Advertisement

Diversity in Xylan-degrading Prokaryotes and Xylanolytic Enzymes and Their Bioprospects

  • Digvijay Verma
  • Ravi Kumar
  • Tulasi Satyanarayana
Chapter

Abstract

Heterogenous nature of xylan leads to the multiplicity in xylanolytic enzymes for its complete degradation, where β-1,4-endoxylanases and β-xylosidases play a key role due to their direct action on glycosidic linkages of xylan backbone. α-Glucuronidase (EC 3.2.1.139), α-L-arabinofuranosidase (EC 3.2.1.99), acetyl xylan esterase (EC 3.1.1.6), and lytic polysaccharide monooxygenase (LPMO) are the other prominent players in the xylanolytic enzyme system. Xylan-degrading enzymes are produced by a large number of bacteria and a few archaea. These share a major chunk of industrially relevant enzymes because of their immense potential and widespread applications in several industries that include food/feed, paper, textile, oil extraction, bioethanol, prebiotics, and de-inking waste paper. Microorganisms are a rich source of xylanolytic enzymes. Xylanases produced by bacteria and archaea are functional in broader pH (5.0–10.0) and temperature (30–100 °C) ranges. Easiness in cultivation, rapid growth rates, and well-established methods of DNA manipulations make bacteria preferred microbes over others for xylanase production. This chapter deals with the diversity of bacteria and archaea which produce a variety of xylan-hydrolyzing enzymes and their widespread applications.

Keywords

Bacteria Archaea Metagenomics Xylanases Xylooligosaccharides Pulp bleaching Dye Decolorization Bioethanol 

Notes

Acknowledgments

Authors are grateful to the University Grants Commission, New Delhi, and Indo-US Science & Technology Forum, New Delhi, for awarding Faculty Fellowship and financial assistance to one of us (TS) while writing this review.

References

  1. Aachary AA, Prapulla SG (2011) Xylooligosaccharides (XOs) as an emerging prebiotic: microbial synthesis, utilization, structural characterization, bioactive properties, and applications. Comp Rev Food Sci Food Saf 10:2–16CrossRefGoogle Scholar
  2. Adamsen AK, Lindhagen J, Ahring BK (1995) Optimization of extracellular xylanase production by Dictyoglomus sp. B1 in continuous culture. Appl Microbiol Biotechnol 44:327–332CrossRefGoogle Scholar
  3. Adelsberger H, Hertel C, Glawischnig E, Zverlov VV, Schwarz WH (2004) Enzyme system of Clostridium stercorarium for hydrolysis of arabinoxylan: reconstitution of the in- vivo system from recombinant enzymes. Microbiology 150:2257–2266CrossRefPubMedGoogle Scholar
  4. Adesioye FA, Makhalanyane TP, Biely P, Cowan DA (2016) Phylogeny, classification and metagenomic bioprospecting of microbial acetyl xylan esterases. Enzyme Microb Technol 93–94:79–91CrossRefPubMedGoogle Scholar
  5. Adiguzel AO, Tunçer M (2016) Production, characterization and application of a xylanase from Streptomyces sp. AOA40 in fruit juice and bakery industries. J Food Biotechnol 30:189–218CrossRefGoogle Scholar
  6. Agger JW, Isaksen T, Várnai A, Vidal-Melgosa S, Willats WG, Ludwig R, Horn SJ, Eijsink VG, Westereng B (2014) Discovery of LPMO activity on hemicelluloses shows the importance of oxidative processes in plant cell wall degradation. Proc Natl Acad Sci U S A 111:6287–6292CrossRefPubMedPubMedCentralGoogle Scholar
  7. Ahmed I, Zia MA, Iftikhar T, Iqbal HMN (2011) Characterization and detergent compatibility of purified protease produced from Aspergillus niger by utilizing agro wastes. Bio Res 6:4505–4522Google Scholar
  8. Alalouf O, Balazs Y, Volkinshtein M, Grimpel Y, Shoham G, Shoham Y (2011) A new family of carbohydrate esterases is represented by a GDSL hydrolase/acetylxylan esterase from Geobacillus stearothermophilus. J Biol Chem 286:41993–42001CrossRefPubMedPubMedCentralGoogle Scholar
  9. Al-Darkazali H, Meevootisom V, Isarangkul D, Wiyakrutta S (2017) Gene expression and molecular characterization of a xylanase from chicken caecum metagenome. Int J Microbiol 2017:4018398CrossRefPubMedPubMedCentralGoogle Scholar
  10. Amaya-Delgado L, Mejia-Castillo T, Santiago-Hernández A, Vega-Estrada J, Amelia FGS, Xoconostle-Cazares B, Ruiz-Medrano R, del Montes-Horcasitas MC, Hidalgo-Lara ME (2010) Cloning and expression of a novel, moderately thermostable xylanase-encoding gene (Cfl xyn11A) from Cellulomonas flavigena. Biores Technol 101:5539–5545CrossRefGoogle Scholar
  11. Amel BD, Nawel B, Khelifa B, Mohammed G, Manon J, Salima KG, Farida N, Hocine H, Bernard O, Jean-Luc C, Marie-Laure F (2016) Characterization of a purified thermostable xylanase from Caldicoprobacter algeriensis sp. nov. strain TH7C1T. Carbohydr Res 419:60–68CrossRefPubMedGoogle Scholar
  12. An J, Xie Y, Zhang Y et al (2015) Characterization of a thermostable, specific GH10 xylanase from Caldicellulosiruptor bescii with high catalytic activity. J Mol Catal B Enzym 117:13–20CrossRefGoogle Scholar
  13. Annamalai N, Thavasi R, Jayalakshmi S, Balasubramanian T (2009) Thermostable and alkaline tolerant xylanase production by Bacillus subtilis isolated from marine environment. Indian J Biotechnol 8:291–297Google Scholar
  14. Archana A, Satyanarayana T (1997) Xylanase production by thermophilic Bacillus licheniformis A99 in solid-state fermentation. Enzyme Microb Technol 21:12–17CrossRefGoogle Scholar
  15. Arfi Y, Shamshoum M, Rogachev I, Peleg Y, Bayer EA (2014) Integration of bacterial lytic polysaccharide monooxygenases into designer cellulosomes promotes enhanced cellulose degradation. Proc Natl Acad Sci U S A 111:9109–9114CrossRefPubMedPubMedCentralGoogle Scholar
  16. Argyros DA, Tripathi SA, Barrett TF, Rogers SR, Feinberg LF, Olson DG, Foden JM, Miller BB, Lynd LR, Hogsett DA, Caiazza NC (2011) High ethanol titers from cellulose by using metabolically engineered thermophilic, anaerobic microbes. Appl Environ Microbiol 77:8288–8294CrossRefPubMedPubMedCentralGoogle Scholar
  17. Awalgaonkar G, Sarkar S, Bankar S, Singhal RS (2015) Xylanase as a processing aid for papads, an Indian traditional food based on black gram. LWT – Food Sci Technol 62:1148–1153CrossRefGoogle Scholar
  18. Bachmann SL, McCarthy AJ (1991) Purification and cooperative activity of enzyme constituting the xylan-degrading system of Thermomonospora fusca. Appl Environ Microbiol 57:2121–2130PubMedPubMedCentralGoogle Scholar
