogle Scholar
  19. Foultier B, Troisfontaines P, Müller S, Opperdoes FR, Cornelis GR (2002) Characterization of the ysa pathogenicity locus in the chromosome of Yersinia enterocolitica and phylogeny analysis of type III secretion systems. J Mol Evol 55:37–51CrossRefPubMedGoogle Scholar
  20. Freiberg C, Fellay R, Bairoch A, Broughton WJ, Rosenthal A, Perret X (1997) Molecular basis of symbiosis between Rhizobium and legumes. Nature 387:394–401CrossRefPubMedGoogle Scholar
  21. Gazi AD, Sarris PF, Fadouloglou VE, Charova SN, Mathioudakis N, Panopoulos NJ et al (2012) Phylogenetic analysis of a gene cluster encoding an additional, rhizobial-like type III secretion system that is narrowly distributed among Pseudomonas syringae strains. BMC Microbiol 12:188CrossRefPubMedPubMedCentralGoogle Scholar
  22. González V, Santamaría RI, Bustos P, Hernández-González I, Medrano-Soto A, Moreno-Hagelsieb G et al (2006) The partitioned Rhizobium etli genome: genetic and metabolic redundancy in seven interacting replicons. Proc Natl Acad Sci U S A 103:3834–3839CrossRefPubMedPubMedCentralGoogle Scholar
  23. Göttfert M, Röthlisberger S, Kündig C, Beck C, Marty R, Hennecke H (2001) Potential symbiosis-specific genes uncovered by sequencing a 410-kilobase DNA region of the Bradyrhizobium japonicum chromosome. J Bacteriol 183:1405–1412CrossRefPubMedPubMedCentralGoogle Scholar
  24. Harrison MJ (1998) Development of the arbuscular mycorrhizal symbiosis. Curr Opin Plant Biol 1:360–365CrossRefPubMedGoogle Scholar
  25. He SY, Nomura K, Whittam TS (2004) Type III protein secretion mechanism in mammalian and plant pathogens. Biochim Biophys Acta 1694:181–206CrossRefPubMedGoogle Scholar
  26. Hempel J, Zehner S, Göttfert M, Patschkowski T (2009) Analysis of the secretome of the soybean symbiont Bradyrhizobium japonicum. J Biotechnol 140:51–58CrossRefPubMedGoogle Scholar
  27. Hotson A, Chosed R, Shu H, Ort K, Mudgett MB (2003) Xanthomonas type III effector XopD targets SUMO-conjugated proteins in planta. Mol Microbiol 50:377–389CrossRefPubMedGoogle Scholar
  28. Hu Y, Huang H, Cheng X, Shu X, White AP, Stavrinides J, Köster W, Zhu G, Zhao Z, Wang Y (2017) A global survey of bacterial type III secretion systems and their effectors. Environ Microbiol 19(10):3879–3895CrossRefPubMedGoogle Scholar
  29. Hubber A, Vergunst AC, Sullivan JT, Hooykaas PJJ, Ronson CW (2004) Symbiotic phenotypes and translocated effector proteins of the Mesorhizobium loti strain R7A VirB/D4 type IV secretion system. Mol Microbiol 54:561–574CrossRefPubMedGoogle Scholar
  30. Hubber AM, Sullivan JT, Ronson CW (2007) Symbiosis-induced cascade regulation of the Mesorhizobium loti R7A VirB/D4 type IV secretion system. Mol Plant Microbe Interaction 20(3):255–261CrossRefGoogle Scholar
  31. Hueck CJ (1998) Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev 62(2):379–433PubMedPubMedCentralGoogle Scholar
  32. Jiang G, Krishnan HB (2000) Sinorhizobium fredii USDA257, a cultivar- specific soybean symbiont, carries two copies of y4yA and y4yB, two open reading frames those are located in a region that encodes the type III protein secretion system. Mol Plant Microbe Interact 13:1010–1014CrossRefPubMedGoogle Scholar
  33. Jimenez-Guerrero I, Perez-Montano F, Medina C, Ollero FJ, Lopez-Baena FJ (2015) NopC is a Rhizobium-specific type 3 secretion system effector secreted by Sinorhizobium (Ensifer) fredii HH103. PLoS One 10:e0142866.  https://doi.org/10.1371/journal.pone.0142866CrossRefPubMedPubMedCentralGoogle Scholar
  34. Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329CrossRefGoogle Scholar
