Endophytic Fungi As the Alternate Source of High-Value Plant Secondary Metabolites

  • Sunil K. Deshmukh
  • Manish K. Gupta
  • Sangram K. Lenka


Endophytic fungi are associated with plants and reside inside it without causing any harm to the host plants. These fungi are considered as one of the natural sources for getting diverse high-value compounds. Natural compounds which are primarily produced by the host plants including Taxol, camptothecin, podophyllotoxin, vinblastine, vincristine, and huperzine A are also produced by these fungi. Therefore, these endophytic fungi can be considered as an alternate source of high-value natural compounds. The medicinally important plant metabolites isolated from endophytic fungi, their biological properties, and the challenges associated with it are presented in this chapter. Various methods used to optimize the culture conditions, including one strain many compounds (OSMAC), response surface method (RSM), and the genetic tools along with other techniques like cocultivation and epigenetic modification to overcome the problem of attenuation of metabolite synthesis, are also discussed.


Attenuation Cocultivation Epigenetic modification Endophytic fungi High-value plant Secondary metabolites 



The authors are thankful to Alok Adholeya, Senior Director, Sustainable Agriculture Division, The Energy and Resources Institute (India), for continuous support.


  1. Abraham EP, Newton GGF (1961) The structure of cephalosporin C. Biochem J 79:377–393CrossRefPubMedPubMedCentralGoogle Scholar
  2. Abreu Miranda M, Tiossi RF, da Silva MR, Rodrigues KC, Kuehn CC, Rodrigues Oliveira LG, Albuquerque S, McChesney JD, Lezama-Davila CM, Isaac-Marquez AP, Kenupp Bastos J (2013) In vitro leishmanicidal and cytotoxic activities of the glycoalkaloids from Solanum lycocarpum (Solanaceae) fruits. Chem Biodivers 10(4):642–648CrossRefPubMedGoogle Scholar
  3. Achkar IW, Mraiche F, Mohammad RM, Uddin S (2017) Anticancer potential of sanguinarine for various human malignancies. Future Med Chem 9(9):933–950CrossRefPubMedGoogle Scholar
  4. Akihiko F (2007) Discovery of micafungin (FK463): a novel antifungal drug derived from a natural product lead. Pure Appl Chem 79(4):603–614CrossRefGoogle Scholar
  5. Amna T, Amina M, Sharma PR, Puri SC, Al-Youssef HM, Al-Taweel AM et al (2012) Effect of precursors feeding and media manipulation on production of novel anticancer pro-drug camptothecin from endophytic fungus. Braz J Microbiol 43:1476–1489CrossRefPubMedPubMedCentralGoogle Scholar
  6. Anand KV, Mohamed Jaabir MS, Thomas PA, Geraldine P (2012) Protective role of chrysin against oxidative stress in D-galactoseinduced aging in an experimental rat model. Geriatr Gerontol Int 12:741–750CrossRefPubMedGoogle Scholar
  7. Ayob FW, Simarani K, Zainal Abidin N, Mohamad J (2017) First report on a novel Nigrospora sphaerica isolated from Catharanthus roseus plant with anticarcinogenic properties. J Microbial Biotechnol 10(4):926–932CrossRefGoogle Scholar
  8. Baldi A, Farkya S, Jain A, Gupta N, Mehra R, Datta V et al (2010) Enhanced production of podophyllotoxins by co-culture of transformed Linum album cells with plant growth-promoting fungi. Pure Appl Chem 82:227–241CrossRefGoogle Scholar
  9. Bao L, Yin Y, Yang T, Yang H, Qian X (2010) Isolation, identification and metabolite bioactivity of endophytic fungi from Asarum heterotropoides var. mandshuricum. Wei sheng wu xue Zazhi 30(5):1–6Google Scholar
  10. Bhalkar BN, Bedekar PA, Patil SM, Patil SA, Govindwar SP (2015) Production of camptothecine using whey by an endophytic fungus: standardization using response surface methodology. RSC Adv 2015(5):62828–62835CrossRefGoogle Scholar
  11. Bhalkar BN, Bedekar PA, Kshirsagar SD, Govindwar SP (2016a) Solid state fermentation of soybean waste and an up-flow column bioreactor for continuous production of camptothecine by an endophytic fungus Fusarium oxysporum. RSC Adv 2016(6):56527–56536CrossRefGoogle Scholar
  12. Bhalkar BN, Patil SM, Govindwar SP (2016b) Camptothecine production by mixed fermentation of two endophytic fungi from Nothapodytes nimmoniana. Fungal Biol 120(6-7):873–883CrossRefPubMedGoogle Scholar
  13. Bilal L, Asaf S, Hamayun M, Gul H, Iqbal A, Ullah I, Lee IJ, Hussain A (2018) Plant growth promoting endophytic fungi Aspergillus fumigatus TS1 and Fusarium proliferatum BRL1 produce gibberellins and regulates plant endogenous hormones. Symbiosis 1:11Google Scholar
  14. Birdsall TC, Kelly GS (1997) Berberine: therapeutic potential of an alkaloid found in several medicinal plants. Altern Med Rev 2(2):94–103Google Scholar
  15. Blumenthal M, Goldberg A, Brinckmann J (eds) (2000) Herbalmedicine: expanded Comission E monographs. Integrative Medicine, Newton, pp 293–296Google Scholar
  16. Brockmann H, Haschad MN, Maier K, Pohl F (1939) Hypericin, the photodynamically active pigment from Hypericum perforatum. Naturwissenschaften 32:550–555CrossRefGoogle Scholar
  17. Brotzu G (1948) Ricerche su di un nuovo antibiotico. Lavori dell´Istituto d’Igiene di Cagliari, pp 4–18Google Scholar
  18. Brown E, Hurd NS, McCall S, Ceremuga TE (2007) Evaluation of the anxiolytic effects of chrysin, a Passiflora incarnata extract, in the laboratory rat. AANA J 75:333–337Google Scholar
  19. Cabello MA, Platas G, Collado J, Díez MT, Martín I, Vicente F, Meinz M, Onishi JC, Douglas C, Thompson J, Kurtz MB, Schwartz RE, Bills GF, Giacobbe RA, Abruzzo GK, Flattery AM, Kong L, Peláez F (2001) Arundifungin, a novel antifungal compound produced by fungi: biological activity and taxonomy of the producing organisms. Int Microbiol 4(2):93–102PubMedGoogle Scholar
  20. Cao L, Huang J, Li J (2007) Fermentation conditions of Sinopodophyllum hexandrum endophytic fungus on production of podophyllotoxin. Food Ferment Indust 33:28–32Google Scholar
  21. Chain E, Florey W, Gardner AD, Heatley NG, Jennings MA, Orr-Ewing J, Sanders AG (1940) Penicillin as a chemotherapeutic agent. Lancet 239:226–228CrossRefGoogle Scholar
  22. Chakravarthi BV, Sujay R, Kuriakose GC, Karande AA, Jayabaskaran C (2013) Inhibition of cancer cell proliferation and apoptosis-inducing activity of fungal taxol and its precursor baccatin III purified from endophytic Fusarium solani. Cancer Cell Int 13:105CrossRefPubMedPubMedCentralGoogle Scholar
  23. Chandra S (2012) Endophytic fungi: novel sources of anticancer lead molecules. Appl Microbiol Biotechnol 95(1):47–59CrossRefPubMedGoogle Scholar
  24. Chen LX, He H, Qiu F (2011) Natural withanolides: an overview. Nat Prod Rep 28(4):705–740CrossRefPubMedGoogle Scholar
  25. Chen X, Chen J, Zhu D (2008) Initial research on acetylcholinesterase inhibitory activity of endophytic fungi g5 isolated from Huperzia serrata. Wei Sheng Wu Xue Tong Bao 35(11):1764–1768Google Scholar
  26. Cheplick GP, Clay K, Marks S (1989) Interactions between infection by endophytic fungi and nutrient limitation in the grasses Lolium perenne and Festuca arundinacea. New Phytol 111:89–97CrossRefGoogle Scholar
  27. Chhonker YS, Chandasana H, Kumar A, Kumar D1, Laxman TS, Mishra SK, Balaramnavar VM, Srivastava S, Saxena AK, Bhatta RS (2015) Pharmacokinetics, tissue distribution and plasma protein binding studies of rohitukine: a potent anti-hyperlipidemic agent. Drug Res (Stuttg) 65(7):380–387Google Scholar
  28. Chithra S, Jasim B, Anisha C, Mathew J, Radhakrishnan EK (2014a) LC-MS/MS based identification of piperine production by endophytic Mycosphaerella sp. PF13 from Piper nigrum. Appl Biochem Biotechnol 173:30–35CrossRefPubMedGoogle Scholar
  29. Chithra S, Jasim B, Jyothis M, Sachidanandan P, Radhakrishnan EK (2014b) Piperine production by endophytic fungus Colletotrichum gloeosporioides isolated from Piper nigrum. Phytomedicine 21(4):534–540CrossRefGoogle Scholar
  30. Cook D, Gardner DR, Pfister JA (2014) Swainsonine-containing plants and their relationship to endophytic fungi. J Agric Food Chem 62:7326–7334CrossRefPubMedGoogle Scholar
  31. Croteau R, Ketchum RE, Long RM, Kaspera R, Wildung MR (2006) Taxol biosynthesis and molecular genetics. Phytochem Rev 5(1):75–97CrossRefPubMedPubMedCentralGoogle Scholar
  32. Damar U, Gersner R, Johnstone JT, Schachter S, Rotenberg A (2016) Huperzine A as a neuroprotective and antiepileptic drug: a review of preclinical research. Expert Rev Neurother 16(6):671–680CrossRefPubMedGoogle Scholar
  33. Damayanthi Y, Lown JW (1998) Podophyllotoxins: current status and recent developments. Curr Med Chem 5(3):205–252PubMedGoogle Scholar
  34. Das A, Rahman MI, Ferdous AS, Al-Amin R, Mahbubur M, Nahar N (2017) An endophytic Basidiomycete, Grammothele lineata, isolated from Corchorus olitorius, produces paclitaxel that shows cytotoxicity. PLoS One 12(6):e0178612/1-e0178612/17CrossRefGoogle Scholar
  35. Davey ML, Currah RS (2006) Interactions between mosses (Bryophyta) and fungi. Can J Bot 84:1509–1519CrossRefGoogle Scholar
  36. Del Olmo-Ruiz M, Arnold AE (2014) Interannual variation and host affiliations of endophytic fungi associated with ferns at La Selva, Costa Rica. Mycologia 106(1):8–21CrossRefPubMedGoogle Scholar
  37. Delaey EM, Obermueller R, Zupko I, De Vos D, Falk H, de Witte PA (2001) In vitro study of the photocytotoxicity of some hypericin analogs on different cell lines. Photochem Photobiol 74:164–171CrossRefPubMedGoogle Scholar
  38. Deshmukh SK (2018) Translating endophytic fungal research towards pharmaceutical applications. Kavaka 50:1–13Google Scholar
  39. Deshmukh SK, Mishra PD, Kulkarni-Almeida A, Verekar SA, Sahoo MR, Periyasamy G, Goswami H, Khanna A, Balakrishnan A, Vishwakarma R (2009) Anti-inflammatory and anti-cancer activity of Ergoflavin isolated from an endophytic fungus. Chem Biodivers 6:784–789CrossRefPubMedGoogle Scholar
  40. Deshmukh SK, Verekar SA (2014) Fungal endophytes: an amazing and hidden source of cytotoxic compounds anticancer compounds from endophytic fungi. In: Kharwar RN, Upadhyay RS, Dubey NK, Raghubanshi R (eds) Microbial diversity and biotechnology in food security. Springer, pp 59–89Google Scholar