  19. Bai W, Xue Y, Zhou C, Ma Y (2015) Cloning, expression, and characterization of a novel alkali-tolerant xylanase from alkaliphilic Bacillus sp. SN5. Biotechnol Appl Biochem 62:208–217CrossRefPubMedGoogle Scholar
  20. Bailey MJ, Biely P, Poutanen K (1992) Inter laboratory testing of methods for assay of xylanase activity. J Biotechnol 23:257–270CrossRefGoogle Scholar
  21. Bajaj BK, Singh NP (2010) Production of xylanase from an alkalitolerant streptomyces sp. 7b under solid-state fermentation, its purification, and characterization. Appl Biochem Biotechnol 162:1804–1818CrossRefPubMedGoogle Scholar
  22. Ballesteros I, Negro MJ, Oliva JM, Cabañas A, Manzanares P, Ballesteros M (2006) Ethanol production from steam-explosion pretreated wheat straw. Appl Biochem Biotechnol 129–132:496–508CrossRefPubMedGoogle Scholar
  23. Bankeeree W, Lotrakul P, Prasongsuk S, Chaiareekij S, Eveleigh DE, Kim SW, Punnapayak H (2014) Effect of polyols on thermostability of xylanase from a tropical isolate of Aureobasidium pullulans and its application in prebleaching of rice straw pulp. Springer-Plus 3:1–11CrossRefGoogle Scholar
  24. Barabote RD, Parales JV, Guo Y-Y, Labavitch JM, Parales RE, Berry AM (2010) Xyn 10A, a thermostable endoxylanase from Acidothermus cellulolyticum 11B. Appl Environ Microb 76:7363–7366CrossRefGoogle Scholar
  25. Barnard D, Casanueva A, Tuffin M, Cowan D (2010) Extremophiles in biofuel synthesis. Environ Technol 31:871–888CrossRefPubMedGoogle Scholar
  26. Basit A, Liu J, Rahim K, Jiang W, Lou H (2018) Thermophilic xylanases: from bench to bottle. Crit Rev Biotechnol 17:1–14Google Scholar
  27. Bastawde KB (1992) Xylan structure, microbial xylanases, and their mode of action. World J Microbiol Biotechnol 8:353–368CrossRefPubMedGoogle Scholar
  28. Bastien G, Arnal G, Bozonnet S, Laguerre S, Ferreira F, Faure R, Henrissat B, Lefevre F, Robe P, Bouchez O, O’Donhoue M (2013) Mining for hemicellulases in the fungus-growing termite Pseudacanthotermes militaris using functional metagenomics. Biotechnol Biofuels 6:78CrossRefPubMedPubMedCentralGoogle Scholar
  29. Bayram I, Cetingul IS, Akkaya AB, Uyarlar C (2008) Effects of bacterial xylanase on egg production in the laying quail (Coturnix coturnix japonica) diets based on corn and soybean meal. Arch Zootechnica 11:69–74Google Scholar
  30. Beeson WT, Vu VV, Span EA, Phillips CM, Marletta MA (2015) Cellulose degradation by polysaccharide monooxygenases. Annu Rev Biochem 84:923–946CrossRefPubMedGoogle Scholar
  31. Beg QK, Bhushan B, Kapoor M, Hondal GS (2000) Production and characterization of thermostable xylanase and pectinase from a Streptomyces sp QG-11-3. J Ind Microbiol Biotechnol 24:396–402CrossRefGoogle Scholar
  32. Beg QK, Kapoor M, Mahajan L, Hoondal GS (2001) Microbial xylanases and their industrial applications: a review. Appl Microbiol Biotechnol 56:326–338CrossRefGoogle Scholar
  33. Bennati-Granier C, Garajova S, Champion C, Grisel S, Haon M, Zhou S, Fanuel M, Ropartz D, Roqniaux H, Gimbert I, Record E, Berrin JG (2015) Substrate specificity and regioselectivity of fungal AA9 lytic polysaccharide monooxygenases secreted by Podospora anserina. Biotechnol Biofuels 8:90CrossRefPubMedPubMedCentralGoogle Scholar
  34. Berenger J-F, Frixon C, Bigliardi J, Creuzet N (1985) Production, purification, and properties of thermostable xylanase from Clostridium stercorarium. Can J Microbiol 31:635–643CrossRefGoogle Scholar
  35. Bertrand E, Vandenberghe LPS (2016) First generation bioethanol. In: Soccol CR, Brar SK, Faulds C & Ramos LP (eds) Green fuels technology. Springer International Publishing, pp. 175–212Google Scholar
  36. Biely P, Singh S, Puchart V (2016) Towards enzymatic breakdown of complex plant xylan structures: state of the art. Biotechnol Adv 34:1260–1274CrossRefPubMedGoogle Scholar
  37. Biwi Z, Qader SAU, Aman A (2015) Calcium alginate matrix increases the stability and recycling capability of immobilized endo-β-1,4-xylanase from Geobacillus stearothermophilus KIBGE-IB29. Extremophiles 19:819CrossRefGoogle Scholar
  38. Blumer-Schuette SE, Brown SD, Sander KB, Bayer EA, Kataeva I, Zurawski JV, Conway JM, Adams MW, Kelly RM (2014) Thermophilic lignocellulose deconstruction. FEMS Microbiol Rev 38:393–448CrossRefPubMedGoogle Scholar
  39. Bocchini DA, Alves-Prado HF, Baida LC, Roberto IC, Gomes E, Da Silva R (2002) Optimization of xylanase production by Bacillus circulans D1 in submerged fermentation using response surface methodology. Process Biochem 38:727–731CrossRefGoogle Scholar
  40. Bok JD, Goers SK, Eveleigh DE (1994). Cellulase and xylanase systems of Thermotoga neapolitana. In Enzymatic conversion of biomass for fuels production. ACS Symp Ser 566: 54–65Google Scholar
  41. Book AJ, Yennamalli RM, Takasuka TE, Currie CR, Phillips GN, Fox BG (2014) Evolution of substrate specificity in bacterial AA10 lytic polysaccharide monooxygenases. Biotechnol Biofuels 7:109CrossRefPubMedPubMedCentralGoogle Scholar
  42. Borisova AS, Isaksen T, Dimarogona M, Kognole AA, Mathiesen G, Várnai A, Rohr AK, Payne CM, Sorlie M, Sandgren M, Eijsink VG et al (2015) Structural and functional characterization of a lytic polysaccharide monooxygenase with broad substrate specificity. J Biol Chem 290:22955–22969CrossRefPubMedPubMedCentralGoogle Scholar
  43. Bragger JM, Daniel RM, Coolbear T, Morgan HW (1989) Very stable enzymes from extremely thermophilic archaebacteria and eubacteria. Appl Microbiol Biotechnol 31:556–561CrossRefGoogle Scholar
  44. Breccia JD, Sineriz F, Baigorí MD, Castro GR, Hatti-Kaul R (1998) Purification and characterization of a thermostable xylanase from Bacillus amyloliquefaciens. Enzym Microb Technol 22:42–49CrossRefGoogle Scholar
  45. Brennan YL, Callen WN, Christoffersen L, Dupree P, Goubet F, Healey S, Hernández M, Keller M, Li K, Palackal N, Sittenfeld A, Tamayo G, Wells S, Hazlewood GP, Mathur EJ, Short JM, Robertson DE, Steer BA (2004) Unusual microbial xylanases from insect guts. Appl Environml Microbiol 70:3609–3617CrossRefGoogle Scholar
