Advertisement

Diversity in Cellulose-Degrading Microbes and Their Cellulases: Role in Ecosystem Sustainability and Potential Applications

  • Anica Dadwal
  • Shilpa Sharma
  • Tulasi Satyanarayana
Chapter

Abstract

Cellulose is a renewable carbon source, which is an abundant natural biopolymer present in agricultural and forest residues. A great variety of prokaryotic and eukaryotic microbes are known to produce cellulose-degrading enzymes. Besides well-known cellobiohydrolase, endoglucanase and β-xylosidase, other enzymes such as lytic polysaccharide monooxygenase (LPMO) have been reported to play a role in cellulose hydrolysis. This chapter focuses on the diversity of cellulose-degrading microbes and various cellulolytic enzymes produced by them. Cellulases are one of the widely used enzymes in textile, paper and pulp, wine and brewery, biofuel and pharmaceutical industries. The role of cellulose degradation in the ecosystem sustainability and multifarious biotechnological applications of cellulases are briefly described.

Keywords

Biofuel Bioethanol Lignocellulosics Cellulases Cellulose-degrading microbes Ecosystem sustainability 

References

  1. Ahmad B, Nigar S, Shah SSA, Shumaila B, Ali J, Yousaf S, Bangash JA (2013) Isolation and identification of cellulose degrading bacteria from municipal waste and their screening for potential antimicrobial activity. World Appl Sci J 27:1420–1426Google Scholar
  2. Akiba S, Yamamoto K, Kumagai H (1995) Effects of size of carbohydrate chain on protease digestion of Aspergillus niger endo-β-1,4-glucanase. Biosci Biotechnol Biochem 59:1048–1051CrossRefPubMedGoogle Scholar
  3. Al-Ghazzewi FH, Tester RF (2012) Efficacy of cellulase and mannanase hydrolysates of konjac glucomannan to promote the growth of lactic acid bacteria. J Sci Food Agric 92:2394–2396CrossRefPubMedGoogle Scholar
  4. Al-Ghazzewi FH, Khanna S, Tester RF, Piggott J (2007) The potential use of hydrolysed konjac glucomannan as a prebiotic. J Sci Food Agric 87:1758–1766CrossRefGoogle Scholar
  5. Araújo R, Casal M, Cavaco-Paulo A (2009) Application of enzymes for textile fibres processing. Biocatal Biotransform 26:332–349CrossRefGoogle Scholar
  6. Ariffin H, Hassan MA, Shah UKM, Abdullah N, Ghazali FM, Shirai Y (2008) Production of bacterial endoglucanase from pretreated oil palm empty fruit bunch by Bacillus pumilus EB3. J Biosci Bioeng 106:231–236CrossRefPubMedGoogle Scholar
  7. Bailey BA, Lumsden RD (1998) Direct effects of Trichoderma and Gliocladium on plant growth and resistance to pathogens. In: Harman GF, Kubicek CP (eds) Trichoderma and Gliocladium-enzymes. Taylor & Francis, London, pp 327–342Google Scholar
  8. Baldrian P, Valášková V (2008) Degradation of cellulose by basidiomycetous fungi. FEMS Microbiol Rev 32:501–521CrossRefPubMedGoogle Scholar
  9. Bandick AK, Dick RP (1999) Field management effects on soil enzyme activities. Soil Biol Biochem 31:1471–1479CrossRefGoogle Scholar
  10. Behera BC, Parida S, Dutta SK, Thatoi HN (2014) Isolation and identification of cellulose degrading bacteria from mangrove soil of Mahanadi river delta and their cellulase production ability. Am J Microbiol Res 2:41–46CrossRefGoogle Scholar
  11. Behera BC, Sethi BK, Mishra RR, Dutta SK, Thatoi HN (2017) Microbial cellulases – diversity and biotechnology with reference to mangrove environment: a review. J Genet Eng Biotechnol 15:197–210CrossRefPubMedGoogle Scholar
  12. Benitez T, Limon C, Delgado-Jarana J, Rey M (1998) Glucanolytic and other enzymes and their genes. In: Harman GF, Kubicek CP (eds) Trichoderma and gliocladium-enzymes, biological control and commercial applications. Taylor & Francis, London, pp 101–127Google Scholar
  13. Béra-Maillet C, Devillard E, Cezette M, Jouany JP, Forano E (2005) Xylanases and carboxymethylcellulases of the rumen protozoa Polyplastron multivesiculatum, Eudiplodinium maggii and Entodinium sp. FEMS Microbiol Lett 244:149–156CrossRefPubMedGoogle Scholar
  14. Berlemont R, Martiny AC (2013) Phylogenetic distribution of potential cellulases in bacteria. Appl Environ Microbiol 79:1545–1554CrossRefPubMedPubMedCentralGoogle Scholar
  15. Bonfá EC, de Souza Moretti MM, Gomes E, Bonilla-Rodriguez GO (2018) Biochemical characterization of an isolated 50 kDa beta-glucosidase from the thermophilic fungus Myceliophthora thermophila M.7.7. Biocatal Agric Biotechnol 13:311–318CrossRefGoogle Scholar