  41. Deshmukh SK, Verekar SA, Bhave S (2015) Endophytic fungi: an untapped source for antibacterials. Front Microbiol.
  42. Deshmukh SK, Gupta MK, Prakash V, Saxena S (2018a) Endophytic fungi: a source of potential antifungal compounds. J Fungi 4:77. Scholar
  43. Deshmukh SK, Gupta MK, Prakash V, Reddy MS (2018b) Mangrove-associated fungi a novel source of potential anticancer compounds. J Fungi 4:101. Scholar
  44. Deshmukh SK, Gupta MK, Prakash V, Reddy MS (2019) Fungal endophytes – a novel source of cytotoxic compounds. In: Jha S (ed) Endophytes and secondary metabolites, Reference series in phytochemistry. Springer, Cham, pp 1–62. Scholar
  45. Ding X, Deng B, Chen W, Liu K (2013a) Isolation and identification of an endophytic fungi from Taxus chinensis and its taxol-producing characteristics. Guizhou Nongye Kexue 41(2):104–106Google Scholar
  46. Ding X, Liu K, Deng B, Chen W, Li W, Liu F (2013b) Isolation and characterization of endophytic fungi from Camptotheca acuminate. World J Microbiol Biotechnol 29(10):1831–1838CrossRefPubMedGoogle Scholar
  47. Dong LH, Fan SW, Ling QZ, Huang BB, Wei ZJ (2014) Indentification of huperzine A-producing endophytic fungi isolated from Huperzia serrata. World J Microbiol Biotechnol 30(3):1011–1017CrossRefPubMedGoogle Scholar
  48. Doss V, Govindharajan K, Ravichandran D (2016) Screening of Taxol, an anticancer drug produced from Pestaloptiopsis stellata isolated from Ficus infectoria. Life Sci J 13(10):13–21Google Scholar
  49. Doucette CD, Hilchie AL, Liwski R, Hoskin DW (2013) Piperine, a dietary phytochemical, inhibits angiogenesis. J Nutr Biochem 24:231–239CrossRefPubMedGoogle Scholar
  50. El-Hawary SS, Mohammed R, Abou Zid SF, Bakeer W, Ebel R, Sayed AM, Rateb ME (2016) Solamargine production by a fungal endophyte of Solanum nigrum. J Appl Microbiol 120(4):900–911CrossRefPubMedGoogle Scholar
  51. Elavarasi A, Rathna GS, Kalaiselvam M (2012) Taxol producing mangrove endophytic fungi Fusarium oxysporum from Rhizophora annamalayana. Asian Pac J Trop Biomed 2:S1081–S1085CrossRefGoogle Scholar
  52. El-Sayed ASA, Safan S, Mohamed NZ, Shaban L, Ali GS, Sitohy MZ (2018) Induction of Taxol biosynthesis by Aspergillus terreus, endophyte of Podocarpus gracilior Pilger, upon intimate interaction with the plant endogenous microbes. Process Biochem 71:31–40CrossRefGoogle Scholar
  53. Endo A (2008) A gift from nature: the birth of the statins. Nat Med 14:24–26CrossRefGoogle Scholar
  54. Eyberger AL, Dondapati R, Porter JR (2006) Endophyte fungal isolates from Podophyllum peltatumproduce podophyllotoxin. J Nat Prod 69(8):1121–1124CrossRefPubMedGoogle Scholar
  55. Fang R, Li H, Zhang P, Cao R, Yang S (2017) Identification and characterization of a taxol-producing endophytic fungus from Taxus media. Sheng Wu Gong Cheng Xue Bao 33(12):1945–1954PubMedGoogle Scholar
  56. Foa R, Norton L, Seidman AD (1994) Taxol (paclitaxel): a novel anti-microtubule agent with remarkable anti-neoplastic activity. Int J Clin Lab Res 24(1):6–14CrossRefPubMedGoogle Scholar
  57. Fu C, Guan G, Wang H (2018) The anticancer effect of Sanguinarine, a review. Curr Pharm Des. Scholar
  58. Fulzele DP, Satdive RK, Pol BB (2001) Growth and production of camptothecin by cell suspension cultures of Nothapodytes foetida. Planta Med 67:150–152CrossRefPubMedGoogle Scholar
  59. Garyali S, Kumar A, Reddy MS (2013) Taxol production by an endophytic fungus, Fusarium redolens, isolated from Himalayan yew. J Microbiol Biotechnol 23(10):1372–1380CrossRefPubMedGoogle Scholar
  60. Garyali S, Kumar A, Reddy MS (2014a) Diversity and antimitotic activity of taxol-producing endophytic fungi isolated from Himalayan yew. Ann Microbiol 64(3):1413–1422CrossRefGoogle Scholar
  61. Garyali S, Kumar A, Reddy MS (2014b) Enhancement of taxol production from endophytic fungus Fusarium redolens. Biotechnol Bioprocess Eng 19(5):908–915CrossRefGoogle Scholar
  62. Gresa-Arribas N, Serratosa J, Saura J, Sola C (2010) Inhibition of CCAA T/enhancer binding protein expression by chrysin in microglial cells results in anti-inflammatory and neuroprotective effects. J Neurochem 115:526–536CrossRefPubMedGoogle Scholar
  63. Gohar UF, Mukhtar H, Ul Haq I (2015) Isolation and screening of endophytic fungi for the reduction of taxol. Pak J Bot 47(Spec.Issue):355–358Google Scholar
  64. Gokul RK, Manikandan R, Arulvasu C, Pandi M (2015) Antiproliferative effect of fungal taxol extracted from Cladosporium oxysporum against human pathogenic bacteria and human colon cancer cell line HCT 15. Spectrochim Acta A Mol Biomol Spectrosc 138:667–674CrossRefGoogle Scholar
  65. Gordaliza M, Castro MA, del Corral JM, Feliciano AS (2000) Antitumor properties of podophyllotoxin and related compounds. Curr Pharm Des 6(18):1811–1839CrossRefPubMedGoogle Scholar
  66. Gou L, Tang CQ, Yang SS (2015) Optimization of Aspergillus fumigatus TMS-26 taxol production fermentation system by precursors, elicitors and fermentation conditions. Junwu Xuebao 34(6):1165–1175Google Scholar
  67. Govindachari TR, Viswanathan N (1972) Alkaloids of Mappia foetida. Phytochemistry 11(12):3529–3531CrossRefGoogle Scholar
  68. Gueritte F, Fahy J (2005) The vinca alkaloids. In: Cragg GM, Kingston DGI, Newman DJ (eds) Anticancer agents from natural products. Taylor and Francis, Boca Raton, pp 123–136Google Scholar
  69. Gul A, Bakht J, Mehmood F (2018) Huperzine – a response to cognitive impairment and task switching deficits in patients with Alzheimer’s disease. J Chin Med Assoc. pii: S1726-4901(18)30226-0Google Scholar
  70. Gunatilaka AAL (2006) Natural products from plantassociated microorganisms: distribution, structural diversity, bioactivity and implications of their occurrence. J Nat Prod 69:509–526CrossRefPubMedPubMedCentralGoogle Scholar
  71. Guo B, Li H, Zhang L (1998) Isolation of the fungus producing vinblastine. J Yunnan Univ (Nat Sci Edit) 20:214–215Google Scholar
  72. Guo LD (2001) Advances of endophytic fungi. Mycosystema 20:148–152Google Scholar
  73. Gurudatt PS, Priti V, Shweta S, Ramesha BT, Ravikanth G, Vasudeva R, Amna T, Deepika S, Ganeshaiah KN, Shaanker RU, Puri S, Qazi GN (2010) Attenuation of camptothecin production and negative relation between hyphal biomass and camptothecin content in endophytic fungal strains isolated from Nothapodytes nimmoniana Grahm (Icacinaceae). Curr Sci 98(8):1006–1010Google Scholar
  74. Hadjur C, Richard MJ, Parat MO, Jardon P, Favier A (1996) Photodynamic effect of Hypericin on lipid peroxidation and antioxidant status in melanoma cells. J Photochem Photobiol 64:375–381CrossRefGoogle Scholar
  75. Harmon AD, Weiss U, Silverton JV (1979) The structure of rohitukine, the main alkaloid of Amoora rohituka (syn. Aphanamixis polystachya) (Meliaceae). Tetrahedron Lett 8:721–724CrossRefGoogle Scholar
  76. Hao X, Pan J, Zhu X (2013) Taxol producing fungi. In: Ramawat KG, Merillon JM (eds) Natural products. Springer, Berlin/Heidelberg, pp 2797–2812CrossRefGoogle Scholar
  77. Heinig U, Scholz S, Jennewein S (2013) Getting to the bottom of Taxol biosynthesis by fungi. Fungal Divers 60(1):161–170CrossRefGoogle Scholar
  78. Hemamalini V, Kumar DJ, Mukesh RA, Immaculate N, Srimathi S, Muthumary J, Kalaichelvan PT (2015) Isolation and characterization of taxol producing endophytic Phoma sp. from Calotropis gigantea and its anti-proliferative studies. J Acad Indus Res 3(12):645–649Google Scholar