  46. Brito-Cunha CC, de Campos IT, de Faria FP, Bataus LA (2013) Screening and xylanase production by Streptomyces sp. grown on lignocellulosic wastes. Appl Biochem Biotechnol 170:598–608CrossRefPubMedGoogle Scholar
  47. Cafe MB, Borges CA, Fritts CA, Waldroup PW (2002) Avizyme improves performance of broilers fed corn-soybean meal-based diets. J Appl Poul Res 11:29–33CrossRefGoogle Scholar
  48. Campos E, Negro-Alvarez MJ, Sabaris di Lorenzo G, Gonzalez S, Rorig M, Talia P et al (2014) Purification and characterization of a GH43 β-xylosidase from Enterobacter sp. identified and cloned from forest soil bacteria. Microbiol Res 169:213–220CrossRefPubMedGoogle Scholar
  49. Cannio R, Di Prizito N, Rossi M, Morana A (2004) A xylan-degrading strain of Sulfolobus solfataricus isolation & characterization of the xylanase activity. Extremophiles 8:117–124CrossRefPubMedGoogle Scholar
  50. Chanda SK, Hirst EL, Jones JKN, Percival EGV (1950) The constitution of xylan from esparto grass (Stipa tenacissima). J Chem Soc 50:1287–1289Google Scholar
  51. Chassard C, Goumy V, Leclerc M, Delhomme C, Bernalier-Donadille A (2007) Characterization of the xylan-degrading microbial community from human faeces. FEMS Microbiol Ecol 61:121–131CrossRefPubMedGoogle Scholar
  52. Cheng YF, Yang CH, Liu WH (2005) Cloning and expression of Thermobifida xylanase gene in the methylotrophic yeast Pichia pastoris. Enzym Microb Technol 37:541–546CrossRefGoogle Scholar
  53. Cheng F, Sheng J, Dong R, Men Y, Gan L, Shen L (2012) Novel xylanase from a Holstein cattle rumen metagenomic library and its application in xylooligosaccharide and ferulic acid production from wheat straw. J Agri Food Chem 60:12516–12524CrossRefGoogle Scholar
  54. Cheng X, Chen G, Huang S, Liang Z (2013) Biobleaching effects of crude xylanase from Streptomyces griseorubens LH-3 on eucalyptus Kraft pulp. Bio Resources 8:6424–6433Google Scholar
  55. Cheng X, Chen G, Huang S, Liang Z (2014) The biobleaching effects of xylanase from Streptomyces griseorubens LH-3 on bagasse pulp. Appl Mech Mat 535:772–775CrossRefGoogle Scholar
  56. Cheng YS, Chen CC, Huang JW, Ko TP, Huang Z, Guo RT (2015) Improving the catalytic performance of a GH11 xylanase by rational protein engineering. Appl Microbiol Biotechnol 99:9503–9510CrossRefPubMedGoogle Scholar
  57. Collins T, Meuwis MA, Stals I, Claeyssens M, Feller G, Gerday C (2002) A novel family 8 xylanase, functional and physicochemical characterization. J Biol Chem 277:35133–35139CrossRefPubMedGoogle Scholar
  58. Collins T, Gerday C, Feller G (2005) Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 29:3–23CrossRefPubMedGoogle Scholar
  59. Cooper SW, Pfeiffer DG, Tally FP (1985) Evaluation of xylan fermentation for the identification of Bacteroides ovatus and Bacteroides thetaiotaomicron. J Clin Microbiol 22:125–126PubMedPubMedCentralGoogle Scholar
  60. Coughlan MP, Hazlewood GP (1993) β-1-4-D-Xylan degrading enzyme systems: biochemistry, molecular biology and application. Biotechnol Appl Biochem 17:259–289PubMedGoogle Scholar
  61. Couturier M, Ladeveze S, Sulzenbacher G, Ciano L, Fanuel M, Moreau C et al (2018) Lytic xylan oxidases from wood-decay fungi unlock biomass degradation. Nat Chem Biol 14:306–310CrossRefPubMedGoogle Scholar
  62. Daas MJA, Martínez PM, van de Weijer AHP, van der Oost J, de Vos WM, Kabel MA, van Kranenburg R (2017) Biochemical characterization of the xylan hydrolysis profile of the extracellular endo-xylanase from Geobacillus thermodenitrificans T12. BMC Biotechnol 17:44CrossRefPubMedPubMedCentralGoogle Scholar
  63. Dahlberg L, Holst O, Kristjansson JK (1993) Thermostable xylanolytic enzymes from Rhodothermus marinus grown on xylan. Appl Microbiol Biotechnol 40:63–68CrossRefGoogle Scholar
  64. DeCastro ME, Rodrïguez-Belmonte E, Gonzilez-Siso MI (2016) Metagenomics of thermophiles with a focus on discovery of novel thermozymes. Front Microbiol 7:1521CrossRefPubMedPubMedCentralGoogle Scholar
  65. Dekker RFH, Richards GN (1976) Hemicellulases: their occurrence, purification, properties, and mode of action. Adv Carbohydr Chem Biochem 32:277–352CrossRefPubMedGoogle Scholar
  66. Demain AL, Newcomb M, Wu JHD (2005) Cellulase, Clostridia, and ethanol. Microbiol Mol Biol Rev 69:124–154CrossRefPubMedPubMedCentralGoogle Scholar
  67. Deswal D, Gupta R, Nandal P, Kuhad RC (2014) Fungal pretreatment improves amenability of lignocellulosic material for its saccharification to sugars. Carbohydr Polym 99:264–269CrossRefPubMedGoogle Scholar
  68. Dheeran P, Nandhagopal N, Kumar S, Jaiswal YK, Adhikari DK (2012) A novel thermostable xylanase of Paenibacillus macerans IIPSP3 isolated from the termite gut. J Ind Microbiol Biotechnol 39:851–860CrossRefPubMedGoogle Scholar
  69. Dhiman SS, Sharma J, Battan B (2008) Pretreatment processing of fabrics by alkalothermophilic xylanase from Bacillus stearothermophilus SDX. Enzym Microb Technol 43:262–269CrossRefGoogle Scholar
  70. Dobberstein J, Emeis CC (1991) Purification and characterization of β-xylosidase from Aureobasidium pullulans. Appl Microbiol Biotechnol 35:210–215CrossRefGoogle Scholar
  71. Dodd D, Moon Y-H, Mackie RI, Cann IK (2010) Transcriptomic analyses of xylan degradation by Prevotella bryantii and insights into energy acquisition by xylanolytic Bacteroidetes. J Biol Chem 285:30261–30273CrossRefPubMedPubMedCentralGoogle Scholar
  72. Dodd D, Mackie RI, Cann IKO (2011) Xylan degradation, a metabolic property shared by rumen and human colonic Bacteroidetes. Mol Microbiol 79:292–304CrossRefPubMedGoogle Scholar
  73. Doi RH, Kosugi A, Murashima K, Tamaru Y, Han SO (2003) Cellulosomes from mesophilic bacteria. J Bacteriol 185:5907–5914CrossRefPubMedPubMedCentralGoogle Scholar
  74. Dougherty MJ, D’haeseleer P, Hazen TC, Simmons BA, Adams PD, Hadi MZ (2012) Glycoside hydrolases from a targeted compost Metagenome, activity-screening and functional characterization. BMC Biotechnol 12:38CrossRefPubMedPubMedCentralGoogle Scholar
  75. Eda S, Ohnishi A, Kato K (1976) Xylan isolated from the stalk of Nicotiana tabacum. Agric Biol Chem 40:359–364Google Scholar
  76. Eichler J (2001) Biotechnological uses of archaeal extremozymes. Biotechnol Adv 19:261–278CrossRefPubMedGoogle Scholar