  35. Jones KM et al (2008) Differential response of the plant Medicago truncatula to its symbiont Sinorhizobium meliloti or an exopolysaccharide-deficient mutant. Proc Natl Acad Sci U S A 105:704–709CrossRefPubMedPubMedCentralGoogle Scholar
  36. Kambara K, Ardissone S, Kobayashi H, Saad MM, Schumpp O, Broughton WJ, Deakin WJ (2009) Rhizobia utilize homologues of pathogenic effector proteins during symbiosis. Mol Microbiol 71:92–106CrossRefPubMedGoogle Scholar
  37. Kaneko T, Nakamura Y, Sato S, Asamizu E, Kato T, Sasamoto S, Watanabe A, Idesawa K, Ishikawa A, Kawashima K et al (2000) Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res 7:331–338CrossRefPubMedGoogle Scholar
  38. Kaneko T, Nakamura Y, Sato S, Minamisawa K, Uchiumi T, Sasamoto S et al (2002) Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA Res 9:189–197CrossRefPubMedGoogle Scholar
  39. Kim WS, Krishnan HB (2014) A nopA deletion mutant of Sinorhizobium fredii USDA257, a soybean symbiont, is impaired in nodulation. Curr Microbiol 68:239–246CrossRefPubMedGoogle Scholar
  40. Kimbrel JA, Thomas WJ, Jiang Y, Creason AL, Thireault CA, Sachs JL et al (2013) Mutualistic co-evolution of type III effector genes in Sinorhizobium fredii and Bradyrhizobium japonicum. PLoS Pathog 9:e1003204CrossRefPubMedPubMedCentralGoogle Scholar
  41. Kistner C, Parniske M (2002) Evolution of signal transduction in intracellular symbiosis. Trends Plant Sci 7:511518CrossRefPubMedGoogle Scholar
  42. Kobayashi H, Naciri-Graven Y, Broughton WJ, Perret X (2004) Flavonoids induce temporal shifts in gene-expression of nod-box controlled loci in Rhizobium sp. NGR234. Mol Microbiol 51:335–347CrossRefPubMedGoogle Scholar
  43. Krause A, Doerfel A, Göttfert M (2002) Mutational and transcriptional analysis of the type III secretion system of Bradyrhizobium japonicum. Mol Plant Microbe Interact 15:1228–1235CrossRefPubMedGoogle Scholar
  44. Krishnan HB, Pueppke SG (1993) Flavonoid inducers of nodulation genes stimulate Rhizobium fredii USDA257 to export proteins into the environment. Mol Plant Microbe Interact 6:107–113CrossRefPubMedGoogle Scholar
  45. Krishnan HB, Kuo C-I, Pueppke SG (1995) Elaboration of flavonoid-induced proteins by the nitrogen-fixing soybean symbiont rhizobium fredii is regulated by both nodD1 and nodD2, and is dependent on the cultivar-specificity locus, nolXWBTUV. Microbiology 141(9):2245–2251CrossRefGoogle Scholar
  46. Krishnan HB, Lorio J, Kim WS, Jiang G, Kim KY, DeBoer M et al (2003) Extracellular proteins involved in soybean cultivar-specific nodulation are associated with pilus-like surface appendages and exported by a type III protein secretion system in Sinorhizobium fredii USDA257. Mol Plant Microbe Interact 16:617–625CrossRefPubMedGoogle Scholar
  47. Kvitko BH, Ramos AR, Morello JE, Oh HS, Collmer A (2007) Identification of harpins in Pseudomonas syringae pv. Tomato DC3000, which are functionally similar to HrpK1 in promoting translocation of type III secretion system effectors. J Bact 189:8059–8072CrossRefPubMedGoogle Scholar
  48. Li Y, Tian CF, Chen WF, Wang L, Sui XH, Chen WX (2013) High-resolution transcriptomic analyses of Sinorhizobium sp. NGR234 bacteroids in determinate nodules of Vigna unguiculata and indeterminate nodules of Leucaena leucocephala. PLoS ONE 8:e70531.  https://doi.org/10.1371/journal.pone.0070531CrossRefPubMedPubMedCentralGoogle Scholar
  49. Lindeberg M, Myers CR, Collmer A, Schneider DJ (2008) Roadmap to new virulence determinants in Pseudomonas syringae: insights from comparative genomics and genome organization. Mol Plant Microbe Interact 21:685–700CrossRefPubMedGoogle Scholar