  79. Hong Y, Liu D, Cheng P, Liu Z, Xiao L. (2010) Huperzine A-producing endophyte TCM-01 strain. Faming Zhuanli Shenqing (2010), CN 101914452 A 20101215Google Scholar
  80. Hong Y, Yang G (2010) Optimization of fermentation conditions of a mutagenized berberine-producing strain. J Fungal Res 1:15Google Scholar
  81. Hu K, Kobayashi H, Dong AJ, Jing YK, Iwasaki S, Yao XS (1999) Antineoplastic agents III: steroidal glycosides from Solanum nigrum. Planta Med 65:35–38CrossRefPubMedGoogle Scholar
  82. Hu X, Li W, Yuan M, Li C, Liu S, Jiang C, Wu Y, Cai K, Liu Y (2016) Homoharringtonine production by endophytic fungus isolated from Cephalotaxus hainanensis Li. World J Microbiol Biotechnol 32(7):110CrossRefPubMedGoogle Scholar
  83. Hu L, Kang X, Shen P, Chen T, Zhang J, Liu D (2018) Detection of Huperzine A and Huperzine B in fermentation broth of endophytic fungus Colletotrichum gloesporioides from Huperzia serrata by HPLC. Sheng Wu Gong Cheng Xue Bao 34(5):777–784PubMedGoogle Scholar
  84. Huan QU, Min LV, Hui XU (2015) Piperine: bioactivities and structural modifications. Mini Rev Med Chem 15:145–156CrossRefGoogle Scholar
  85. Huang JX, Zhang J, Zhang XR, Zhang K, Zhang X, He XR (2014) Mucor fragilis as a novel source of the key pharmaceutical agents podophyllotoxin and kaempferol. Pharm Biol 52(10):1237–1243CrossRefPubMedGoogle Scholar
  86. Imanshahidi M, Hosseinzadeh H (2008) Pharmacological and therapeutic effects of Berberis vulgaris and its active constituent, berberine. Phytother Res 22:999–1012CrossRefPubMedGoogle Scholar
  87. Ishiuchi K, Hirose D, Suzuki T, Nakayama W, Jiang WP, Monthakantirat O, Wu JB, Kitanaka S, Makino T (2018) Identification of lycopodium alkaloids produced by an ultraviolet-irradiated strain of Paraboeremia, an endophytic fungus from Lycopodium serratum var. longipetiolatum. J Nat Prod 81(5):1143–1147CrossRefPubMedGoogle Scholar
  88. Isman MB (2006) Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu Rev Entomol 51:45–66CrossRefPubMedGoogle Scholar
  89. Jayanthi G, Karthikeyan K, Muthumary J (2015) Isolation and characterization of anticancer compound, taxol from an endophytic fungus Phomopsis longicolla. Int J Curr Res 7(2):12727–12734Google Scholar
  90. Ju Z, Wang J, Pan S (2009) Isolation and preliminary identification of the endophytic fungi which produce hupzine A from four species in Hupziaceae and determination of huperzine A by HPLC. Fudan Univ J (Med Sci Edit) 36:445–449Google Scholar
  91. Kalalinia F, Karimi-Sani I (2017) Anticancer properties of solamargine: a systematic review. Phytother Res 31(6):858–870CrossRefPubMedGoogle Scholar
  92. Kamuhabwa AR, Agostinis PM, D’Hallewin MA, Baert L, de Witte PA (2001) Cellular photo destruction induced by hypericin in AY-27 rat bladder carcinoma cells. Photochem Photobiol 74(2):126–132CrossRefPubMedGoogle Scholar
  93. Kanetkar PV, Singhal RS, Kamat MY (2007) Gymnema sylvestre: a memoir. Recent advances in Indian herbal drug research. J Clin Biochem Nutr 41:77–81CrossRefPubMedPubMedCentralGoogle Scholar
  94. Kasaei A, Mobini-Dehkordi M, Mahjoubi F, Saffar B (2017) Isolation of taxol-producing endophytic fungi from Iranian yew through novel molecular approach and their effects on human breast cancer cell line. Curr Microbiol 74(6):702–709CrossRefPubMedGoogle Scholar
  95. Kelland LR (2000) Flavopiridol, the first cyclin-dependent kinase inhibitor to enter the clinic: current status. Expert Opin Investig Drugs 9(12):2903–2911CrossRefPubMedGoogle Scholar
  96. Khayyal MT, el-Ghazaly MA, Kenawy SA, Seif-el-Nasr M, Mahran LG, Kafafi YA et al (2001) Antiulcerogenic effect of some gastrointestinally acting plant extracts and their combination. Arzneimittelforschung 51(7):545–553PubMedGoogle Scholar
  97. Khoo BY, Chua SL, Balaram P (2010) Apoptotic effects of chrysin in human cancer cell lines. Int J Mol Sci 11:2188–2199CrossRefPubMedPubMedCentralGoogle Scholar
  98. Kong W, Wei J, Abidi P et al (2004) Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins. Nat Med 10(12):1344–1351CrossRefPubMedGoogle Scholar
  99. Kour A, Shawl AS, Rehman S, Sultan P, Qazi PH, Suden P, Khajuria RK, Verma V (2008) Isolation and identification of an endophytic strain of Fusarium oxysporum producing podophyllotoxin from Juniperus recurve. World J Microbiol Biotechnol 24(7):1115–1121CrossRefGoogle Scholar
  100. Kumar A, Ahmad A (2013) Biotransformation of vinblastine to vincristine by the endophytic fungus Fusarium oxysporum isolated from Catharanthus roseus. Biocatal Biotransformation 31(2):89–93CrossRefGoogle Scholar
  101. Kumar A, Patil D, Rajamohanan PR, Ahmad A (2013) Isolation, purification and characterization of vinblastine and vincristine from endophytic fungus Fusarium oxysporum isolated from Catharanthus roseus. PLoS One 8(9):e71805CrossRefPubMedPubMedCentralGoogle Scholar
  102. Kumara MP, Zuehlke S, Priti V, Ramesha BT, Shweta S, Ravikanth G, Vasudeva R, Santhoshkumar TR, Spiteller M, Shaanker RU (2012) Fusarium proliferatum, an endophytic fungus from Dysoxylum binectariferum Hook. f, produces rohitukine, a chromane alkaloid possessing anti-cancer activity. Antonie Van Leeuwenhoek 101(2):323–329CrossRefGoogle Scholar
  103. Kumara MP, Soujanya KN, Ravikanth G, Vasudeva R, Ganeshaiah KN, Shaanker RU (2014) Rohitukine, a chromone alkaloid and a precursor of flavopiridol, is produced by endophytic fungi isolated from Dysoxylum binectariferum Hook. f and Amoora rohituka (Roxb).Wight & Arn. Phytomedicine 21(4):541–546CrossRefPubMedGoogle Scholar
  104. Kumaran RS, Jung H, Kim HJ (2011) In vitro screening of taxol, an anticancer drug produced by the fungus, Colletotrichum capsici. Eng Life Sci 11:264–271CrossRefGoogle Scholar
  105. Kumaran RS, Choi YK, Lee S, Jeon HJ, Jung H, Kim HJ (2012) Isolation of taxol, an anticancer drug produced by the endophytic fungus, Phoma betae. Afr J Biotechnol 11(4):950–960Google Scholar
  106. Kusari S, Lamshoeft M, Zuehlke S, Spiteller M (2008) An endophytic fungus from Hypericum perforatum that produces hypericin. J Nat Prod 71(2):159–162CrossRefPubMedGoogle Scholar
  107. Kusari S, Zuhlke S, Spiteller M (2009a) An endophytic fungus from Camptotheca acuminata that produces camptothecin and analogs. J Nat Prod 72(1):2–7CrossRefPubMedGoogle Scholar
  108. Kusari S, Lamshoeft M, Spiteller M (2009b) Aspergillus fumigatus Fresenius, an endophytic fungus from Juniperus communis L. Horstmann as a novel source of the anticancer pro-drug deoxypodophyllotoxin. J Appl Microbiol 107(3):1019–1030CrossRefPubMedGoogle Scholar
  109. Kusari S, Zuhlke S, Kosuth J, Cellarova E, Spiteller M (2009c) Light-independent metabolomics of endophytic Thielavia subthermophila provides insight into microbial hypericin biosynthesis. J Nat Prod 72(10):1825–1835CrossRefPubMedGoogle Scholar
  110. Kusari S, Spiteller M (2011) Are we ready for industrial production ofbioactive plant secondary metabolites utilizing endophytes? Nat Prod Rep 28:1203–1207CrossRefPubMedGoogle Scholar
  111. Kusari S, Verma VC, Lamshoeft M, Spiteller M (2012) An endophytic fungus from Azadirachta indica A. Juss.that produces azadirachtin. World J Microbiol Biotechnol 28:1287–1294CrossRefPubMedGoogle Scholar
  112. Lee YS, Kim WS, Kim KH, Yoon MJ, Cho HJ, Shen Y, Ye JM, Lee CH, Oh WK, Kim CT, Hohnen-Behrens C, Gosby A, Kraegen EW, James DE, Kim JB (2006) Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states. Diabetes 55(8):2256–2264CrossRefPubMedGoogle Scholar