  77. Enkhbaatar B, Lee CR, Hong YS, Hong SK (2016) Molecular characterization of Xylobiose- and Xylopentaose-producing beta-1,4-Endoxylanase SCO5931 from Streptomyces coelicolor A3(2). Appl Biochem Biotechnol 3:349–360CrossRefGoogle Scholar
  78. Ferrer M, Ghazi A, Beloqui A, Vieites JM, Lopez-Cortés N et al (2012) Functional metagenomics unveils a multifunctional glycosyl hydrolase from the family 43 catalysing the breakdown of plant polymers in the calf rumen. PLoS One 7:e38134CrossRefPubMedPubMedCentralGoogle Scholar
  79. Fillat A, Colom JF, Vidal T (2010) A new approach to the biobleaching of flax pulp with laccase using natural mediators. Bioresour Technol 101:4104–4110CrossRefPubMedGoogle Scholar
  80. Foreman PK, Brown D, Dankmeyer L, Dean R, Diener S, Dunn-Coleman NS, Goedegebuur F, Houfek TD, England GJ, Kelley AS, Meerman HJ, Mitchell T, Mitchinson C, Olivares HA, Teunissen PJ, Yao J, Ward M (2003) Transcriptional regulation of biomass-degrading enzymes in the filamentous fungus Trichoderma reesei. J Biol Chem 278:31988–31997CrossRefPubMedGoogle Scholar
  81. Frock AD, Notey JS, Kelly RM (2010) The genus Thermotoga: recent developments. Environ Technol 31:1169–1181CrossRefPubMedPubMedCentralGoogle Scholar
  82. Frommhagen M, Sforza S, Westphal AH, Visser J, Hinz SW, Koetsier MJ, van Berkel WJ, Gruppen H, Kabel MA (2015) Discovery of the combined oxidative cleavage of plant xylan and cellulose by a new fungal polysaccharide monooxygenase. Biotechnol Biofuels 8:101CrossRefPubMedPubMedCentralGoogle Scholar
  83. Fujimoto Z, Ichinose H, Biely P, Kaneko S (2011) Crystallization and preliminary crystallographic analysis of the glycoside hydrolase family 115 α-glucuronidase from Streptomyces pristinaespiralis. Acta Crystallogr Sec F Struct Biol Cryst Commun 67:68–71CrossRefGoogle Scholar
  84. Garg G, Dhiman SS, Mahajan R, Kaur A, Sharma J (2011) Bleach-boosting effect of crude xylanase from Bacillus stearothermophilus SDX on wheat straw pulp. New Biotechnol 28:58–64CrossRefGoogle Scholar
  85. Gavrilov SN, Stracke C, Jensen K, Menzel P, Kallnik V et al (2016) Isolation and characterization of the first xylanolytic hyperthermophilic euryarchaeon Thermococcus sp. strain 2319x1 and its unusual multidomain glycosidase. Front Microbiol 7:552CrossRefPubMedPubMedCentralGoogle Scholar
  86. Geetha K, Gunasekaran P (2010) Optimization of nutrient medium containing agricultural waste for xylanase production by Bacillus pumilus B20. Biotechnol Bioprocess Eng 15:882–889CrossRefGoogle Scholar
  87. Geetha K, Gunasekaran P (2017) Purification of endoxylanase from Bacillus pumilus B20 for production of prebiotic xylooligosaccharide syrup; An in-vitro study. Iran J Biotechnol 15:232–240CrossRefPubMedPubMedCentralGoogle Scholar
  88. Gerasimova J, Kuisiene N (2012) Characterization of the novel xylanase from the thermophilic Geobacillus thermodenitrificans JK1. Microbiology 81:418CrossRefGoogle Scholar
  89. Gibbs MD, Reeves RA, Bergquist PL (1995) Cloning, sequencing, and expression of a xylanase gene from the extreme thermophile Dictyoglomus thermophilum Rt46B.1 and activity of the enzyme on fiber-bound substrate. Appl Environ Microbiol 61:4403–4408PubMedPubMedCentralGoogle Scholar
  90. Gilbert HJ (2010) The biochemistry and structural biology of plant cell wall deconstruction. Plant Physio 153:444–455CrossRefGoogle Scholar
  91. Gilbert HJ, Stalbrand H, Brumer H (2008) How the walls come crumbling down: recent structural biochemistry of plant polysaccharide degradation. Curr Opin Plant Biol 11:338–348CrossRefPubMedGoogle Scholar
  92. Golan G, Shallom D, Teplitsky A, Zaide G, Shulami S et al (2004) Crystal structures of Geobacillus stearothermophilus alpha-glucuronidase complexed with its substrate and products: mechanistic implications. J Biol Chem 279:3014–3024CrossRefPubMedGoogle Scholar
  93. Goswami GK, Krishnamohan M, Nain V, Aggarwal C, Ramesh B (2014) Cloning and heterologous expression of cellulose free thermostable xylanase from Bacillus brevis. Springerplus (1):1–6Google Scholar
  94. Graciano L, Correa JM, Gandra RF, Seixas FAV, Kadowaki MK, Sampaio SC, da Conceiçao Silva JL, Osaku CA, Simao R de CG (2012) The cloning, expression, purification, characterization and modeled structure of Caulobacter crescentus β-xylosidase I. World J Microbiol Biotechnol 28:2879–2888CrossRefPubMedGoogle Scholar
  95. Grepinet O, Chebrou MC, Béguin P (1988) Purification of Clostridium thermocellum xylanase Z expressed in Escherichia coli and identification of the corresponding product in the culture medium of C. thermocellum. J Bacteriol 170:4576–4581CrossRefPubMedPubMedCentralGoogle Scholar
  96. Guan GQ, Zhao PX, Zhao J, Wang MJ, Huo SH, Cui FJ, Jiang JX (2016) Production and partial characterization of an alkaline xylanase from a novel fungus Cladosporium oxysporum. Bio Med Res Int 2016:4575024Google Scholar
  97. Guo B, Chen XL, Sun CL, Zhou BC, Zhang YZ (2009) Gene cloning, expression and characterization of a new cold-active and salt tolerant endo-β-1,4-xylanase from marine Glaciecola mesophila KMM 241. Appl Microbiol Biotechnol 84:1107–1115CrossRefPubMedGoogle Scholar
  98. Gupta N, Vohra RM, Hoondal GS (1992) A thermostable extracellular xylanase from alkaliphilic Bacillus sp. NG-27. Biotechnol Lett 14:1045–1046CrossRefGoogle Scholar
  99. Gupta N, Reddy VS, Maiti S, Ghosh A (2000) Cloning, expression, and sequence analysis of the gene encoding the alkali-stable, thermostable endoxylanase from alkalophilic, mesophilic Bacillus sp. Strain NG-27. Appl Environ Microbiol 66:2631–2635CrossRefPubMedPubMedCentralGoogle Scholar
  100. Harris AD, Ramalingam C (2010) Xylanases and its application in food industry: a review. J Exp Sci 1:1–11Google Scholar
  101. Harris PV, Welner D, McFarland KC, Re E, Navarro Poulsen J-C, Brown K, Salbo R, Ding H, Vlasenko E, Merino S, Xu F, Cherry J, Larsen S, Lo Leggio L (2010) Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large, enigmatic family. Biochemist 49:3305–3316CrossRefGoogle Scholar
  102. Hayashi H, Takehara M, Hattori T, Kimura T, Karita S, Sakka S, Ohmiya K (1999) Nucleotide sequences of two contiguous and highly homologous xylanase genes xynA and xynB and characterization of XynA from Clostridium thermocellum. Appl Microbiol Biotechnol 51:348–357CrossRefPubMedGoogle Scholar