  16. Borisova AS, Eneyskaya EV, Bobrov KS, Jana S, Logachev A, Polev DE, Lapidus AL, Ibatullin FM, Saleem U, Sandgren M, Payne M, Kulminskaya AA, Ståhlberg J (2015) Sequencing biochemical characterization, crystal structure and molecular dynamics of cellobiohydrolase Cel7A from Geotrichum candidum 3C. FEBS J 282:4515–4537CrossRefPubMedGoogle Scholar
  17. Cano-Ramírez C, Santiago-Hernández A, Rivera-Orduña FN, García-Huante Y, Zúñiga G, Hidalgo-Lara ME (2016) Expression, purification and characterization of an endoglucanase from Serratia proteamaculans CDBB-1961, isolated from the gut of Dendroctonus adjunctus (Coleoptera: Scolytinae). AMB Express 6:63CrossRefPubMedPubMedCentralGoogle Scholar
  18. Cantarel BL, Lombard V, Henrissat B (2012) Complex carbohydrate utilization by the healthy human microbiome. PLoS One 7:1–10CrossRefGoogle Scholar
  19. Cha JH, Yoon JJ, Cha CJ (2018) Functional characterization of a thermostable endoglucanase belonging to glycoside hydrolase family 45 from Fomitopsis palustris. Appl Microbiol Biotechnol 102:6515–6523CrossRefPubMedGoogle Scholar
  20. Chan CS, Sin LL, Chan KG, Shamsir MS, Manan FA, Sani RK, Goh KM (2016) Characterization of a glucose-tolerant β-glucosidase from Anoxybacillus sp. DT3-1. Biotechnol Biofuels 9:174CrossRefPubMedPubMedCentralGoogle Scholar
  21. Chen X, Cao Y, Ding Y, Lu W, Li D (2007) Cloning, functional expression and characterization of Aspergillus sulphureus β-mannanase in Pichia pastoris. J Biotechnol 128:452–461CrossRefPubMedGoogle Scholar
  22. Chen B, Ma J, Xu Z, Wang X (2014) Abscisic acid and ethephon regulation of cellulase in the endosperm cap and radicle during lettuce seed germination. J Integr Plant Biol 58:859–869CrossRefGoogle Scholar
  23. Chen Z, Meng T, Li Z, Liu P, Wang Y, He N, Liang D (2017) Characterization of a beta-glucosidase from Bacillus licheniformis and its effect on bioflocculant degradation. AMB Express 7:197CrossRefPubMedPubMedCentralGoogle Scholar
  24. Chutani P, Sharma KK (2016) Concomitant production of xylanases and cellulases from Trichoderma longibrachiatum MDU-6 selected for the deinking of paper waste. Bioprocess Biosyst Eng 39:747–758CrossRefPubMedGoogle Scholar
  25. Coleman GS (1985) The cellulase content of 15 species of entodiniomorphid protozoa, mixed bacteria and plant debris isolated from the ovine rumen. J Agric Set 104:349–360CrossRefGoogle Scholar
  26. Dashtban M, Schraft H, Qin W (2010) Fungal bioconversion of lignocellulosic residues opportunities and perspectives. Int J Biol Sci 5:578–595Google Scholar
  27. Deep K, Poddar A, Das SK (2016) Cloning, overexpression, and characterization of halostable, solvent-tolerant novel β-endoglucanase from a marine bacterium Photobacterium panuliri LBS5T (DSM 27646T). Appl Biochem Biotechnol 178:695–709CrossRefGoogle Scholar
  28. Deng SP, Tabatabai MA (1994) Cellulase activity of soils. Soil Biol Biochem 26:1347–1354CrossRefGoogle Scholar
  29. Desprez T, Juraniec M, Crowell EF, Jouy H, Pochylova Z, Parcy F, Hofte H, Gonneau M, Vernhettes S (2007) Organization of cellulose synthase complexes involved in primary cell wall synthesis in Arabidopsis thaliana. Proc Natl Acad Sci U S A 104:15572–15577CrossRefPubMedPubMedCentralGoogle Scholar
  30. Duan J, Liu J, Ma X, Zhang Y, Wang X, Zhao K (2017) Isolation, identification, and expression of microbial cellulases from the gut of Odontotermes formosanus. J Microbiol Biotechnol 27:122–129CrossRefPubMedGoogle Scholar
  31. Eibinger M, Ganner T, Bubner P, Rošker S, Kracher D, Haltrich D, Ludwig R, Plank H, Nidetzky B (2014) Cellulose surface degradation by a lytic polysaccharide monooxygenase and its effect on cellulase hydrolytic efficiency. J Biol Chem 289:35929–35938CrossRefPubMedPubMedCentralGoogle Scholar
  32. Elshafei AM, Hassan MM, Haroun BM, Abdel-Fatah OM, Atta HM, Othman AM (2009) Purification and properties of an endoglucanase of Aspergillus terreus DSM 826. J Basic Microbiol 49:426–432CrossRefPubMedGoogle Scholar
  33. Eriksson KE, Pettersson B (1975) Extracellular enzyme system utilized by the fungus Sporotrichum pulverulentum for the breakdown of cellulose. 1. Separation, purification and physicochemical characterization of five endo-1,4-β-glucanases. Eur J Biochem 51:193–206CrossRefPubMedGoogle Scholar
  34. Eriksson KEL, Blanchette RA, Ander P (1990) Biodegradation of cellulose. In: Timell TE (ed) Microbial and enzymatic degradation of wood and wood components. Springer, Berlin, pp 89–180CrossRefGoogle Scholar