  113. Lei B, Kang J, Wu X, Qian Y, Wen T, Zhou S (2016) Nothapodytes pittosporoides endophyte Trichoderma strain and camptothecin extraction method thereof. Faming Zhuanli Shenqing CN 106047715 A 20161026Google Scholar
  114. Leiter J, Downing V, Hartwell JL, Shear MJ (1950) Damage induced in sarcoma 37 with podophyllin, podophyllotoxin alpha-peltatin, beta-peltatin, and quercetin. J Natl Cancer Inst 10(6):1273–1293PubMedGoogle Scholar
  115. Lenka SK, Boutaoui N, Paulose B, Vongpaseuth K, Normanly J, Roberts SC, Walker EL (2012) Identification and expression analysis of methyl jasmonate responsive ESTs in paclitaxel producing Taxus cuspidata suspension culture cells. BMC Genomics 13:148CrossRefPubMedPubMedCentralGoogle Scholar
  116. Li W, Zhou J, Lin Z, Hu Z (2007) Study on fermentation condition for production of huperzine A from endophytic fungus 2F09P03B of Huperzia serrata. Chin Med Biotechnol 2:254–259Google Scholar
  117. Li W, Zhou J, Lin Z, Shao H, Hu Z (2008) Ultrasonic extraction of huperzine A from an endophytic fungus 2F09P03B of Huperzia serrata. Zhongguo Yaoxue Zazhi (Beijing, China) 43(8):578–581Google Scholar
  118. Li D, Guo LW, Yin H, Feng HG, Li YL (2009) Isolation and identification of producing endophytic fungi of berberine from the plant Phellodendron amurense. Anhui Nongye Kexue 37(22):10340–10341. 10350Google Scholar
  119. Li TQ, Zhang ZJ, Zhang P, Wang CI, Liu B, Liu TT, Fu CH, Yu LJ (2010) Isolation and identification of a taxol-producing endophytic fungus identified from Taxus media. Agric Sci Technol 11(5):38–40Google Scholar
  120. Li X, Liu J, Chen J, Luan M, Yin Z, Yang D (2011) Screening of camptothecin production and SRAP analysis of endophytic fungi from Camptotheca acuminata Decne. Zhongguo Shengwu Gongcheng Zazhi 31(7):60–64Google Scholar
  121. Li Q, Ji G, Zhu J, Gu X, Fei J, Feng Y (2012a) Isolation and identification of a strain BJ-11 which can produce taxol using cellulose. Jiangsu Keji Daxue Xuebao, Ziran Kexueban 26(6):611–614Google Scholar
  122. Li Z, Huang Y, Dong F, Li W, Ding L, Yu G, Xu D, Yang Y, Xu X, Tong D (2012b) Swainsonine promotes apoptosis in human oesophageal squamous cell carcinoma cells in vitro and in vivo through activation of mitochondrial pathway. J Bio Sci 37(6):1005–1016Google Scholar
  123. Li XX, Fang YP, Lai B, Liang J, Li QF (2013) Isolation and identification of berberine-producing endophytic fungus from Coptis chinensis Franch. Caodi Xuebao 21(5):1005–1011Google Scholar
  124. Li Y, Yang J, Zhou X, Zhao W, Jian Z (2015) Isolation and identification of a 10-Deacetyl Baccatin-III-producing endophyte from Taxus wallichiana. Appl Biochem Biotechnol 175(4):2224–2231CrossRefPubMedGoogle Scholar
  125. Li D, Zhang Y, Gao L, Zhou D, Zhao K, Fu D, Ma X, Wang X (2017) Isolation, purification, and identification of taxol and related taxanes from taxol-producing fungus Aspergillus niger subsp. taxi. J Microbiol Biotechnol 27(8):1379–1385PubMedGoogle Scholar
  126. Liang YC, Tsai SH, Tsai DC, Lin-Shiau SY, Lin JK (2001) Suppression of inducible cyclooxygenase and nitric oxide synthase through activation of peroxisome proliferator-activated receptor-gamma by flavonoids in mouse macrophages. FEBS Lett 496:12–18CrossRefPubMedGoogle Scholar
  127. Liang Z, Zhang J, Zhang X, Li J, Zhang X, Zhao C (2016) Endophytic fungus from Sinopodophyllum emodi (Wall.) Ying that produces podophyllotoxin. J Chromatogr Sci 54(2):175–178PubMedGoogle Scholar
  128. Liu HM, Kiuchi F, Tsuda Y (1992) Isolation and structure elucidation of gymnemic acids, anti-sweet principles of Gymnema sylvestre. Chem Pharm Bull 40:1366–1375CrossRefPubMedGoogle Scholar
  129. Liu LF, Desai SD, Li TK, Mao Y, Sun M, Sim SP (2000) Mechanism of action of camptothecin. Ann N Y Acad Sci 922(1):1–10CrossRefPubMedGoogle Scholar
  130. Liu LF, Liang CH, Shiu LY, Lin WL, Lin CC, Kuo KW (2004) Action of solamargine on human lung cancer cells-enhancement of the susceptibility of cancer cells to TNFs. FEBS Lett 577:67–74CrossRefPubMedGoogle Scholar
  131. Liu K, Ding X, Deng B, Chen W (2010) 10-Hydroxycamptothecin produced by a new endophytic Xylaria sp., M20, from Camptotheca acuminata. Biotechnol Lett 32:689–693CrossRefPubMedGoogle Scholar
  132. Liu MZ, Duan ZG, Lu ZC, Liu CX (2014) Identification of a high paclitaxel-producing endophytic fungus J11. Zhongguo Shengwu Huaxue Yu Fenzi Shengwu Xuebao 30(10):1031–1038Google Scholar
  133. Liu H, Chen S, Liu W, Liu Y, Huang X, She Z (2016a) Polyketides with immunosuppressive activities from mangrove endophytic fungus Penicillium sp. ZJ-SY2. Mar Drugs 14(12):217CrossRefPubMedCentralGoogle Scholar
  134. Liu HW, Yang YF, Li YY, Wang S, Qiu DY (2016b) Cloning and expression of GGPP synthase gene from paclitaxel-producing endophytic fungi (Penicillium aurantiogriseum) in Corylus avellana. Guangxi Zhiwu 36(4):456–461Google Scholar
  135. Liu Y, Gao J, Peng M, Meng H, Ma H, Cai P, Xu Y, Zhao Q, Si G (2018) A review on central nervous system effects of gastrodin. Front Pharmacol 9:24. Scholar
  136. Lobert S, Vulevic B, Correia JJ (1996) Interaction of vinca alkaloids with tubulin: a comparison of vinblastine, vincristine, and vinorelbine. Biochemistry 35(21):6806–6814CrossRefPubMedGoogle Scholar
  137. Lu H, Chen J, Lu W, Ma Y, Zhao B, Wang J (2012) Isolation and identification of swainsonine-producing fungi found in locoweeds and their rhizosphere soil. Afr J Microbiol Res 6:4959–4969Google Scholar
  138. Luo M, Liu X, Zu Y, Fu Y, Zhang S, Yao L, Efferth T (2010) Cajanol, a novel anticancer agent from Pigeonpea [Cajanus cajan (L.) Millsp.]roots, induces apoptosis in human breast cancer cells through a ROS-mediated mitochondrial pathway. Chem Biol Interact 188(1):151–160CrossRefPubMedGoogle Scholar
  139. Mackraj I, Govender T, Gathiram P (2008) Sanguinarine. Cardiovasc Ther 26(1):75–83PubMedGoogle Scholar
  140. Man S, Gao W, Wei C, Liu C (2012) Anticancer drugs from traditional toxic Chinese medicines. Phytother Res 26:1449–1465PubMedGoogle Scholar
  141. Maneesai P, Norman S, Krongkarn C (2012) Piperine is anti-hyperlipidemic and improves endothelium-dependent vasorelaxation in rats on a high cholesterol diet. J Physiol Biomed Sci 25:27–30Google Scholar
  142. Medina JH, Paladini AC, Wolfman C, de Stein ML, Calvo D, Diaz LE, Pena C (1990) Chrysin (5,7-di-OH-flavone), a naturally-occurring ligand for benzodiazepine receptors, with anticonvulsant properties. Biochem Pharmacol 40:2227–2231CrossRefPubMedGoogle Scholar
  143. Merlin JN, Christhudas IN, Kumar PP, Kumar M, Agastian P (2012) Taxol production by endophytic Fusarium solani LCPANCF01 from Tylophora indica. J Acad Indus Res 1:281Google Scholar
  144. Miao LY, Zhang P, Liu B, Xu M, Zhou PP, Yu LJ (2012) Isolation and identification of a taxol-producing endophytic fungus Z58 Zhongguo Shengwu. Huaxue Yu Fenzi Shengwu Xuebao 28(12):1141–1146Google Scholar
  145. Miao LY, Mo XC, Xi XY, Zhou L, De G, Ke YS, Liu P, Song FJ, Jin WW, Zhang P (2018) Transcriptome analysis of a taxol-producing endophytic fungus Cladosporium cladosporioides MD2. AMB Express 8(1):1–10CrossRefGoogle Scholar
  146. Min C, Wang X (2009) Isolation and identification of the 10-hydroxycamptothecin-produ-cing endophytic fungi from Camptotheca acuminate. Decne Acta Botanica Boreali- OccidentaliaSinica 29:0614–0617Google Scholar