  103. Hayashi H, Abe T, Sakamoto M, Ohara H, Ikemura T, Sakka K, Benno Y (2005) Direct cloning of genes encoding novel xylanases from the human gut. Can J Microbiol 51:251–259CrossRefPubMedGoogle Scholar
  104. Heinze S, Mechelke M, Kornberger P, Liebl W, Schwarz WH, Zverlov VV (2017) Identification of endoxylanase XynE from Clostridium thermocellum as the first xylanase of glycoside hydrolase family GH141. Sci Rep 7:11178CrossRefPubMedPubMedCentralGoogle Scholar
  105. Helianti I (2007) Direct cloning of a xylanase gene from pawan-riau hot spring. HAYATI J Biosci 14:54–58CrossRefGoogle Scholar
  106. Hemsworth GR, Davies GJ, Walton PH (2013) Recent insights into copper-containing lytic polysaccharide mono-oxygenases. Curr Opin Struct Biol 23:660–668CrossRefPubMedGoogle Scholar
  107. Hong PY, Lakiviaki M, Dodd D, Zhang M, Mackie RI, Cann I (2014) Two new xylanases with different substrate specificities from the human gut bacterium Bacteroides intestinalis DSM 17393. Appl Environ Microbiol 80:2084–2093CrossRefPubMedPubMedCentralGoogle Scholar
  108. Hori H, Elbein AD (1985) The biosynthesis of plant cell wall polysaccharides. In: Higuchi T (ed) Biosynthesis and biodegradation of wood components. Academic Press Inc, Orlando, pp 109–135CrossRefGoogle Scholar
  109. Horn SJ, Vaaje-Kolstad G, Westereng B, Eijsink VG (2012) Novel enzymes for the degradation of cellulose. Biotechnol Biofuels 5:45CrossRefPubMedPubMedCentralGoogle Scholar
  110. Hu Y, Zhang G, Li A, Chen J, Ma L (2008) Cloning and enzymatic characterization of a xylanase gene from a soil-derived metagenomic library with an efficient approach. Appl Microbiol Biotechnol 80:823–830CrossRefPubMedGoogle Scholar
  111. Hu J, Arantes V, Pribowo A, Gourlay K, Saddler JN (2014) Substrate factors that influence the synergistic interaction of AA9 and cellulases during the enzymatic hydrolysis of biomass. Energy Environ Sci 7:2308–2315CrossRefGoogle Scholar
  112. Huber H, Stetter KO (1998) Hyperthermophiles and their possible potential in biotechnology. J Biotechnol 64:39–52CrossRefGoogle Scholar
  113. Hung KS, Liu SM, Fang TY, Tzou WS, Lin FP, Sun K, Tang SJ (2011) Characterization of a salt-tolerant xylanase from Thermoanaerobacterium saccharolyticum NTOU1. Biotechnol Lett 33:1441–1447CrossRefPubMedGoogle Scholar
  114. Ire FS, Ezebuiro V, Ogugbue CJ (2016) Production of bioethanol by bacterial co-culture from agro-waste-impacted soil through simultaneous saccharification and co-fermentation of steam-exploded bagasse. Biores Biopro 3:26CrossRefGoogle Scholar
  115. Irfan M, Asgar U, Nadeem M, Nelofer R, Syed Q (2016) Optimization of process parameters for xylanase production by Bacillus sp. in submerged fermentation. J Rad Res Appl Sci 9:39–47Google Scholar
  116. Jain I, Kumar V, Satyanarayana T (2014) Applicability of recombinant β-xylosidase from the extremely thermophilic bacterium Geobacillus thermodenitrificans in synthesizing alkylxylosides. Bioresour Technol 170:462–469CrossRefPubMedGoogle Scholar
  117. Jain I, Kumar V, Satyanarayana T (2015) Xylooligosaccharides: an economical prebiotic from agroresidues and their health benefits. Indian J Exp Biol 53:131–142PubMedGoogle Scholar
  118. Jeong YS, Na HB, Kim SK, Kim YH, Kwon EJ, Kim J, Yun HD, Lee JK, Kim H (2012) Characterization of xyn10J, a novel family 10 xylanase from a compost metagenomic library. Appl Biochem Biotechnol 166:1328–1339CrossRefPubMedGoogle Scholar
  119. Jia X, Mi S, Wang J, Qiao W, Peng X, Han Y (2014) Insight into glycoside hydrolases for debranched xylan degradation from extremely thermophilic bacterium Caldicellulosiruptor lactoaceticus. PLoS One 9:e106482CrossRefPubMedPubMedCentralGoogle Scholar
  120. Jiang Z, Zhu Y, Li L, Yu X, Kusakabe I, Kitaoka M, Hayashi K (2004) Transglycosylation reaction of xylanase B from the hyperthermophilic Thermotoga maritima with the ability of synthesis of tertiary alkyl β-D-xylobiosides and xylosides. J Biotechnol 114:125–134CrossRefPubMedGoogle Scholar
  121. Joseleau JP, Comtat J, Ruel K (1992). Chemical structure of xylans and their interaction in the plant cell walls. In Xylans and Xylanases, (Visser, J, Beldman G. Kusters-van Someren, MA and Voragen, AGJ). Elsevier Science Publishers, Amsterdam. pp. 1–15Google Scholar
  122. Juturu V, Wu JC (2012) Microbial xylanases: engineering, production and industrial applications. Biotechnol Adv 30:1219–1227CrossRefPubMedGoogle Scholar
  123. Kable RD, Jhadave AR (2012) Isolation, purification, and characterization of xylanase produced by a new species of Bacillus in solid state fermentation. Int J Microbiol 2012:683193Google Scholar
  124. Kaji A (1984) L-arabinosidases advances in carbohydrayte chemistry. Annu Rev Biochem 42:383–394Google Scholar
  125. Kaji A, Saheki T (1975) Endo-arabinase from Bacillus subtilis F-11. Biochem Biophys Acta 410:354–360PubMedGoogle Scholar
  126. Kang MK, Maeng PJ, Rhee YH (1996) Purification and characterization of two xylanases from alkaliphilic Cephalosporium sp. strain RYM-202. Appl Environ Microbiol 62:3480–3482PubMedPubMedCentralGoogle Scholar
  127. Karkehabadi S, Hansson H, Kim S, Piens K, Mitchinson C, Sandgren M (2008) The first structure of a glycoside hydrolase family 61 member, Cel61B from Hypocrea jecorina, at 1.6 A resolution. J Mol Biol 383:144–154CrossRefPubMedGoogle Scholar
  128. Karlsson J, Saloheimo M, Siika-Aho M, Tenkanen M, Penttila M, Tjerneld F (2001) Homologous expression and characterization of Cel61A (EG IV) of Trichoderma reesei. Eur J Biochem 268:6498–6507CrossRefPubMedGoogle Scholar
  129. Khandeparkar RDS, Bhosle NB (2006) Isolation, purification and characterization of the xylanase produced by Arthrobacter sp. MTCC 5214 when grown in solid-state fermentation. Enzyme Microb Technol 39:732–742CrossRefGoogle Scholar
  130. Khandeparkar R, Bhosle NB (2007) Application of thermoalkalophilic xylanase from Arthrobacter sp. MTCC 5214 in biobleaching of kraft pulp. Bioresour Technol 98:897–903CrossRefPubMedGoogle Scholar
  131. Khandeparker R, Verma P, Deobagkar D (2011) A novel halotolerant xylanase from marine isolate Bacillus subtilis cho40: gene cloning and sequencing. Nat Biotechnol 28:814–821Google Scholar