  35. Esen A (1993) β-glucosidases: overview. In: Esen A (ed) β-glucosidases and molecular biology. American Chemical Society, Washington, DC, pp 9–17CrossRefGoogle Scholar
  36. Florindo RN, Souza VP, Manzine LR, Camilo CM, Marana SR, Polikarpov I, Nascimento AS (2018) Structural and biochemical characterization of a GH3 β-glucosidase from the probiotic bacteria Bifidobacterium adolescentis. Biochimie 148:107–115CrossRefPubMedGoogle Scholar
  37. Fong W, Mann KH (1980) Role of gut flora in the transfer of amino acids through a marine food chain. Can J Fish Aquat Sci 37:88–96CrossRefGoogle Scholar
  38. Gao ZM, Xiao J, Wang XN, Ruan LW, Chen XL, Zhang YZ (2012) Vibrio xiamenensis sp. nov., a cellulase-producing bacterium isolated from mangrove soil. Int J Syst Evol Microbiol 62:1958–1962CrossRefPubMedGoogle Scholar
  39. Gao L, Gao F, Jiang X, Zhang C, Zhang D, Wang L, Wua G, Chen S (2014) Biochemical characterization of a new β-glucosidase (Cel3E) from Penicillium piceum and its application in boosting lignocelluloses bioconversion and forming disaccharide inducers: New insights into the role of β-glucosidase. Process Biochem 49:768–774CrossRefGoogle Scholar
  40. Gaur R, Tiwari S (2015) Isolation, production, purification and characterization of an organic-solvent-thermostable alkalophilic cellulase from Bacillus vallismortis RG-07. BMC Biotechnol 15:19CrossRefPubMedPubMedCentralGoogle Scholar
  41. Gil J, Vallès S (2001) Effect of macerating enzymes on red wine aroma at laboratory scale: exogenous addition or expression by transgenic wine. J Agric Food Chem 49:5515–5523CrossRefPubMedGoogle Scholar
  42. Gu QM, Huynh-Ba J (2017) Method for making lignocellulosic paper and paper products. US Patent 0218570Google Scholar
  43. Gupta P, Mishra AK, Vakhlua J (2017) Cloning and characterization of thermo-alkalistable and surfactant stable endoglucanase from Puga hot spring metagenome of Ladakh (J&K). Int J Biol Macromol 103:870–877CrossRefPubMedGoogle Scholar
  44. Hamada N, Ishikawa K, Fuse N, Kodaira R, Shimosaka M, Amano Y, Kanda T, Okazaki M (1999) Purification, characterization and gene analysis of exo-cellulase II (Ex-2) from the white rot basidiomycete Irpex lacteus. J Biosci Bioeng 87:442–451CrossRefPubMedGoogle Scholar
  45. Harman GE, Kubicek CP (1998) Trichoderma and Gliocladium: enzymes, vol. 2 of biological control and commercial applications. Taylor & Francis, LondonGoogle Scholar
  46. Henrissat B, Bairoch A (1996) Updating the sequence-based classification of glycosyl hydrolases. Biochem J 316:695–696CrossRefPubMedPubMedCentralGoogle Scholar
  47. Hsieh CW, Cannella D, Jørgensen H, Felby C, Thygesen LG (2014) Cellulase inhibition by high concentrations of monosaccharides. J Agric Food Chem 62:3800–3805CrossRefPubMedGoogle Scholar
  48. Hsu JC, Lakhani NN (2002) Method of making absorbed tissue from recycled waste paper. US Patent 6413363Google Scholar
  49. Hu J, Arantes V, Pribowo A, Saddler JN (2013) The synergistic action of accessory enzymes enhances the hydrolytic potential of a “cellulase mixture” but is highly substrate specific. Biotechnol Biofuels 6:1–12CrossRefGoogle Scholar
  50. Hua C, Weiguang L, Han W, Wang Q, Bi P, Han C, Zhu L (2018) Characterization of a novel thermostable GH7 endoglucanase from Chaetomium thermophilum capable of xylan hydrolysis. Int J Biol Macromol 117:342–349CrossRefPubMedGoogle Scholar
  51. Huy ND, Nguyen CL, Park HS, Loc NH, Choi MS, Kim DH, Seo JW, Park SM (2016) Characterization of a novel manganese dependent endoglucanase belongs in GH family 5 from Phanerochaete chrysosporium. J Biosci Bioeng 121:154–159CrossRefPubMedGoogle Scholar
  52. Jagtap SS, Dhiman SS, Kim TS, Li J, Kang YC, Lee JK (2013) Characterization of a β -1,4-glucosidase from a newly isolated strain of Pholiota adiposa and its application to the hydrolysis of biomass. Biomass Bioenergy 54:181–190CrossRefGoogle Scholar
  53. Jensen MS, Fredriksen L, MacKenzie AK, Pope PB, Leiros I, Chylenski P, Williamson AK, Christopeit T, Østby H, Vaaje-Kolstad G, Eijsink VGH (2018) Discovery and characterization of a thermostable two-domain GH6 endoglucanase from a compost metagenome. PLoS One 13:1–22Google Scholar
  54. Joachim HJ, Patrick AN (2008) Selected soil enzymes: examples of their potential roles in the ecosystem. Afr J Biotechnol 7:181–191Google Scholar