  147. Mirjalili MH, Farzaneh M, Bonfill M, Rezadoost H, Ghassempour A (2012) Isolation and characterization of Stemphylium sedicola SBU-16 as a new endophytic taxol-producing fungus from Taxus baccata grown in Iran. FEMS Microbiol Lett 328(2):122–129CrossRefPubMedGoogle Scholar
  148. Misra JK (2016) Fungi and statins. In: Deshmukh SK, Misra JK, Tewari JP, Papp T, Press CRC (eds) Fungi applications and management strategies. Taylor & Francis Group, Boca Raton, pp 152–160Google Scholar
  149. Mishra PD, Deshmukh SK, Kulkarni-Almeida A, Roy S, Jain S, Verekar SA, Balakrishnan A, Vishwakarma R (2013) Anti-inflammatory and anti-diabetic naphthoquinones from an endophytic fungus. Indian J Chem Sect B 52:555–557Google Scholar
  150. Mohy-Ud-Din A, Khan Z, Ahmad M, Kashmiri MA (2010) Chemotaxonomic value of alkaloids in Solanum nigrum complex. Pak J Bot 42:653–660Google Scholar
  151. Morgan ED (2009) Azadirachtin, a scientific gold mine. Bioorg Med Chem 17(12):4096–4105CrossRefPubMedGoogle Scholar
  152. Morrison VA (2006) Echinocandin antifungals: review and update. Expert Rev Anti-Infect Ther 4:325–342CrossRefPubMedGoogle Scholar
  153. Murali TS, Suryanarayanan TS, Venkatesan G (2007) Fungal endophyte communities in two tropical forests of southern India: diversity and host affiliation. Mycol Prog 6(3):191–199CrossRefGoogle Scholar
  154. Nadeem M, Ram M, Alam P, Ahmad MM, Mohammad A, Al-Qurainy F, Khan S, Abdin MZ (2012) Fusarium solani, P1, a new endophytic podophyllotoxin-producing fungus from roots of Podophyllum hexandrum. Afr J Microbiol Res 6(10):2493–2499Google Scholar
  155. Nahrstedt A, Butterweck V (1997) Biologically active and other chemical constituents of the herb of Hypericum perforatum L. Pharmacopsychiatry 30(Suppl 2):129–134CrossRefPubMedGoogle Scholar
  156. Naik RG, Kattige SL, Bhat SV, Alreja B, de Souza NJ, Rupp RH (1988) An anti-inflammatory cum immunomodulatory piperidinylbenzopyranone from Dysoxylum binectariferum: Isolation, structure and total synthesis. Tetrahedron 44:2081–2086CrossRefGoogle Scholar
  157. Naik BS, Shashikala J, Krishnamurthy YL (2008) Diversity of fungal endophytes in shrubby medicinal plants of Malnad region, Western Ghats, Southern India. Fungal Ecol 1(2–3):89–93CrossRefGoogle Scholar
  158. Newman DJ, Cragg GM (2016) Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 79(3):629–661CrossRefGoogle Scholar
  159. Nikolic VD, Savic IM, Savic IM, Nikolic LB, Stankovic MZ, Marinkovic VD (2011) Paclitaxel as an anticancer agent: isolation, activity, synthesis and stability. Cent Eur J Med 6(5):527–536Google Scholar
  160. Orhan IE, Orhan G, Gurkas E (2011) An overview on natural cholinesterase inhibitors a multi-targeted drug class and their mass production. Mini Rev Med Chem 11(10):836–842CrossRefPubMedGoogle Scholar
  161. Oxford AE, Raistrick H, Simonart P (1939) Studies on the biochemistry of microorganisms Griseofulvin, C17H17O6Cl, a metabolic product of Penicillium griseofulvum Dierckx. Biochem J 33:240CrossRefPubMedPubMedCentralGoogle Scholar
  162. Palem PPC, Kuriakose GC, Jayabaskaran C (2015) An endophytic fungus, Talaromyces radicus, isolated from Catharanthus roseus, produces vincristine and vinblastine, which induce apoptotic cell death. PLoS One 10(12):e0144476/1–e0144476/22CrossRefGoogle Scholar
  163. Pandi M, Kumaran RS, Choi YK, Kim HJ, Muthumary J (2011) Isolation and detection of taxol, an anticancer drug produced from Lasiodiplodia theobromae, an endophytic fungus of the medicinal plant Morinda citrifolia. Afr J Biotechnol 10(8):1428–1435Google Scholar
  164. Panzer A, Joubert AM, Bianchi PC, Seegers JC (2000) The antimitotic effects of Ukrain, a Chelidonium majus alkaloid derivative, are reversible in vitro. Cancer Lett 150(1):85–92CrossRefPubMedGoogle Scholar
  165. Parthasarathy R, Sathiyabama M (2014) Gymnemagenin-producing endophytic fungus isolated from a medicinal plant Gymnema sylvestre R. Br. Appl Biochem Biotechnol 172(6):3141–3152CrossRefPubMedGoogle Scholar
  166. Peng S, Yang H, Zhu ZZ, Yan R, Wang Y (2016) Molecular cloning, expression and characterization of lysine decarboxylase gene of endophytic fungus Shiraia sp. Slf14 from Huperzia serrata. Wei Sheng Wu Xue Bao 56(4):698–707PubMedGoogle Scholar
  167. Petrini O, Stone J, Carroll FE (1982) Endophytic fungi in ever-green shrubs in western Oregon: a preliminary study. Can J Bot 60:789–796CrossRefGoogle Scholar
  168. Pothuraju R, Sharma RK, Chagalamarri J, Jangra S, Kumar Kavadi P (2014) A systematic review of Gymnema sylvestre in obesity and diabetes management. J Sci Food Agric 94(5):834–840CrossRefPubMedGoogle Scholar
  169. Pu X, Qu X, Chen F, Bao J, Zhang G, Luo Y (2013) Camptothecin-producing endophytic fungus Trichoderma atroviride LY357: isolation, identification, and fermentation conditions optimization for camptothecin production. Appl Microbiol Biotechnol 97:9365–9375CrossRefPubMedGoogle Scholar
  170. Purahong W, Hyde KD (2011) Effects of fungal endophytes on grass and non-grass litter decomposition rates. Fungal Divers 47:1–7CrossRefGoogle Scholar
  171. Puri SC, Verma V, Amna T, Qazi GN, Spiteller M (2005) An endophytic fungus from Nothapodytes foetida that produces camptothecin. J Nat Prod 68(12):1717–1719CrossRefPubMedGoogle Scholar
  172. Puri SC, Nazir A, Chawla R, Arora R, Riyaz-ul-Hasan S, Amna T, Ahmed B, Verma V, Singh S, Sagar R et al (2006) The endophytic fungus Trametes hirsuta as a novel alternative source of podophyllotoxin and related aryl tetralin lignans. J Biotechnol 122(4):494–510CrossRefPubMedGoogle Scholar
  173. Pushpavalli G, Veeramani C, Pugalendi KV (2010) Influence of chrysin on hepatic marker enzymes and lipid profile against D-galactosamine-induced hepatotoxicity rats. Food Chem Toxicol 48:1654–1659CrossRefPubMedGoogle Scholar
  174. Qiao W, Ling F, Yu L, Huang Y, Wang T (2017) Enhancing taxol production in a novel endophytic fungus, Aspergillus aculeatinus Tax-6, isolated from Taxus chinensis var. mairei. Fungal Biol 121(12):1037–1044CrossRefPubMedGoogle Scholar
  175. Ran X, Zhang G, Li S, Wang J, Wang J (2017) Characterization and antitumor activity of camptothecin from endophytic fungus Fusarium solani isolated from Camptotheca acuminata. Afr Health Sci 17(2):566–574CrossRefPubMedPubMedCentralGoogle Scholar
  176. Rao GS, Sinsheimer JE (1971) Constituents Gymnema sylvestre leaves VIII: isolation, chemistry, and derivatives of gymnemagenin and gymnestrogenin. J Pharm Sci 60(2):190–1933CrossRefPubMedGoogle Scholar
  177. Rather RA, Bhagat M (2018) Cancer chemoprevention and piperine: molecular mechanisms and therapeutic opportunities. Front Cell Dev Biol 6:10. Scholar
  178. Rathore PK, Arathy V, Attimarad VS, Kumar P, Roy S (2016) In-silico analysis of gymnemagenin from Gymnema sylvestre (Retz.) R.Br. with targets related to diabetes. J Theor Biol 391:95–101CrossRefPubMedGoogle Scholar
  179. Rebecca AIN, Kumar DJM, Srimathi S, Muthumary J, Kalaichelvan PT (2011) Isolation of Phoma species from Aloe vera: an endophyte and screening the fungus for Taxol production. World J Sci Technol 1(11):23–31Google Scholar
  180. Rebecca AIN, Hemamalini V, Kumar DJM, Srimathi S, Muthumary J, Kalaichelvan PT (2012) Endophytic Chaetomium sp. from Michelia champaca L. and its taxol production. J Acad Indus Res 1(2):68–72Google Scholar
  181. Rehman S, Shawl AS, Kour A, Andrabi R, Sudan P, Sultan P, Verma V, Qazi GN (2008) An endophytic Neurospora sp. from Nothapodytes foetida producing camptothecin. Appl Biochem Microbiol 44:203–209CrossRefGoogle Scholar