  132. Khandeparker R, Parab P, Amberkar U (2017) Recombinant Xylanase from Bacillus tequilensis BT21: biochemical characterisation and its application in the production of Xylobiose from agricultural residues. Food Technol Biotechnol 55:164–172CrossRefPubMedPubMedCentralGoogle Scholar
  133. Khasin A, Alchanati I, Shoham Y (1993) Purification and characterization of a thermostable xylanase from Bacillus stearothermophilus T-6. Appl Env Microbiol 59:1725–1730Google Scholar
  134. Kiddinamoorthy J, Anceno AJ, Haki GD, Rakshit SK (2008) Production, purification and characterization of Bacillus sp. GRE7 xylanase and its application in eucalyptus Kraft pulp biobleaching. World J Microbiol Biotechnol 24:605–612CrossRefGoogle Scholar
  135. Kim DY, Shin DH, Jung S, Kim H, Lee JS, Cho HY, Bae KS, Sung CK, Ha Rhee Y, Son KH, Park HY (2014a) Novel alkali-tolerant GH10 endo-β-1,4-xylanase with broad substrate specificity from Microbacterium trichothecenolyticum HY-17, a gut bacterium of the mole cricket Gryllotalpa orientalis. J Microbiol Biotechnol 24:943–953CrossRefPubMedGoogle Scholar
  136. Kim DY, Shin DH, Jung S, Lee JS, Cho HY, Bae KS, Sung CK, Rhee YH, Son KH, Park HY (2014b) Biocatalytic properties and substrate-binding ability of a modular GH10 β-1,4-xylanase from an insect-symbiotic bacterium, Streptomyces mexicanus HY-14. J Microbiol 52:863–870CrossRefPubMedGoogle Scholar
  137. Ko CH, Tsai CH, Tu J, Lee HY, Ku LT, Kuo PA, Lai YK (2010) Molecular cloning and characterization of a novel thermostable xylanase from Paenibacillus campinasensis BL11. Process Biochem 45:1638–1644CrossRefGoogle Scholar
  138. Ko JK, Ko H, Kim KH, Choi IG (2016) Characterization of the biochemical properties of recombinant Xyn10C from a marine bacterium, Saccharophagus degradans 2-40. Bioprocess Biosyst Eng 39:677–684CrossRefPubMedGoogle Scholar
  139. Koshland D Jr (1953) Stereochemistry and the mechanism of enzymatic reactions. Biol Rev 28:416–436CrossRefGoogle Scholar
  140. Kosugi A, Murashima K, Doi RH (2012) Characterization of Xylanolytic enzymes in Clostridium cellulovorans: expression of Xylanase activity dependent on growth substrates. J Bacteriol 183:7037–7043CrossRefGoogle Scholar
  141. Krishnan M, Bharathiraja C, Pandiarajan J, Prasanna VA, Rajendhran J, Gunasekaran P (2014) Insect gut microbiome – An unexploited reserve for biotechnological application. Asian Pac J Trop Biomed 4:16–21CrossRefGoogle Scholar
  142. Kublanov IV, Bidjieva SK, Mardanov AV, Bonch-Osmolovskaya EA (2009) Desulfurococcus kamchatkensis sp. nov., a novel hyperthermophilic protein-degrading archaeon isolated from a Kamchatka hot spring. Int J Sys Evo Microbiol 59:1743–1747CrossRefGoogle Scholar
  143. Kui H, Luo H, Shi P, Bai Y, Yuan T, Wang Y, Yang P, Dong S, Yao B (2010) Gene cloning, expression, and characterization of a thermostable xylanase from Nesterenkonia xinjiangensis CCTCC AA001025. Appl Biochem Biotechnol 162:953–965CrossRefPubMedGoogle Scholar
  144. Kumar V, Satyanarayana T (2011) Applicability of thermo-alkali-stable and cellulase-free xylanase from a novel thermo-halo-alkaliphilic Bacillus halodurans in producing xylooligosaccharides. Biotechnol Lett 33:2279–2285CrossRefPubMedGoogle Scholar
  145. Kumar V, Satyanarayana T (2014) Production of endoxylanase with enhanced thermostability by a novel polyextremophilic Bacillus halodurans TSEV1 and its applicability in waste paper deinking. Process Biochem 49:386–394CrossRefGoogle Scholar
  146. Kumar V, Syal P, Satyanarayana T (2013a) Highly thermo-halo-alkali-stable β-1,4-endoxylanase from a novel polyextremophilic strain of Bacillus halodurans. Bioprocess Biosyst Eng 36:555–565CrossRefPubMedGoogle Scholar
  147. Kumar V, Verma D, Satyanarayana T (2013b) Extremophilic bacterial xylanases: production, characteristics and applications. Curr Biotechnol 2:380–399CrossRefGoogle Scholar
  148. Kumar V, Marín-Navarro J, Shukla P (2016) Thermostable microbial xylanases for pulp and paper industries: trends, applications and further perspectives. World J Microbiol Biotechnol 32:1–10CrossRefGoogle Scholar
  149. Kumar S, Haq I, Prakash J, Singh SK, Mishra S, Raj A (2017) Purification, characterization and thermostability improvement of xylanase from Bacillus amyloliquefaciens and its application in pre-bleaching of kraft pulp. 3 Biotech 7:20CrossRefPubMedPubMedCentralGoogle Scholar
  150. Kumar NV, Rani ME, Gunaseeli R, Kannan ND (2018) Paper pulp modification and deinking efficiency of cellulase-xylanase complex from Escherichia coli SD5. Int J Biol Macromol 111:289–295CrossRefGoogle Scholar
  151. Kurakake M, Kanbara Y, Murakami Y (2014) Characteristics of α-L-arabinofuranosidase from Streptomyces sp I10-1 for production of L-arabinose from corn hull arabinoxylan. Appl Biochem Biotechnol 172:2650–2660CrossRefPubMedGoogle Scholar
  152. Kuramochi K, Uchimura K, Kurata A, Kobayash T, Hirose Y, Miura T, Kishimoto N, Usami R, Horikoshi K (2016) A high-molecular-weight, alkaline, and thermostable β-1,4-xylanase of a subseafloor Microcella alkaliphila. Extremophiles 20:471–478CrossRefPubMedGoogle Scholar
  153. Kwon EJ, Jeong YS, Kim YH, Kim SK, Na HB, Kim J, Yun HD, Kim H (2010) Construction of a metagenomic library from compost and screening of cellulase- and xylanase-positive clones. J Appl Biol Chem 53:702–708Google Scholar
  154. Lecerf JM, Dépeint F, Clerc E, Dugenet Y, Niamba CN, Rhazi L, Cayzeele A, Abdelnour G, Jaruga A, Younes H, Jacobs H, Lambrey G, Abdelnour AM, Pouillart PR (2012) Xylo-oligosaccharide (XOs) in combination with inulin modulates both the intestinal environment and immune status in healthy subjects, while XOs alone only shows prebiotic properties. Br J Nutr 108:1847–1858CrossRefPubMedGoogle Scholar
  155. Lee CC, Kibblewhite-Accinelli RE, Wagschal K, Robertson GH, Wong DWS (2006) Cloning and characterization of a cold-active xylanase enzyme from an environmental DNA library. Extremophiles 10:295–300CrossRefPubMedGoogle Scholar
  156. Lee CK, Ibrahim D, Che Omar I (2013) Enzymatic deinking of various types of waste paper: efficiency and characteristics. Process Biochem 48:299–305CrossRefGoogle Scholar