  55. Jung S, Song Y, Kim HM, Bae HJ (2015) Enhanced lignocellulosic biomass hydrolysis by oxidative lytic polysaccharide monooxygenases (LPMOs) GH61 from Gloeophyllum trabeum. Enzym Microb Technol 77:38–45CrossRefGoogle Scholar
  56. Kabir F, Sultana MS, Kurnianta H (2015) Polyphenolic contents and antioxidant activities of underutilized grape (Vitis vinifera L.) pomace extracts. Prev Nutr Food Sci 20:210–214CrossRefPubMedPubMedCentralGoogle Scholar
  57. Kaoutari AE, Armougom F, Leroy Q, Vialettes B, Million M, Raoult D, Henrissat B (2013) Development and validation of a microarray for the investigation of the CAZymes encoded by the human gut microbiome. PLoS One 8:1–9CrossRefGoogle Scholar
  58. Karnaouri A, Muraleedharan MN, Dimarogona M, Topakas E, Rova U, Sandgren M, Christakopoulos P (2017) Recombinant expression of thermostable processive MtEG5 endoglucanase and its synergism with MtLPMO from Myceliophthora thermophila during the hydrolysis of lignocellulosic substrates. Biotechnol Biofuels 10:126CrossRefPubMedPubMedCentralGoogle Scholar
  59. Khatiwada P, Ahmed J, Sohag MH, Islam K, Azad AK (2016) Isolation, screening and characterization of cellulase producing bacterial isolates from municipal solid wastes and rice straw wastes. J Bioprocess Biotech 6:1–5Google Scholar
  60. Kiran U, Trzcinski AP, Ng WJ, Liu Y (2014) Bioconversion of food waste to energy: a review. Fuel 134:389–399CrossRefGoogle Scholar
  61. Kojima Y, Várnai A, Ishida T, Sunagawa N, Petrovic DM, Igarashi K, Jellison J, GoodellB AG, Westereng B, VGH E, Yoshida M (2016) Characterization of an LPMO from the brown-rot fungus Gloeophyllum trabeum with broad xyloglucan specificity, and its action on cellulose xyloglucan complexes. Appl Environ Microbiol 82:6557–6572CrossRefPubMedPubMedCentralGoogle Scholar
  62. Krause DO, Denman SE, Mackie RI, Morrison M, Rae AL, Attwood GT, McSweeney CS (2003) Opportunities to improve fiber degradation in the rumen: microbiology, ecology, and genomics. FEMS Microbiol Rev 27:663–693CrossRefPubMedGoogle Scholar
  63. Kunitake E, Kobayashi T (2017) Conservation and diversity of the regulators of cellulolytic enzyme genes in Ascomycete fungi. Curr Genet 63:951–958CrossRefPubMedGoogle Scholar
  64. Lee CK, Jang MY, Park HR, Choo GC, Cho HS, Park SB, Oh KC, An JB, Kim BG (2016) Cloning and characterization of xylanase in cellulolytic Bacillus sp. strain JMY1 isolated from forest soil. Appl Biol Chem 59:415–423CrossRefGoogle Scholar
  65. Lee LS, Goh KM, Chan CS, Tan GYA, Yin WF, Chong CS, Chan KG (2018a) Microbial diversity of thermophiles with biomass deconstruction potential in a foliage-rich hot spring. Microbiol Open.  https://doi.org/10.1002/mbo3.615CrossRefPubMedPubMedCentralGoogle Scholar
  66. Lee CR, Chi WJ, Lim JH, Dhakshnamoorthy V, Hong SK (2018b) Expression and characterization of the processive exo-β-1,4-cellobiohydrolase SCO6546 from Streptomyces coelicolor A(3). J Basic Microbiol 58:310–321CrossRefPubMedGoogle Scholar
  67. Lee JP, Lee HW, Na HB, Lee JH, Hong YJ, Jeon JM, Kwon EJ, Kim SK, Kim H (2018c) Characterization of truncated endo-β-1,4-glucanases from a compost metagenomic library and their saccharification potentials. Int J Biol Macromol 115:554–562CrossRefPubMedGoogle Scholar
  68. Levasseur A, Drula E, Lombard V, Coutinho PM, Henrissat B (2013) Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol Biofuels 6:41CrossRefPubMedPubMedCentralGoogle Scholar
  69. Lewin A, Zhou J, Pham VTT, Haugen T, Zeiny ME, Aarstad O, Liebl W, Wentzel A, Liles MR (2017) Novel archaeal thermostable cellulases from an oil reservoir metagenome. AMB Express 7:183CrossRefPubMedPubMedCentralGoogle Scholar
  70. Liew KJ, Lim L, Woo HY, Chan K, Shamsir MS, Goh KM (2018) Purification and characterization of a novel GH1 beta-glucosidase from Jeotgalibacillus malaysiensis. Int J Biol Macromol 115:1094–1102CrossRefPubMedGoogle Scholar
  71. Liu XJ, Xie L, Liu N, Zhan S, Zhou XG, Wang Q (2017a) RNA interference unveils the importance of Pseudotrichonympha grassii cellobiohydrolase, a protozoan exoglucanase, in termite cellulose degradation. Insect Mol Biol 26:233–242CrossRefPubMedGoogle Scholar
  72. Liu W, Brennan MA, Serventi L, Brennan CS (2017b) Effect of cellulase, xylanase and α-amylase combinations on the rheological properties of Chinese steamed bread dough enriched in wheat bran. Food Chem 234:93–102CrossRefPubMedGoogle Scholar