  50. López-Baena FJ, Monreal JA, Pérez-Montaño F, Guasch-Vidal B, Bellogín RA, Vinardell JM et al (2009) The absence of Nops secretion in Sinorhizobium fredii HH103 increases GmPR1 expression in Williams soybean. Mol Plant Microbe Interact 22:1445–1454CrossRefPubMedGoogle Scholar
  51. López-Baena FJ, Vinardell JM, Pérez-Montaño F, Crespo-Rivas JC, Bellogín RA, EspunyMdel R et al (2008) Regulation and symbiotic significance of nodulation outer proteins secretion in Sinorhizobium fredii HH103. Microbiology 154:1825–1836CrossRefPubMedGoogle Scholar
  52. Lorio JC, Chronis D, Krishnan HB (2006) Y4xP, an open reading frame located in a type III protein secretion system locus of Sinorhizobium fredii USDA257 and USDA191, encodes cysteine synthase. Mol Plant Microbe Interact 19:635–643CrossRefPubMedGoogle Scholar
  53. Margaret I, Becker A, Blom J, Bonilla I, Goesmann A, Göttfert M et al (2011) Symbiotic properties and first analyses of the genomic sequence of the fast growing model strain Sinorhizobium fredii HH103 nodulating soybean. J Biotechnol 155:11–19CrossRefPubMedGoogle Scholar
  54. Marie C, Deakin WJ, Viprey V, Kopciñska J, Golinowski W, Krishnan HB et al (2003) Characterization of Nops, nodulation outer proteins, secreted via the type III secretion system of NGR234. Mol Plant Microbe Interact 16:743–751CrossRefPubMedGoogle Scholar
  55. Marie C, Broughton WJ, Deakin WJ (2001) Rhizobium type III secretion systems: legume charmers or alarmers? Curr Opin Plant Biol 4(4):336–342CrossRefPubMedGoogle Scholar
  56. Marie C, Deakin WJ, Ojanen-Reuhs T, Diallo E, Reuhs B, Broughton WJ et al (2004) TtsI, a key regulator of Rhizobium species NGR234 is required for typeIII-dependent protein secretion and synthesis of rhamnose-rich polysaccharides. Mol Plant Microbe Interact 17:958–966CrossRefPubMedGoogle Scholar
  57. McDonald C, Vacratsis PO, Bliska JB, Dixon JE (2003) The Yersinia virulence factor YopM forms a novel protein complex with two cellular kinases. J Biol Chem 278:18514–18523CrossRefPubMedGoogle Scholar
  58. Nguyen HP, Ratu STN, Yasuda M, Göttfert M, Okazaki S (2018) InnB, a novel type III effector of Bradyrhizobium elkanii USDA61, controls symbiosis with Vigna species. Front Microbiol 9:3155.  https://doi.org/10.3389/fmicb.2018.03155CrossRefPubMedPubMedCentralGoogle Scholar
  59. Nimchuk Z, Marois E, Kjemtrup S, Leister RT, Katagiri F, Dangl JL (2000) Eukaryotic fatty acylation drives plasma membrane targeting and enhances function of several type III effector proteins from Pseudomonas syringae. Cell 101:353–363CrossRefPubMedGoogle Scholar
  60. Orth K, Xu Z, Mudgett MB, Bao ZQ, Palmer LE, Bliska JB, Mangel WF, Staskawicz B, Dixon JE (2000) Disruption of signaling by Yersinia effector YopJ, a ubiquitin-like protein protease. Science 290:1594–1597CrossRefPubMedGoogle Scholar
  61. Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775CrossRefPubMedGoogle Scholar
  62. Perret X, Freiberg C, Rosenthal A, Broughton WJ, Fellay R (1999) High- resolution transcriptional analysis of the symbiotic plasmid of Rhizobium sp. NGR234. Mol Microbiol 32:415–425CrossRefPubMedGoogle Scholar
  63. Perret X, Kobayashi H, Collado-Vides J (2003) Regulation of expression of symbiotic genes in Rhizobium sp. NGR234. Indian J Exp Biol 41:1101–1113PubMedGoogle Scholar
  64. Piromyou P, Songwattana P, Teamtisong K et al (2019) Mutualistic co-evolution of T3SSs during the establishment of symbiotic relationships between Vigna radiata and Bradyrhizobium. MicrobiologyOpen:e781.  https://doi.org/10.1002/mbo3.781CrossRefPubMedCentralGoogle Scholar