  182. Rehman S, Shawl AS, Kour A, Sultan P, Ahmad K, Khajuria R, Qazi GN (2009) Comparative studies and identification of camptothecin produced by an endophyte at shake flask and bioreactor. Nat Prod Res 23(11):1050–1057CrossRefPubMedGoogle Scholar
  183. Ren Z, Song R, Wang S, Quan H, Yang L, Sun L, Zhao B, Lu H (2017) The biosynthesis pathway of swainsonine, a new anticancer drug from three endophytic fungi. J Microbiol Biotechnol 27(11):1897–1906CrossRefPubMedGoogle Scholar
  184. Sabir F, Mishra S, Sangwan RS, Jadaun JS, Sangwan NS (2013) Qualitative and quantitative variations in withanolides and expression of some pathway genes during different stages of morphogenesis in Withania somnifera Dunal. Protoplasma 250:539–549CrossRefPubMedGoogle Scholar
  185. Safia KM, Jadiya P, Sheikh S, Haque E, Nazir A, Lakshmi V, Mir SS (2015) The chromone alkaloid, rohitukine, affords anti-cancer activity via modulating apoptosis pathways in A549 cell line and yeast mitogen activated protein kinase (MAPK) pathway. PLoS One 10(9):e0137991. Scholar
  186. Saikkonen K, Saari S, Helander M (2010) Defensive mutualism between plants and endophytic fungi? Fungal Divers 41:101–113CrossRefGoogle Scholar
  187. Sangwan NS, Sabir F, Mishra S, Bansal S, Sangwan RS (2014) Withanolides from Withania somnifera Dunal: development of cellular technology and their production. Recent Pat Biotechnol 8:25–35CrossRefPubMedGoogle Scholar
  188. Santos A, Adkilen P (1932) The alkaloids of Argemone Mexicana. J Am Chem Soc 54(7):2923–2924CrossRefGoogle Scholar
  189. Sarzaeem A, Mirakabadi AZ, Moradhaseli S, Sayad A (2013) Comparative study for toxic effects of camptothecin in cancer and normal cells. J Biol Today’s World 2(4):188–201Google Scholar
  190. Saxena S (2016) Volatile organic compounds from fungi: impact and exploitation. In: Deshmukh SK, Misra JK, Tewari JP, Papp T, Press CRC (eds) Fungi applications and management strategies. Taylor & Francis Group, Boca Raton, pp 134–151Google Scholar
  191. Sathiyabama M, Parthasarathy R (2018) Withanolide production by fungal endophyte isolated from Withania somnifera. Nat Prod Res 32(13):1573–1577CrossRefPubMedGoogle Scholar
  192. Scherlach K, Hertweck C (2009) Triggering cryptic natural product biosynthesis in microorganisms. Org Biomol Chem 7:1753–1760CrossRefGoogle Scholar
  193. Seca AML, Pinto DCGA (2018) Plant secondary metabolites as anticancer agents: successes in clinical trials and therapeutic application. Int J Mol Sci 19(1):pii: E263CrossRefGoogle Scholar
  194. Seetharaman P, Gnanasekar S, Chandrasekaran R, Chandrakasan G, Kadarkarai M, Sivaperumal S (2017) Isolation and characterization of anticancer flavone chrysin (5, 7-dihydroxy flavone)-producing endophytic fungi from Passiflora incarnata L. leaves. Ann Microbiol 67(4):321–331CrossRefGoogle Scholar
  195. Shweta S, Zuehlke S, Ramesha BT, Priti V, Kumar PM, Ravikanth G, Spiteller M, Vasudeva R, Shaanker RU (2010) Endophytic fungal strains of Fusarium solani, from Apodytes dimidiate E. Mey. ex Arn (Icacinaceae) produce camptothecin, 10- hydroxycamptothecin and 9-methoxycamptothecin. Phytochemistry 71:117–122CrossRefPubMedGoogle Scholar
  196. Shweta S, Gurumurthy BR, Ravikanth G, Ramanan US, Shivanna MB (2013) Endophytic fungi from Miquelia dentata Bedd., produce the anti-cancer alkaloid, camptothecine. Phytomedicine 20(3-4):337–342CrossRefPubMedGoogle Scholar
  197. Sinclair JB, Cerkauskas RF (1996) Latent infection vs. endophytic colonization by fungi. In: Redlin SC, Carris LM (eds) Endophytic fungi in grasses and woody plants: systematics, ecology, and evolution. APS Press, St. Paul, pp 3–29Google Scholar
  198. Soca-Chafre G, Rivera-Orduña FN, Hidalgo-Lara ME, Hernandez-Rodriguez C, Marsch R, Flores-Cotera LB (2011) Molecular phylogeny and paclitaxel screening of fungal endophytes from Taxus globosa. Fungal Biol 115(2):143–156CrossRefPubMedGoogle Scholar
  199. Soliman SSM, Tsao R, Raizada MN (2011) Chemical inhibitors suggest endophytic fungal paclitaxel is derived from both mevalonate and non-mevalonate-like pathways. J Nat Prod 74(12):2497–2504CrossRefPubMedGoogle Scholar
  200. Soliman SS, Raizada MN (2013) Interactions between Co-Habitating fungi Elicit Synthesis of Taxol from an Endophytic Fungus in Host Taxus Plants. Front Microbiol 4:3. Scholar
  201. Soliman SSM, Greenwood JS, Bombarely A, Mueller LA, Tsao R, Mosser DD, Raizada MN (2015) An Endophyte constructs fungicide-containing extracellular barriers for its host plant. Curr Biol 25(19):2570–2576CrossRefPubMedGoogle Scholar
  202. Soliman SSM, Mosa KA, El-Keblawy AA, Husseiny MI (2017) Exogenous and endogenous increase in fungal GGPP increased fungal taxol production. Appl Microbiol Biotechnol 101(20):7523–7533CrossRefPubMedGoogle Scholar
  203. Somjaipeng S, Medina A, Magan N (2016) Environmental stress and elicitors enhance taxol production by endophytic strains of Paraconiothyrium variabile and Epicoccum nigrum. Enzyme Microb Technol 90:69–75CrossRefPubMedGoogle Scholar
  204. Sreekanth D, Sushim GK, Syed A, Khan BM, Ahmad A (2011) Molecular and morphological characterization of a taxol-producing endophytic fungus, Gliocladium sp., from Taxus baccata. Mycobiology 39(3):151–157CrossRefPubMedPubMedCentralGoogle Scholar
  205. Sri AS (2016) Pharmacological Activity of Vinca Alkaloids. J Pharmacogn Phytochem 4(3):27–34Google Scholar
  206. Stierle A, Strobel G, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 260(5105):214–217CrossRefPubMedGoogle Scholar
  207. Su YY, Guo LD, Hyde KD (2010) Response of endophyticfungi of Stipa grandisto experimental plant function groupremoval in Inner Mongolia steppe, China. Fungal Divers 43:93–101CrossRefGoogle Scholar
  208. Su J, Huang B, Qiu H, Yan L, Zhang J, Yang M (2011) Alkaloid and huperzine A-producing endophytic fungi isolated from Huperzia serrata. Zhongguo Yaoxue Zazhi (Beijing, China) 46(19):1477–1481Google Scholar
  209. Su H, Kang J, Cao J, Mo L, Hyde KD (2014) Medicinal plant endophytes produce analogous bioactive compounds. Chiang Mai J Sci 41:1–13Google Scholar
  210. Su J, Yang M (2015) Huperzine A production by Paecilomyces tenuis YS-13, an endophytic fungus isolated from Huperzia serrata. Nat Prod Res 29(11):1035–1041CrossRefPubMedGoogle Scholar
  211. Subban K, Singh S, Chelliah J, Subban K, Johnpaul M, Subramani R (2017) Fungal 7-epi-10-deacetyltaxol produced by an endophytic Pestalotiopsis microspora induces apoptosis in human hepatocellular carcinoma cell line (HepG2). BMC Complement Altern Med 17(1):504CrossRefPubMedPubMedCentralGoogle Scholar
  212. Suhas S, Ramesha BT, Ravikanth G, Rajesh Gunaga P, Vasudeva R, Ganeshaiah KN, Uma Shaanker R (2007) Chemical profiling of Nothapodytes nimmoniana populations in the Western Ghats, India for anti-cancer compound, camptothecin. Curr Sci 92(8):1142–1147Google Scholar
  213. Suffness M (1995) Taxol, science and applications. CRC Press, Boca RatonGoogle Scholar
  214. Sun Y, Xun K, Wang Y, Chen X (2009) A systematic review of the anticancer properties of berberine, a natural product from Chinese herbs. Anticancer Drugs 20:757–769CrossRefPubMedGoogle Scholar
  215. Sun X, Guo LD (2012) Endophytic fungal diversity: review of traditional and molecular techniques. Mycology 3(1):65–76Google Scholar
  216. Sun X, Guo LD, Hyde KD (2011) Community composition of endophytic fungi in Acer truncatum and their role in decom-position. Fungal Divers 47:85–95CrossRefGoogle Scholar