  73. Lu P, Zhang W, He M, Yan Y, Xiao H (2016) Cellulase-assisted refining of bleached softwood kraft pulp for making water vapor barrier and grease-resistant paper. Cellulose 23:891–900CrossRefGoogle Scholar
  74. Luo W, Vrijmoed LLP, Jones EBG (2005) Screening of marine fungi for lignocellulose-degrading enzyme activities. Bot Mar 48:379–386CrossRefGoogle Scholar
  75. Manavalan T, Manvalan A, Thangavelu KP, Heese K (2015) Characterization of a novel endoglucanase from Ganoderma lucidum. J Basic Microbiol 55:761–771CrossRefPubMedGoogle Scholar
  76. Mandels M, Reese ET (1960) Induction of cellulase in fungi by cellobiose. J Bacteriol 79:816–826PubMedPubMedCentralGoogle Scholar
  77. Mandels M, Frederick W, Parrish FW, Reese ET (1962) Sophorose as an inducer of cellulase in Trichoderma viride. J Bacteriol 83:400–408PubMedPubMedCentralGoogle Scholar
  78. Martínez AT, Speranza M, Ruiz-Dueñas FJ, Ferreira P, Camarero S, Guillén F, Martínez MJ, Gutiérrez A, del Río JC (2005) Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Int Microbiol 8:195–204PubMedGoogle Scholar
  79. Medina LMP, Ardilaa DC, Zambrano MM, Restrepo S, Barrios AFG (2017) In vitro and in silico characterization of metagenomic soil-derived cellulases capable of hydrolyzing oil palm empty fruit bunch. Biotechnol Rep 15:55–62CrossRefGoogle Scholar
  80. Mekasha S, Forsberg Z, Dalhus B, Bacik JP, Choudhary S, Schmidt-Dannert C, Vaaje-Kolstad G, Eijsink VG (2016) Structural and functional characterization of a small chitin-active lytic polysaccharide monooxygenase domain of a multi-modular chitinase from Jonesia denitrificans. FEBS Lett 590:34–42CrossRefPubMedGoogle Scholar
  81. Migheli Q, González-Candelas L, Dealessi L, Camponogara A, Ramón-Vidal D (1998) Transformants of Trichoderma longibrachiatum overexpressing the β-1,4-endoglucanase gene egl1 show enhanced biocontrol of Pythium ultimum on cucumber. Phytopathology 88:673–677CrossRefPubMedGoogle Scholar
  82. Müller G, Várnai A, Johansen KS, Eijsink VGH, Horn SJ (2015) Harnessing the potential of LPMO-containing cellulase cocktails poses new demands on processing conditions. Biotechnol Biofuels 8:1–9CrossRefGoogle Scholar
  83. Muthukrishnan S (2017) Optimization and production of industrial important cellulase enzyme from Penicillium citrinum in Western Ghats of Sathuragiri hills soil sample isolate. Univers J Microbiol Res 5:7–16Google Scholar
  84. Nakajima M, Yamashita T, Takahashi M, Nakano Y, Takeda T (2012) Identification, cloning, and characterization of β-glucosidase from Ustilago esculenta. Appl Microbiol Biotechnol 93:1989–1998CrossRefPubMedGoogle Scholar
  85. Nakashima KI, Watanabe H, Azuma JI (2002) Cellulase genes from the parabasalian symbiont Pseudotrichonympha grassii in the hindgut of the wood-feeding termite Coptotermes formosanus. Cell Mol Life Sci 59:1554–1560CrossRefPubMedGoogle Scholar
  86. Narra M, Dixit G, Divecha J, Kumar K, Madamwar D, Shah AR (2014) Production, purification and characterization of a novel GH12 family endoglucanase from Aspergillus terreus and its application in enzymatic degradation of delignified rice straw. Int Biodeterior Biodegrad 88:150–161CrossRefGoogle Scholar
  87. Nathan VK, Rani ME, Rathinasamy G, Dhiraviam KN, Jayavel S (2014) Process optimization and production kinetics for cellulase production by Trichoderma viride VKF3. Springer Plus 3:92CrossRefPubMedGoogle Scholar
  88. Nawaz H, Shahzad N, Saif-ur-Rehman M, Mubarak A (2016) Effect of feeding xylanase and cellulase treated oat silage on nutrient digestibility, growth performance and blood metabolites of Nili Ravi buffalo calves. Pak J Agric Sci 53:999–1004Google Scholar
  89. Ndiaye EL, Sandeno JM, McGrath D, Dick RP (2000) Integrative biological indicators for detecting change in soil quality. Am J Altern Agric 15:26–36CrossRefGoogle Scholar
  90. Nicol F, His I, Jauneau A, Vernhettes S, Canut H, Höfte H (1998) A plasma membrane- bound putative endo-1,4-β-d-glucanase is required for normal wall assembly and cell elongation in Arabidopsis. EMBO J 17:5563–5576CrossRefPubMedPubMedCentralGoogle Scholar
  91. Oh JM, Lee JP, Baek SC, Jo YD, Kim J, Kim H (2018) Characterization of three extracellular β-glucosidases produced by a fungal isolate Aspergillus sp. YDJ14 and their hydrolyzing activity for a flavone glycoside. J Microbiol Biotechnol 28:757–764Google Scholar