  65. Rodrigues JA, López-Baena FJ, Ollero FJ, Vinardell JM, Espuny MR, Bellogín RA et al (2007) NopM and NopD are rhizobial nodulation outer proteins: identification using LC-MALDI and LC-ESI with a monolithic capillary column. J Proteome Res 6:1029–1037CrossRefPubMedGoogle Scholar
  66. Rohde JR, Breitkreutz A, Chenal A, Sansonetti PJ, Parsot C (2007) Type III secretion effectors of the IpaH family are E3 ubiquitin ligases. Cell Host Microbe 1:77–83CrossRefPubMedGoogle Scholar
  67. Saad MM, Kobayashi H, Marie C, Brown IR, Mansfield JW, Broughton WJ, Deakin WJ (2005) NopB, a type III secreted protein of rhizobium sp. strain NGR234, is associated with pilus-like surface appendages. J Bacteriol 187:1173–1181CrossRefPubMedPubMedCentralGoogle Scholar
  68. Saad MM, Staehelin C, Broughton WJ, Deakin WJ (2008) Protein-protein interactions within type III secretion system dependent pili of rhizobium sp. strain NGR234. J Bacteriol 190:750–754CrossRefPubMedGoogle Scholar
  69. Saad MM, Crèvecoeur M, Masson-Boivin C, Perret X (2012) The type 3 protein secretion system of Cupriavidus taiwanensis strain lmg19424 compromises symbiosis with Leucaena leucocephala. Appl Environ Microbiol 78:7476–7479CrossRefPubMedPubMedCentralGoogle Scholar
  70. Sánchez C, Iannino F, Deakin WJ, Ugalde RA, Lepek VC (2009) Characterization of the Mesorhizobium loti MAFF303099 type-three protein secretion system. Mol Plant Microbe Interact 22:519–528CrossRefPubMedGoogle Scholar
  71. Schechter LM, Guenther J, Olcay EA, Jang SC, Krishnan HB (2010) Translocation of NopP by Sinorhizobium fredii USDA257 into Vigna unguiculata root nodules. Appl Environ Microbiol 76:3758–3761CrossRefPubMedPubMedCentralGoogle Scholar
  72. Schirrmeister J, Friedrich L, Wenzel M, Hoppe M, Wolf C, Göttfert M et al (2011) Characterization of the self-cleaving effector protein NopE1 of Bradyrhizobium japonicum. J Bacteriol 193:3733–3739CrossRefPubMedPubMedCentralGoogle Scholar
  73. Schmeisser C, Liesegang H, Krysciak D, Bakkou N, LeQuéré A, Wollherr A et al (2009) Rhizobium sp. strain NGR234 possesses a remarkable number of secretion systems. Appl Environ Microbiol 75:4035–4045CrossRefPubMedPubMedCentralGoogle Scholar
  74. Senthilkumar M, Swarnalakshmi K, Annapurna K (2017) Exopolysaccharide from Rhizobia: production and role in symbiosis. In: Hansen AP, Choudhary DK, Agrawal PK, Varma A (eds) Rhizobium biology and biotechnology. Springers, Cham, pp 257–292CrossRefGoogle Scholar
  75. Setubal JC, Wood D, Burr T, Farrand S, Godman B, Goodner B et al (2009) The genomics of Agrobacterium: insights into its pathogenicity, biocontrol and evolution. In: Jackson R (ed) Plant pathogenic bacteria: genomics and molecular biology. Caister Academic Press, Norfolk, pp 91–112Google Scholar
  76. Skorpil P, Saad MM, Boukli NM, Kobayashi H, Ares-Orpel F, Broughton WJ, Deakin WJ (2005) NopP, a phosphorylated effector of Rhizobium sp. strain NGR234, is a major determinant of nodulation of the tropical legumes Flemingia congesta and Tephrosia vogelii. Mol Microbiol 57:1304–1317CrossRefPubMedGoogle Scholar
  77. Slater SC, Goldman BS, Goodner B, Setubal JC, Farrand SK, Nester EW et al (2009) Genome sequences of three Agrobacterium biovars help elucidate the evolution of multi-chromosome genomes in bacteria. J Bacteriol 191:2501–2511CrossRefPubMedPubMedCentralGoogle Scholar
  78. Songwattana P, Noisangiam R, Teamtisong K, Prakamhang J, Teulet A, Tittabutr P, Piromyou P, Boonkerd N, Giraud E, Teaumroong N (2017) Type 3 secretion system (T3SS) of Bradyrhizobium sp. DOA9 and its roles in legume symbiosis and rice endophytic association. Front Microbiol 8:1810CrossRefPubMedPubMedCentralGoogle Scholar