  157. Leth ML, Ejby M, Workman C, Ewald DA, Pedersen SS, Sternberg C, Bahl MI, Licht TR, Aachmann FL, Westereng B, Abou Hachem M (2018) Differential bacterial capture and transport preferences facilitate co-growth on dietary xylan in the human gut. Nat Microbiol 3:570–580CrossRefPubMedGoogle Scholar
  158. Levasseur A, Drula E, Lombard V, Coutinho PM, Henrissat B (2013) Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol Biofuels 6:41CrossRefPubMedPubMedCentralGoogle Scholar
  159. Li R, Kibblewhite R, Orts WJ, Lee CC (2009) Molecular cloning and characterization of multidomain xylanase from manure library. World J Microbiol Biotechnol 25:2071–2078CrossRefGoogle Scholar
  160. Li PP, Wang XJ, Yuan XF, Wang XF, Cao YZ, Cui ZJ (2011) Screening of a composite microbial system and its characteristics of wheat straw degradation. Agric Sc China 10:1586–1594CrossRefGoogle Scholar
  161. Li Z, Summanen PH, Komoriya T, Finegold SM (2015a) In vitro study of the prebiotic xylooligosaccharide (XOs) on the growth of Bifidobacterium spp and Lactobacillus spp. Int J Food Sci Nutr 66:919–922CrossRefPubMedGoogle Scholar
  162. Li H, Voutilainen S, Ojamo H, Turunen O (2015b) Stability and activity of Dictyoglomus thermophilum GH11 xylanase and its disulphide mutant at high pressure and temperature. Enzym Microb Technol 70:66–71CrossRefGoogle Scholar
  163. Liebl W, Winterhalter C, Baumeister W, Armbrecht M, Valdez M (2008) Xylanase attachment to the cell wall of the hyperthermophilic bacterium Thermotoga maritima. J Bacteriol 190:1350–1358CrossRefPubMedGoogle Scholar
  164. Lin L-L, Thomson JA (1991) An analysis of the extracellular xylanases and cellulases of Butyrivibrio fibrisolvens H17c. FEMS Microbiol Lett 84:197–204CrossRefGoogle Scholar
  165. Lin XQ, Han SY, Zhang N, Hu H, Zheng SP, Ye YR, Lin Y (2013a) Bleach boosting effect of xylanase A from Bacillus halodurans C-125 in ECF bleaching of wheat straw pulp. Enzym Microb Technol 52:91–98CrossRefGoogle Scholar
  166. Lin C, Shen Z, Zhu T, Qin W (2013b) Bacterial xylanase in Pseudomonas boreopolis LUQ1 is highly induced by xylose. Can J Biotech 1:73–79CrossRefGoogle Scholar
  167. Lin C, Shen Z, Zhu T, Qin W (2017) Bacterial xylanase in Pseudomonas boreopolis LUQ1 is highly induced by xylose. Can J Biotech 1:73–79CrossRefGoogle Scholar
  168. Liu JR, Yu B, Lin SH, Cheng KJ, Chen YC (2005) Direct cloning of a xylanase gene from the mixed genomic DNA of rumen fungi and its expression in intestinal Lactobacillus reuteri. FEMS Microbiol Lett 251:233–241CrossRefPubMedGoogle Scholar
  169. Liu L, Feng Y, Duan CJ, Pang H, Tang JL, Feng JX (2009) Isolation of a gene encoding endoglucanase activity from uncultured microorganisms in buffalo rumen. World J Microbiol Biotechnol 25:1035–1042CrossRefGoogle Scholar
  170. Liu W, Shi P, Chen Q, Yang P, Wang G, Wang Y, Luo H, Yao B (2010) Gene cloning, overexpression, and characterization of a xylanase from Penicillium sp. CGMCC 1669. Appl Biochem Biotechnol 162:1–12CrossRefPubMedGoogle Scholar
  171. Liu X, Liu T, Zhang Y, Xin F, Mi S, Wen B, Gu T, Shi X, Wang F, Sun L (2018) Structural insights into the thermophilic adaption mechanism of endo-1,4-β-xylanase from Caldicellulosiruptor owensensis. J Agric Food Chem 66:187–193CrossRefPubMedGoogle Scholar
  172. Lo YC, Lu WC, Chen CY, Chang JS (2010) Dark fermentative hydrogen production from enzymatic hydrolysate of xylan and pretreated rice straw by Clostridium butyricum CGS5. Bioresour Technol 101:5885–5891CrossRefPubMedGoogle Scholar
  173. Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42:490–495CrossRefGoogle Scholar
  174. Maehara T, Yagi H, Sato T, Ohnishi-Kameyama M, Fujimoto Z, Kamino K, Kitamura Y, John FS, Yaoi K, Kaneko S (2018) GH30 glucuronoxylan-specific xylanase from Streptomyces turgidiscabies C56. Appl Environ Microbiol 84Google Scholar
  175. Mamo G, Hatti-Kaul R, Mattiasson B (2006) A thermostable alkaline active endo-β-1-4-xylanase from Bacillus halodurans S7: purification and characterization. Enzym Microb Technol 39:1492–1498CrossRefGoogle Scholar
  176. Mamo G, Hatti-Kaul R, Mattiasson B (2007) Fusion of carbohydrate binding modules from Thermotoga neapolitana with a family 10 xylanase from Bacillus halodurans S7. Extremophiles 11:169–177CrossRefPubMedGoogle Scholar
  177. Mandal A (2015) Review on microbial xylanases and their applications. Int J Life Sci 4:178–187Google Scholar
  178. Manimaran A, Kumar KS, Permaul K, Singh S (2009) Hyper production of cellulase-free xylanase by Thermomyces lanuginosus SSBP on bagasse pulp and its application in biobleaching. Appl Microbiol Biotechnol 81:887–893CrossRefPubMedGoogle Scholar
  179. Marasabessy A, Moeis MR, Sanders JPM, Weusthuis RA (2011) Enhancing Jatropha oil extraction yield from the kernels assisted by a xylan-degrading bacterium to preserve protein structure. Appl Microbiol Biotechnol 90:2027–2036CrossRefPubMedPubMedCentralGoogle Scholar
  180. Marcolongo L, La Cara F, Morana A, Di Salle A, del Monaco G, Paixão SM, Alves L, Ionata E (2015) Properties of an alkali-thermo stable xylanase from Geobacillus thermodenitrificans A333 and applicability in xylooligosaccharides generation. World J Microb Biotechnol 31:633–648CrossRefGoogle Scholar
  181. Marques S, Pala H, Alves L, Amaral-Collaco MT, Gama FM, Gírio FM (2003) Characterisation and application of glycanases secreted by Aspergillus terreus CCMI 498 and Trichoderma viride CCMI 84 for enzymatic deinking of mixed office wastepaper. J Biotechnol 100:209–219CrossRefPubMedGoogle Scholar
  182. Maurelli L, Giovane A, Esposito A, Moracci M, Fiume I, Rossi M, Morana A (2008) Evidence that the xylanase activity from Sulfolobus solfataricus O-α is encoded by the endoglucanase precursor gene (sso1354) and characterization of the associated cellulase activity. Extremophiles 12:689–700CrossRefPubMedGoogle Scholar
  183. McCarter JD, Withers SG (1994) Mechanisms of enzymatic glycoside hydrolysis. Curr Opin Struct Biol 4:885–892CrossRefPubMedGoogle Scholar
  184. McCarthy AA, Morris DD, Bergquist PL, Baker EN (2000) Structure of XynB, a highly thermostable beta-1, 4-xylanase from Dictyoglomus thermophilum Rt46B.1, at 1.8 A° resolution. Acta Crystallogr D Biol Crystallogr 56:1367–1375CrossRefPubMedGoogle Scholar