  92. Ohkuma M, Noda S, Hattori S, Iida T, Yuki M, Starns D, Inoue J, Darby AC, Hongoh Y (2015) Acetogenesis from H2 plus CO2 and nitrogen fixation by an endosymbiotic spirochete of a termite-gut cellulolytic protist. Proc Natl Acad Sci U S A 18:10224–10230CrossRefGoogle Scholar
  93. Oliveira GS, Ulhoa CJ, Silveira MHL, Andreaus J, Silva-Pereira I, Poças-Fonseca MJ, Faria FP (2013) An alkaline thermostable recombinant Humicola grisea var. thermoidea cellobiohydrolase presents bifunctional (endo/exoglucanase) activity on cellulosic substrates. World J Microbiol Biotechnol 29:19–26CrossRefPubMedGoogle Scholar
  94. Peiji G, Yinbo Q, Xin Z, Mingtian Z, Yongcheng D (1997) Screening microbial strain for improving the nutritional value of wheat and corn straws as animal feed. Enzym Microb Technol 20:581–584CrossRefGoogle Scholar
  95. Phadtare P, Joshi S, Satyanarayana T (2017) Recombinant thermo-alkali-stable endoglucanase of Myceliopthora thermophila BJA (rMt-egl): biochemical characteristics and applicability in enzymatic saccharification of agro-residues. Int J Biol Macromol 104:107–116CrossRefPubMedGoogle Scholar
  96. Potprommanee L, Wang XQ, Han YJ, Nyobe D, Peng YP, Huang Q, Liu JY, Liao YL, Chang KL (2017) Characterization of a thermophilic cellulase from Geobacillus sp. HTA426, an efficient cellulase-producer on alkali pretreated of lignocellulosic biomass. PLoS One 12:1–16CrossRefGoogle Scholar
  97. Priya I, Dhar MK, Bajaj BK, Koul S, Vakhlu J (2016) Cellulolytic activity of thermophilic Bacilli isolated from Tattapani Hot Spring sediment in North West Himalayas. Indian J Microbiol 56:228–231CrossRefPubMedPubMedCentralGoogle Scholar
  98. Robledo M, Jiménez-Zurdo JI, Velázquez E, Trujillo ME, Zurdo-Piñeiro JL, Ramírez-Bahena MH, Ramos B, Díaz-Mínguez JM, Dazzo F, Martínez-Molina E, Mateos PF (2008) Rhizobium cellulase CelC2 is essential for primary symbiotic infection of legume host roots. Proc Natl Acad Sci U S A 105:7064–7069CrossRefPubMedPubMedCentralGoogle Scholar
  99. Robledo M, Rivera L, Jiménez-Zurdo JI, Rivas R, Dazzo F, Velázquez E, Martinez-Molina E, Hirsch AM, Mateos PF (2012) Role of Rhizobium endoglucanase CelC2 in cellulose biosynthesis and biofilm formation on plant roots and abiotic surfaces. Microb Cell Factories 11:125CrossRefGoogle Scholar
  100. Rojo R, Kholif AE, Salem AZM, Elghandour MMY, Odongo NE, Montes De Oca R, Rivero N, Alonso MU (2015) Influence of cellulase addition to dairy goat diets on digestion and fermentation milk production and fatty acid content. J Agric Sci 153:1514–1523CrossRefGoogle Scholar
  101. Sadana JC, Shewale JG, Patil RV (1983) Beta-D-glucosidases of Sclerotium rolfsii. Substrate specificity and mode of action. Carbohydr Res 118:205–214CrossRefGoogle Scholar
  102. Salonen SM (1990) Method for manufacturing paper or cardboard and product containing cellulose. US Patent 4980023Google Scholar
  103. Saravanan D, Sreelakshmi SN, Raja KS, Vasanthi NS (2013) Biopolishing of cotton fabric with fungal cellulase and its effect on the morphology of cotton fibres. Indian J Fibre Text Res 38:156–160Google Scholar
  104. Sarsaiya S, Awasthi SK, Awasthi MK, Awasthi AK, Mishra S, Chen J (2017) The dynamic of cellulase activity of fungi inhabiting organic municipal solid waste. Bioresour Technol 251:411–415CrossRefPubMedGoogle Scholar
  105. Sato S, Kato T, Kakegawa K, Ishii T, Liu YG, Awano T, Takabe K, Nishiyama Y, Kuga S, Nakamura Y, Tabata S, Shibata D (2001) Role of the putative membrane-bound endo-1, 4-beta-glucanase KORRIGAN in cell elongation and cellulose synthesis in Arabidopsis thaliana. Plant Cell Physiol 42:251–263CrossRefPubMedGoogle Scholar
  106. Scapin SMN, Souza FHM, Zanphorlin LM, Silva de Almeida T, Sade YB, Cardoso AM, Pinheiro GL, Murakami MT (2017) Structure and function of a novel GH8 endoglucanase from the bacterial cellulose synthase complex of Raoultella ornithinolytica. PLoS One 12:1–18CrossRefGoogle Scholar
  107. Schmidhalter DR, Canevascini G (1993) Purification and characterization of two exo-cellobiohydrolases from the brown-rot fungus Coniophora puteana (Schum ex Fr) Karst. Arch Biochem Biophys 300:551–558CrossRefPubMedGoogle Scholar
  108. Segato F, Dias B, Berto GL, de Oliveira DM, De Souza FH, Citadini AP, Murakami MT, Damásio AR, Squina FM, Polikarpov I (2017) Cloning, heterologous expression and biochemical characterization of a nonspecific endoglucanase family 12 from Aspergillus terreus NIH2624. Biochim Biophys Acta 1865:395–403CrossRefGoogle Scholar