  79. Spaink HP (2000) Root nodulation and infection factors produced by Rhizobial bacteria. Annu Rev Microbiol 54(1):257–288CrossRefPubMedGoogle Scholar
  80. Streit WR, Schmitz RA, Perret X, Staehelin C, Deakin WJ, Raasch C et al (2004) An evolutionary hotspot: the pNGR234b replicons of Rhizobium sp. strain NGR234. J Bacteriol 186:535–542CrossRefPubMedPubMedCentralGoogle Scholar
  81. Süss C, Hempel J, Zehner S, Krause A, Patschkowski T, Göttfert M (2006) Identification of genistein-inducible and type III-secreted proteins of Bradyrhizobium japonicum. J Biotechnol 126(1):69–77CrossRefPubMedGoogle Scholar
  82. Tampakaki AP, Skandalis N, Gazi AD, Bastaki MN, Sarris PF, Charova SN et al (2010) Playing the Harp: evolution of our understanding of hrp/hrc genes. Annu Rev Phytopathol 48:347–370CrossRefPubMedGoogle Scholar
  83. Troisfontaines P, Cornelis GR (2005) Type III secretion: more systems than you think. Physiology 20:326–339CrossRefPubMedGoogle Scholar
  84. Tseng TT, Tyler BM, Setubal JC (2009) Protein secretion systems in bacterial-host associations, and their description in the Gene Ontology. BMC Microbiol 9(Suppl.1):S2.  https://doi.org/10.1186/1471-2180-9-S1-S2CrossRefPubMedPubMedCentralGoogle Scholar
  85. Viprey V, DelGreco A, Golinowski W, Broughton WJ, Perret X (1998) Symbiotic implications of type III protein secretion machinery in Rhizobium. Mol Microbiol 28:1381–1389CrossRefPubMedGoogle Scholar
  86. Wang Y, Huang H, Sun M, Zhang Q, Guo D (2012) T3DB: an integrated database for bacterial type III secretion system. BMC Bioinform 13:66CrossRefGoogle Scholar
  87. Wassem R, Kobayashi H, Kambara K, LeQuéré A, Walker GC, Broughton WJ et al (2008) TtsI regulates symbiotic genes in Rhizobium species NGR234 by binding to tts boxes. Mol Microbiol 68:736–748CrossRefPubMedPubMedCentralGoogle Scholar
  88. Weidner S, Becker A, Bonilla I, Jaenicke S, Lloret J, Margaret I et al (2012) Genome sequence of the soybean symbiont Sinorhizobium fredii HH103. J Bacteriol 194:1617–1618CrossRefPubMedPubMedCentralGoogle Scholar
  89. Wenzel M, Friedrich L, Göttfert M, Zehner S (2010) The type III secreted protein NopE1 affects symbiosis and exhibits a calcium-dependent auto cleavage activity. Mol Plant Microbe Interact 23:124–129CrossRefPubMedGoogle Scholar
  90. Wooldridge K (2009) Bacterial secreted proteins: secretory mechanisms and role in pathogenesis. Caister Academic Press, PooleGoogle Scholar
  91. Yang Y, Zhao J, Morgan RL, Ma W, Jiang T (2010) Computational prediction of type III secreted proteins from Gram-negative bacteria. BMC Bioinform 11(Suppl.1):S47CrossRefGoogle Scholar
  92. Zehner S, Schober G, Wenzel M, Lang K, Göttfert M (2008) Expression of the Bradyrhizobium japonicum type III secretion system in legume nodules and analysis of the associated tts box promoter. Mol Plant Microbe Interact 21:1087–1093CrossRefPubMedGoogle Scholar
  93. Zhang L, Chen XJ, Lu HB, Xie ZP, Staehelin C (2011) Functional analysis of the type 3 effector nodulation outer protein L (NopL) from Rhizobium sp. NGR234: symbiotic effects, phosphorylation, and interference with mitogen-activated protein kinase signaling. J Biol Chem 286:32178–32187CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • M. Senthilkumar
    • 1
  • K. Swarnalakshmi
    • 2
  • K. Annapurna
    • 2
  1. 1.Division of Basic SciencesICAR-Indian Institute of Pulses ResearchKanpurIndia
  2. 2.Division of MicrobiologyICAR-Indian Agricultural Research InstituteNew DelhiIndia

Personalised recommendations