  217. Sunila ES, Kuttan G (2004) Immunomodulatory and antitumor activity of Piper longum Linn. and piperine. J Ethnopharmacol 90:339–346CrossRefPubMedGoogle Scholar
  218. Suryanarayanan TS, Thirunavukkarasu N, Hariharan GN, Balaji P (2005) Occurrence of non-obligate microfungi inside lichenthalli. Sydowia 57:119–129Google Scholar
  219. Suryanarayanan TS, Thirunavukkarasu N (2017) Endolichenic fungi: the lesser known fungal associates of lichens. Mycology 8(3):189–196CrossRefPubMedPubMedCentralGoogle Scholar
  220. Tan X, Tang H, Zhou Y, Zhou X, Xia X, Wei Y, He L, Yu L (2018) Diversity and bioactive potential of culturable fungal endophytes of Dysosma versipellis; a rare medicinal plant endemic to China. Sci Rep 8(1):5929CrossRefPubMedPubMedCentralGoogle Scholar
  221. Tanaka A, Takemoto D, Chujo T, Scott B (2012) Fungal endophytes of grasses. Curr Opin Plant Biol 15(4):462–468CrossRefPubMedGoogle Scholar
  222. Tian J, Fu L, Zhang Z, Dong X, Xu D, Mao Z, Liu Y, Lai D, Zhou L (2016) Dibenzo-α-pyrones from the endophytic fungus Alternaria sp. Samif01: isolation, structure elucidation, and their antibacterial and antioxidant activities. Nat Prod Res 31(4):387–396CrossRefPubMedGoogle Scholar
  223. Ting ASY, Meon S, Kadir J, Radu S, Singh G (2008) Endophytic microorganisms as potential growth promoters of banana. Biocontrol 53:541–553CrossRefGoogle Scholar
  224. Torres-Piedra M, Ortiz-Andrade R, Villalobos-Molina R, Singh N, Medina-Franco JL, Webster SP, Binnie M, Navarrete-Vázquez G, Estrada-Soto S (2010) A comparative study of flavonoid analogues on streptozotocin-nicotinamide induced diabetic rats: quercetin as a potential antidiabetic agent acting via beta-hydroxysteroid dehydrogenase type 1 inhibition. Eur J Med Chem 45:2606–2612CrossRefPubMedGoogle Scholar
  225. Uzma F, Mohan CD, Hashem A et al (2018) Endophytic fungi-alternative sources of cytotoxic compounds: a review. Front Pharmacol 9:309CrossRefPubMedPubMedCentralGoogle Scholar
  226. Vasanthakumari MM, Jadhav SS, Sachin N, Vinod G, Shweta S, Manjunatha BL, Kumara PM, Ravikanth G, Nataraja KN, Uma Shaanker R (2015) Restoration of camptothecine production in attenuated endophytic fungus on re-inoculation into host plant and treatment with DNA methyltransferase inhibitor. World J Microbiol Biotechnol 31(10):1629–1639CrossRefPubMedGoogle Scholar
  227. Vennila R, Kamalraj S, Muthumary J (2012) In vitro studies on anticancer activity of fungal taxol against human breast cancer cell line MCF-7 cells. Biomed Aging Pathol 2(1):16–18CrossRefGoogle Scholar
  228. Venugopalan A, Srivastava S (2015) Enhanced camptothecin production by ethanol addition in the suspension culture of the endophyte, Fusarium solani. Bioresour Technol 188:251–257CrossRefPubMedGoogle Scholar
  229. Verma VC, Lobkovsky E, Gange AC, Singh SK, Prakash S (2011) Piperine production by endophytic fungus Periconia sp. isolated from Piper longum L. J Antibiot 64:427–431CrossRefPubMedGoogle Scholar
  230. Verekar SA, Mishra PD, Sreekumar ES, Deshmukh SK, Fiebig HH, Kelter G, Maier A (2014) Anticancer activity of new depsipeptide compound isolated from an endophytic fungus. J Antibiot 67:697–701CrossRefPubMedGoogle Scholar
  231. Vicente F, Reyes F, Genilloud O (2016) Fungal secondary metabolites as source of antifungal compounds. In: Deshmukh SK, Misra JK, Tewari JP, Papp T (eds) Fungi applications and management strategies. CRC Press, Taylor & Francis Group, Boca Raton, pp 80–116Google Scholar
  232. Vinodhini D, Agastian P (2013) Berberine production by endophytic fungus Fusarium solani from Coscinium fenestratum. Int J Biol Pharm Res 4:1239–1245Google Scholar
  233. Wall ME, Wani MC, Cook CE, Palmer KH, McPhail AT, Sim GA (1966) Plant antitumor agents. 1. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from Camptotheca acuminata. J. Am Chem Soc 88:3888–3890CrossRefGoogle Scholar
  234. Wang Q, Fu Y, Gao J, Wang Y, Li X, Zhang A (2007) Preliminary isolation and screening of the endophytic fungi from Melia azedarach L. Acta Agric Boreali-Occident Sin 16:224–227Google Scholar
  235. Wang Y, Zeng QG, Zhang ZB, Yan RM, Wang LY, Zhu D (2011a) Isolation and characterization of endophytic huperzine A-producing fungi from Huperzia serrata. J Ind Microbiol Biotechnol 38(9):1267–1278CrossRefPubMedGoogle Scholar
  236. Wang Y, Yan R, Zeng Q, Zhang Z, Wang D, Zhu D (2011b) Producing huperzine A by an endophytic fungus from Huperzia serrata. Junwu Xuebao 30(2):255–262Google Scholar
  237. Wang J, Qiu J, Dong J, Li H, Luo M, Dai X, Zhang Y, Leng B, Niu X, Zhao S, Deng X (2011c) Chrysin protects mice from Staphylococcus aureus pneumonia. J Appl Microbiol 111:1551–1558CrossRefPubMedGoogle Scholar
  238. Wang Y, Tang K (2011) A new endophytic taxol- and baccatin III-producing fungus isolated from Taxus chinensis var. mairei. Afr J Biotechnol 10(72):16379–16386Google Scholar
  239. Wang Y, Chen H (2011) Isolation and identification of a camptothecin-producing endophytic fungus from Camptotheca acuminate. Weishengwuxue Tongbao 38(6):884–888Google Scholar
  240. Wang YM, Ma ZY, Hu FL, Fan MZ, Li ZZ (2014a) Isolation and screening of endophytic fungi producing taxol from Taxus chinensis of huangshan. Tianran Chanwu Yanjiu Yu Kaifa 26(10):1624–1627Google Scholar
  241. Wang L, Long XF, Xiao Q, Ye RY, Tian YQ, Guo YD (2014b) Screening and identification of a fungal strain for 10-hydroxycamptothecin transformation. Shengwu Jishu 24(1):80–85Google Scholar
  242. Wang XJ, Min CL, Ge M, Zuo RH (2014c) An endophytic sanguinarine-producing fungus from Macleaya cordata, Fusarium proliferatum BLH51. Curr Microbiol 68(3):336–341CrossRefPubMedGoogle Scholar
  243. Wang X, Wang C, Sun YT, Sun CZ, Zhang Y, Wang XH, Zhao K (2015) Taxol produced from endophytic fungi induces apoptosis in human breast, cervical and ovarian cancer cells. Asian Pac J Cancer Prev 16(1):125–131CrossRefPubMedGoogle Scholar
  244. Wang T, Ma YX, Ye YH, Zheng HM, Zhang BW, Zhang EH (2017) Screening and identification of endophytic fungi producing podophyllotoxin compounds in Sinopodophyllum hexandrum stems. Chinese J Exp Trad Med Formulae 2:006Google Scholar
  245. Wani MC, Taylor HL, Wall ME, Coggon P, McPhail AT (1971) Plant antitumor agents VI: the isolation and structure of taxol, a novel antilekemic and antitumor agent from Taxus brevifolia. J Am Chem Soc 93:2325–2327CrossRefPubMedGoogle Scholar
  246. Weerasinghe P, Hallock S, Brown RE, Loose DS, Buja LM (2013) A model for cardiomyocyte cell death: insights into mechanisms of oncosis. Exp Mol Pathol 94(1):289–300CrossRefPubMedGoogle Scholar
  247. White PT, Subramanian C, Motiwala HF, Cohen MS (2016) Natural withanolides in the treatment of chronic diseases. Adv Exp Med Biol 928:329–373CrossRefPubMedGoogle Scholar
  248. Winter JM, Behnken S, Hertweck C (2011) Genomics-inspired discovery of natural products. Curr Opin Chem Biol 15:22–31CrossRefPubMedGoogle Scholar
  249. Xi XY, Song FJ, Zhang P, Zhao SY, Lei SK, Yu PF (2015) Characterization of a taxol-producing endophytic fungus MHZ-32. Zhongguo Shengwu Huaxue Yu Fenzi Shengwu Xuebao 31(4):429–434Google Scholar
  250. Xiao MM, Zhang YQ, Wang WT, Han WJ, Lin Z, Xie RG, Cao Z, Lu N, Hu SJ, Wu SX, Dong H, Luo C (2016) Gastrodin protects against chronic inflammatory pain by inhibiting spinal synaptic potentiation. Sci Rep 6:37251CrossRefPubMedPubMedCentralGoogle Scholar