  109. Shah RK, Patel AK, Davla DM, Parikh IK, Subramanian RB, Patel KC, Jakhesara SJ, Joshi CJ (2017) Molecular cloning, heterologous expression, and functional characterization of a cellulolytic enzyme (Cel PRII) from buffalo rumen metagenome. 3Biotech 7:257Google Scholar
  110. Sharma HP, Patel H, Sharma S (2014) Enzymatic extraction and clarification of juice from various fruits. Trends Post Harvest Technol 2:1–14Google Scholar
  111. Shoseyov O, Shani Z, Levy I (2006) Carbohydrate binding modules: biochemical properties and novel applications. Microbiol Mol Biol Rev 70:283–295CrossRefPubMedPubMedCentralGoogle Scholar
  112. Smith MH, Gold MH (1979) Phanerochaete chrysosporium β-glucosidases: induction, cellular localization, and physical characterization. Appl Environ Microbiol 37:938–942PubMedPubMedCentralGoogle Scholar
  113. Song YH, Lee KT, Baek JY, Kim MJ, Kwon MR, Kim YJ, Park MR, Ko H, Lee JS, Kim KS (2017) Isolation and characterization of a novel glycosyl hydrolase family 74 (GH74) cellulase from the black goat rumen metagenomic library. Folia Microbiol 62:175–181CrossRefGoogle Scholar
  114. Song B, Li B, Wang X, Shen W, Park S, Collings C, Feng A, Smith SJ, Walton JD, Ding SY (2018) Real-time imaging reveals that lytic polysaccharide monooxygenase promotes cellulase activity by increasing cellulose accessibility. Biotechnol Biofuels 11:41CrossRefPubMedPubMedCentralGoogle Scholar
  115. Sowbhagya HB, Chitra VN (2010) Enzyme-assisted extraction of flavorings and colorants from plant materials. Crit Rev Food Sci Nutr 50:146–161CrossRefPubMedGoogle Scholar
  116. Suen G, Weimer PJ, Stevenson DM, Aylward FO, Boyum J, Deneke J, Drinkwater C, Ivanova NN, Mikhailova N, Chertkov O, Goodwin LA, Currie CR, Mead D, Brumm PJ (2011) The complete genome sequence of Fibrobacter succinogenes S85 reveals a cellulolytic and metabolic specialist. PLoS One 6:1–15CrossRefGoogle Scholar
  117. Szyjanowicz PMJ, McKinnon I, Taylor NG, Gardiner J, Jarvis MC, Turner SR (2004) The irregular xylem 2 mutant is an allele of korrigan that affects the secondary cell wall of Arabidopsis thaliana. Plant J 37:730–740CrossRefPubMedGoogle Scholar
  118. Tabatabai MA (1994) Soil enzymes. In: Weaver RW, Angle JS, Bottomley PS (eds) Methods of soil analysis, Part 2, Microbiological and biochemical properties, SSSA book series no. 5. Soil Science Society of America, Madison, pp 775–833Google Scholar
  119. Tani S, Kawaguchi T, Kobayashi T (2014) Complex regulation of hydrolytic enzyme genes for cellulosic biomass degradation in filamentous fungi. Appl Microbiol Biotechnol 98:4829–4837CrossRefPubMedGoogle Scholar
  120. Thrane C, Jensen DF, Tronsmo A (2000) Substrate colonization, strain competition, enzyme production in vitro, and biocontrol of Pythium ultimum by Trichoderma spp. isolates P1 and T3. Eur J Plant Pathol 106:215–225CrossRefGoogle Scholar
  121. Todaka N, Moriya S, Saita K, Hondo T, Kiuchi I, Takasu H, Ohkuma M, Piero C, Hayashizaki Y, Kudo T (2007) Environmental cDNA analysis of the genes involved in lignocellulose digestion in the symbiotic protist community of Reticulitermes speratus. FEMS Microbiol Ecol 59:592–599CrossRefPubMedGoogle Scholar
  122. Turner BL, Hopkins DW, Haygarth PM, Ostle N (2002) β-Glucosidase activity in pasture soils. Appl Soil Ecol 20:157–162CrossRefGoogle Scholar
  123. Ulrich K, Ulrich A, Ewald D (2008) Diversity of endophytic bacterial communities in poplar grown under field conditions. FEMS Microbiol Ecol 63:169–180CrossRefPubMedGoogle Scholar
  124. Valášková V, Baldrian P (2006) Degradation of cellulose and hemicelluloses by the brown rot fungus Piptoporus betulinus – production of extracellular enzymes and characterization of the major cellulases. Microbiology 152:3613–3622CrossRefPubMedGoogle Scholar
  125. Veena V, Poornima P, Parvatham R, Sivapriyadharsini, Kalaiselvi K (2011) Isolation and characterization of β-glucosidase producing bacteria from different sources. Afr J Biotechnol 10:14907–14912CrossRefGoogle Scholar
  126. Volkov PV, Rozhkova AM, Gusakov AV, Sinitsyn AP (2014) Homologous cloning, purification and characterization of highly active cellobiohydrolase I (Cel7A) from Penicillium canescens. Protein Expr Purif 103:1–7CrossRefPubMedGoogle Scholar
  127. Vyas S, Lachke A (2003) Biodeinking of mixed office waste paper by alkaline active cellulases from alkalotolerant Fusarium sp. Enzym Microb Technol 32:236–245CrossRefGoogle Scholar