  251. Xie X, Zhu H, Zhang J, Wang M, Zhu L, Guo Z, Shen W, Wang D (2017) Solamargine inhibits the migration and invasion of HepG2 cells by blocking epithelial-to-mesenchymal transition. Oncol Lett 14(1):447–452CrossRefPubMedPubMedCentralGoogle Scholar
  252. Xiong ZQ, Yang YY, Zhao N, Wang Y (2013) Diversity of endophytic fungi and screening of fungal paclitaxel producer from Anglojap yew, Taxus × media. BMC Microbiol 13:71CrossRefPubMedPubMedCentralGoogle Scholar
  253. Yang X, Zhang L, Guo B, Guo S (2004) Preliminary study of a vincristine- producing endophytic fungus isolated from leaves of Catharanthus roseus. Chin Tradit Herbal Drugs 35:79–81Google Scholar
  254. Yang Y, Zhao H, Barrero RA, Zhang B, Sun G, Wilson IW, Xie F, Walker KD, Parks JW, Bruce R et al (2014a) Genome sequencing and analysis of the paclitaxel-producing endophytic fungus Penicillium aurantiogriseum NRRL 62431. BMC Genomics 15:69/1–69/14, 14 ppCrossRefGoogle Scholar
  255. Yang H, Wang Y, Zhang Z, Yan R, Zhu D (2014b) Whole-Genome shotgun assembly and analysis of the genome of Shiraia sp. Strain Slf14, a novel endophytic fungus producing Huperzine A and Hypocrellin A. Genome Announc 2(1):pii: e00011-14CrossRefGoogle Scholar
  256. Yang H, Peng S, Zhang Z, Yan R, Wang Y, Zhan J, Zhu D (2016) Molecular cloning, expression, and functional analysis of the copper amine oxidase gene in the endophytic fungus Shiraia sp. Slf14 from Huperzia serrata. Protein Expr Purif 128:8–13CrossRefPubMedGoogle Scholar
  257. Yoo JJ, Eom AH (2012) Molecular identification of endophytic fungi isolated from needle leaves of conifers in Bohyeon Mountain, Korea. Mycobiology 40(4):231–235CrossRefPubMedPubMedCentralGoogle Scholar
  258. You N, Liu W, Wang T, Ji R, Wang X, Gong Z, Dou K, Tao K (2012) Swainsonine inhibits growth and potentiates the cytotoxic effect of paclitaxel in hepatocellular carcinoma in vitro and in vivo. Oncol Rep 28(6):2091–2100CrossRefPubMedGoogle Scholar
  259. Zaiyou J, Li M, Xiqiao H, Schaller B (2017) An endophytic fungus efficiently producing paclitaxel isolated from Taxus wallichiana var. mairei. Medicine 96(27):e7406CrossRefPubMedPubMedCentralGoogle Scholar
  260. Zangara A (2003) The psychopharmacology of huperzine A: an alkaloid with cognitive enhancing and neuroprotective properties of interest in the treatment of Alzheimer’s disease. Pharmacol Biochem Behav 75:675–686CrossRefPubMedGoogle Scholar
  261. Zeng S, Shao H, Zhang L (2004) An endophytic fungus producing a substance analogous to podophyllotoxin isolated from Diphylleia sinensis. Weishengwuxue Zazhi 24(4):1–2Google Scholar
  262. Zhang L, Guo B, Li H, Zeng S, Shao H, Gu S, Wei R (2000) Preliminary study on the isolation of endophytic fungus of Catharanthus roseus and its fermentation to produce products of therapeutic value. Chin Tradit Herbal Drugs 31:805–807Google Scholar
  263. Zhang P, Zhou P, Yu L (2009) An endophytic taxol-producing fungus from Taxus media, Cladosporium cladosporioides MD2. Curr Microbiol 59(3):227–232CrossRefPubMedGoogle Scholar
  264. Zhang G, Sun S, Zhu T, Lin Z, Gu J, Li D, Gu Q (2011a) Antiviral isoindolone derivatives from an endophytic fungus Emericella sp. associated with Aegiceras corniculatum. Phytochemistry 72(11-12):1436–1442CrossRefPubMedGoogle Scholar
  265. Zhang P, Liu TT, Zhou PP, Li ST, Yu LJ (2011b) Agrobacterium tumefaciens-mediated transformation of a taxol-producing endophytic fungus, Cladosporium cladosporioides MD2. Curr Microbiol 62(4):1315–1320CrossRefPubMedGoogle Scholar
  266. Zhang P, Liu B, Zhou PP, Wang CL, Jiang C, Yu LJ (2011c) Isolation and identification of a taxol-producing endophytic fungus YN6 Zhongguo Shengwu. Huaxue Yu Fenzi Shengwu Xuebao 27(10):961–967Google Scholar
  267. Zhang ZB, Zeng QG, Yan RM, Wang Y, Zou ZR, Zhu D (2011d) Endophytic fungus Cladosporium cladosporioides LF70 from Huperzia serrata produces Huperzine A. World J Microbiol Biotechnol 27(3):479–486CrossRefGoogle Scholar
  268. Zhang YD, Fan ZR, Zhou YG, Deng ZH (2012) Screening and identification of taxol-producing fungus from Taxus mairei. Yixue Linchuang Yanjiu 29(12):2257–2259Google Scholar
  269. Zhang FF, Wang MZ, Zheng YX, Liu HY, Zhang XQ, Wu SS (2015a) Isolation and characterzation of endophytic Huperzine A-producing fungi from Phlegmariurus phlegmaria. Microbiology 84(5):701–709CrossRefGoogle Scholar
  270. Zhang G, Wang W, Zhang X, Xia Q, Zhao X, Ahn Y, Ahmed N, Cosoveanu A, Wang M, Wang J, Shu S (2015b) De novo RNA sequencing and transcriptome analysis of Colletotrichum gloeosporioides ES026 reveal genes related to biosynthesis of huperzine A. PLoS One 10(3):e0120809CrossRefPubMedPubMedCentralGoogle Scholar
  271. Zhang FH, Xiang JH, Cui WX, Yu J, Wang Y, Li QF (2016) Isolation and identification of berberine from endophytic fungi HL-Y-3. Zhongguo Zhong Yao Za Zhi 41(16):2998–3001PubMedGoogle Scholar
  272. Zhang X, Wang Z, Jan S, Yang Q, Wang M (2017) Expression and functional analysis of the lysine decarboxylase and copper amine oxidase genes from the endophytic fungus Colletotrichum gloeosporioides ES026. Sci Rep 7(1):2766CrossRefPubMedPubMedCentralGoogle Scholar
  273. Zhao J, Zhou L, Wang J, Shan T, Zhong L, Liu X et al (2010) Endophytic fungi for producing bioactive compounds originally from their host plants. Curr Res Technol Educ Trop Appl Microbiol Microb Biotechnol 1:567–576Google Scholar
  274. Zhao J, Shan T, Mou Y, Zhou L (2011a) Plant-derived bioactive compounds produced by endophytic fungi. Mini-Rev Med Chem 11:159–168CrossRefPubMedGoogle Scholar
  275. Zhao K, Li Z, Ge N, Li X, Wang X, Zhou D (2011b) Investigation of fermentation conditions and optimization of medium for taxol production from taxol-producing fungi. J Med Plant Res 5(29):6528–6535Google Scholar
  276. Zhao XM, Wang ZQ, Shu SH, Wang WJ, Xu HJ, Ahn YJ, Wang M, Hu X (2013a) Ethanol and methanol can improve huperzine A production from endophytic Colletotrichum gloeosporioides ES026. PLoS One 8(4):e61777CrossRefPubMedPubMedCentralGoogle Scholar
  277. Zhao J, Li C, Wang W, Zhao C, Luo M, Mu F, Fu Y, Zu Y, Yao M (2013b) Hypocrea lixii, novel endophytic fungi producing anticancer agent cajanol, isolated from pigeon pea (Cajanus cajan [L.] Millsp.). J Appl Microbiol 115(1):102–113CrossRefPubMedGoogle Scholar
  278. Zhao K, Xiao Y, Wang C, Liu D, Zhang Y, Wang X, Li X, Jin T (2014) Screening of taxol biosynthesis-related genes in taxol produced from Nodulisporium sylviforme HDF-68 by mRNA differential display. Ann Microbiol 64(4):1633–1642CrossRefGoogle Scholar
  279. Zheng RY, Jiang H (1995) Rhizomucor endophyticus sp. nov., an endophytic zygomycetes from higher plants. Mycotaxon 56:455–466Google Scholar
  280. Zheng W, Zhu H, Liu L, Ye W, Zhou X, Yin J (2010) Identification and biological characteristic research of taxol-producing endophytic fungus EFY-21. Junwu Yanjiu 8(1):35–40Google Scholar
  281. Zhou S, Yang F, Lan S, Xu N, Hong Y (2009) Huperzine A producing conditions from endophytic fungus in SHB Huperzia serrata. J Microbiol 29:32–36Google Scholar
  282. Zhu D, Wang J, Zeng Q, Zhang Z, Yan R (2010) A novel endophytic Huperzine A-producing fungus, Shiraia sp. Slf14, isolated from Huperzia serrata. J Appl Microbiol 109(4):1469–1478CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Sunil K. Deshmukh
    • 1
  • Manish K. Gupta
    • 1
  • Sangram K. Lenka
    • 1
  1. 1.TERI-Deakin Nano Biotechnology CentreThe Energy and Resources Institute (TERI)New DelhiIndia

Personalised recommendations