  128. Walton PH, Davies GJ (2016) On the catalytic mechanisms of lytic polysaccharide monooxygenases. Curr Opin Chem Biol 31:195–207CrossRefPubMedGoogle Scholar
  129. Wang HC, Chen YC, Huang CT, Hseu RS (2013) Cloning and characterization of a thermostable and pH-stable cellobiohydrolase from Neocallimastix patriciarum J11. Protein Expr Purif 90:153–159CrossRefPubMedGoogle Scholar
  130. Wang Z, Robertson KL, Liu C, Liu JL, Johnson BJ, Leary DH, Compton JR, Vuddhakul V, Legler PM, Vora GJ (2015) A novel Vibrio beta-glucosidase (LamN) that hydrolyzes the algal storage polysaccharide laminarin. FEMS Microbiol Ecol 91:1–10CrossRefPubMedGoogle Scholar
  131. Wereszka K, McIntosh FM, Michalowski T, Jouany J-P, Nsabimana E, Macheboeuf D, McEwan NR, Newbold CJ (2004) A cellulase produced by the rumen protozoan Epidinium caudatum is of bacterial origin and has an unusual pH optimum. Endocytobiosis Cell Res 15:561–569Google Scholar
  132. Wilson DB (2008) Aerobic microbial cellulase systems. In: Himmel ME (ed) Biomass recalcitrance: deconstructing the plant cell wall for bioenergy. Blackwell Publishing, Oxford, pp 374–392CrossRefGoogle Scholar
  133. Woon JSK, Mackeen MM, Mahadi NM, Md Illias R, Murad AMA, Bakar FDA (2015) Expression and characterization of a cellobiohydrolase (CBH7B) from the thermophilic fungus Thielavia terrestris in Pichia pastoris. Biotechnol Appl Biochem 63:690–698CrossRefPubMedGoogle Scholar
  134. Xia L, Cen P (1999) Cellulose production by solid state fermentation on lignocellulosic waste from the xylose industry. Process Biochem 34:909–912CrossRefGoogle Scholar
  135. Xia Y, Ju F, Fang HHP, Zhang T (2013) Mining of novel thermostable cellulolytic genes from a thermophilic cellulose-degrading consortium by metagenomics. PLoS One 8(1)CrossRefPubMedPubMedCentralGoogle Scholar
  136. Yang WP, Meng FX, Peng JY, Han P, Fang F, Ma L, Cao BY (2014) Isolation and identification of a cellulolytic bacterium from the Tibetan pig’s intestine and investigation of its cellulase production. Electron J Biotechnol 17:262–267CrossRefGoogle Scholar
  137. Yang F, Yang X, Li Z, Du C, Wang J, Li S (2015) Overexpression and characterization of a glucose tolerant β-glucosidase from T. aotearoense with high specific activity for cellobiose. Appl Microbiol Biotechnol 99:8903–8915CrossRefPubMedGoogle Scholar
  138. Yu MJ, Yoon SH, Kim YW (2016) Overproduction and characterization of a lytic polysaccharide monooxygenase in Bacillus subtilis using an assay based on ascorbate consumption. Enzym Microb Technol 93-94:150–156CrossRefGoogle Scholar
  139. Zarafeta D, Kissas D, Sayer C, Gudbergsdottir SR, Ladoukakis E, Isupov MN, Chatziioannou A, Peng X, Littlechild JA, Skretas G, Kolisis FN (2016) Discovery and characterization of a thermostable and highly halotolerant GH5 cellulase from an Icelandic hot spring isolate. PLoS One 11:1–18CrossRefGoogle Scholar
  140. Zhao J, Guo C, Tian C, Ma Y (2015) Heterologous expression and characterization of a GH3 β-glucosidase from thermophilic fungi Myceliophthora thermophila in Pichia pastoris. Appl Biochem Biotechnol 177:511–527CrossRefPubMedGoogle Scholar
  141. Zhao C, Chu Y, Li Y, Yang C, Chen Y, Wang X, Liu B (2017) High-throughput pyrosequencing used for the discovery of a novel cellulase from a thermophilic cellulose-degrading microbial consortium. Biotechnol Lett 39:123–131CrossRefGoogle Scholar
  142. Zhong Y, Ruan Z, Zhong Y, Archer S, Liu Y, Liao W (2015) A self-sustaining advanced lignocellulosic biofuel production by integration of anaerobic digestion and aerobic fungal fermentation. Bioresour Technol 179:173–179CrossRefPubMedGoogle Scholar
  143. Zhu Y, Han L, Hefferon KL, Silvaggi NR, Wilson DB, McBride MJ (2016) Periplasmic Cytophaga hutchinsonii endoglucanases are required for use of crystalline cellulose as the sole source of carbon and energy. Appl Environ Microbiol 82:4835–4845CrossRefPubMedPubMedCentralGoogle Scholar
  144. Zuo JR, Niu QW, Nishizawa N, Wu Y, Kost B, Chua NH (2000) KORRIGAN, an Arabidopsis endo-1,4-β-glucanase, localizes to the cell plate by polarized targeting and is essential for cytokinesis. Plant Cell 12:1137–1153PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Anica Dadwal
    • 1
  • Shilpa Sharma
    • 1
  • Tulasi Satyanarayana
    • 1
  1. 1.Division of Biological Sciences and EngineeringNetaji Subhas University of Technology (NSUT)New DelhiIndia

Personalised recommendations