  185. McClendon SD, Mao Z, Shin HD, Wagschal K, Chen RR (2012) Designer xylanosomes: protein nanostructures for enhanced xylan hydrolysis. Appl Biochem Biotechnol 167:395–411CrossRefPubMedGoogle Scholar
  186. Mechelke M, Koeck DE, Broeker J, Roessler B, Krabichler F, Schwarz WH, Zverlov VV, Liebl W (2017) Characterization of the arabinoxylan-degrading machinery of the thermophilic bacterium Herbinix hemicellulosilytica—Six new xylanases, three arabinofuranosidases and one xylosidase. J Biotechnol 257:122–130CrossRefPubMedGoogle Scholar
  187. Menasria T, Aguilera M, Hocine H, Benammar L, Ayachi A, Si Bachir A, Dekak A, Monteoliva-Sánchez M (2018) Diversity and bioprospecting of extremely halophilic archaea isolated from Algerian arid and semi-arid wetland ecosystems for halophilic-active hydrolytic enzymes. Microbiol Res 207:289–298CrossRefPubMedGoogle Scholar
  188. Mientus M, Brady S, Angelov A, Zimmermann P, Wemheuer B, Schuldes J, Daniel R, Liebl W (2013) Thermostable xylanase and β-glucanase derived from the metagenome of the Avachinsky crater in Kamchatka (Russia). Curr Biotechnol 2:284–293CrossRefGoogle Scholar
  189. Morgenstern I, Powlowski J, Tsang A (2014) Fungal cellulose degradation by oxidative enzymes: from dysfunctional GH61 family to powerful lytic polysaccharide monooxygenase family. Brief Funct Genomics 13:471–481CrossRefPubMedPubMedCentralGoogle Scholar
  190. Mori T, Kamei I, Hirai H, Kondo R (2014) Identification of novel glycosyl hydrolases with cellulolytic activity against crystalline cellulose from metagenomic libraries constructed from bacterial enrichment cultures. Springer-Plus 3:1–7CrossRefGoogle Scholar
  191. Morris DD, Gibbs MD, Ford M, Thomas J, Bergquist PL (1999) Family 10 and 11 xylanase genes from Caldicellulosiruptor sp. Rt69B.1. Extremophiles 3:103–111CrossRefPubMedGoogle Scholar
  192. Motta FL, Andrade CCP & Santana MHA (2013). A review of xylanase production by the fermentation of xylan: classification, characterization and applications. In Sustainable degradation of lignocellulosic biomass – techniques, applications and commercialization (eds. Chandel AK & da Silva SS), InTech, Rijeka, pp. 251–266Google Scholar
  193. Mueller-Harvey I, Hartley RD, Harris PJ, Curzon EH (1986) Linkage of p-coumaroyl and feruloyl groups to cell-wall polysaccharides of barley straw. Carbohydr Res 14:71–85CrossRefGoogle Scholar
  194. Nagar S, Gupta VK, Kumar D, Kumar L, Kuhad RC (2010) Production and optimization of cellulase-free, alkali-stable xylanase by Bacillus pumilus SV-85S in submerged fermentation. J Ind Microbiol Biotechnol 37:71–83CrossRefGoogle Scholar
  195. Nagy T, Nurizzo D, Davies GJ, Biely P, Lakey JH, Bolam DN, Gilbert HJ (2003) The α-Glucuronidase, GlcA67A, of Cellvibrio japonicus utilizes the carboxylate and methyl groups of aldobiouronic acid as important substrate recognition determinants. J Biol Chem 278:20286–20292CrossRefPubMedGoogle Scholar
  196. Nakamura AM, Nascimento AS, Polikarpov I (2017) Structural diversity of carbohydrate esterases. Biotechnol Res Innov 1:35–51CrossRefGoogle Scholar
  197. Nawawi MH, Mohamad R, Tahir PM, Saad WZ (2017) Extracellular Xylanopectinolytic enzymes by Bacillus subtilis ADI1 from EFB’s compost. Int Sch Res Notices 2017:7831954PubMedPubMedCentralGoogle Scholar
  198. Nawel B, Said B, Estelle C, Hakim H, Duchiron F (2011) Production and partial characterization of xylanase produced by Jonesia denitrificans isolated in Algerian soil. Process Biochem 46:519–525CrossRefGoogle Scholar
  199. Ninawe S, Kuhad RC (2005) Use of xylan-rich cost effective agroresidues in the production of xylanase by Streptomyces cyaneus SN32. J Appl Micrbiol 99:1141–1148CrossRefGoogle Scholar
  200. Ohkoshi A, Kudo T, Mase T, Horikoshi K (1985) Purification of three types of xylanases from an alkaliphilic Aeromonas sp. Agric Biol Chem 49(10):3037–3038CrossRefGoogle Scholar
  201. Paes G, Berrin JG, Beaugrand J (2012) GH11 xylanases: structure/function/properties relationships and applications. Biotechnol Adv 30:564–592CrossRefPubMedGoogle Scholar
  202. Pal A, Khanum F (2011) Efficacy of xylanase purified from Aspergillus niger DFR-5 alone and in combination with pectinase and cellulose to improve yield and clarity of pineapple juice. J Food Sci Technol 48:560–568CrossRefPubMedGoogle Scholar
  203. Paspaliari DK, Loose JSM, Larsen MH, Vaaje-Kolstad G (2015) Listeria monocytogenes has a functional chitinolytic system and an active lytic polysaccharide monooxygenases. FEBS J 282:921–936CrossRefPubMedGoogle Scholar
  204. Phuengmaung P, Kunishige Y, Sukhumsirichart W, Sakamoto T (2018) Identification and characterization of GH62 bacterial α-L-arabinofuranosidase from thermotolerant Streptomyces sp. SWU10 that preferentially degrades branched L-arabinofuranoses in wheat arabinoxylan. Enzym Microb Technol 112:22–28CrossRefGoogle Scholar
  205. Polizeli MLTM, Rizzatti ACS, Monti R, Terenzi HF, Jorge JA, Amorim DS (2005) Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 67:577–591CrossRefPubMedGoogle Scholar
  206. Pontonio E, Mahony J, Di Cagno R, O’Connell Motherway M, Lugli GA, O’Callaghan A, De Angelis M, Ventura M, Gobbetti M, van Sinderen D (2016) Cloning, expression and characterization of a β-D-xylosidase from Lactobacillus rossiae DSM 15814T. Microb Cell Factories 15Google Scholar
  207. Prasertsan P, Khangkhachit W, Duangsuwan W, Mamimin C, O-Thong S (2017) Direct hydrolysis of palm oil mill effluent by xylanase enzyme to enhance biogas production using two-steps thermophilic fermentation under non-sterile condition. Int J Hydrogen Energ 42:27759–27766CrossRefGoogle Scholar
  208. Purohit A, Rai SK, Chownk M, Sangwan RS, Yadav SK (2017) Xylanase from Acinetobacter pittii MASK 25 and developed magnetic cross-linked xylanase aggregate produce predominantly xylopentose and xylohexose from agro biomass. Bioresour Technol 244:793–799CrossRefPubMedGoogle Scholar
  209. Qian C, Liu N, Yan X, Wang Q, Zhou Z, Wang Q (2015) Engineering a high-performance, metagenomic-derived novel xylanase with improved soluble protein yield and thermostability. Enzym Microb Technol 70:35–41CrossRefGoogle Scholar
  210. Quinlan RJ, Sweeney MD, Lo Leggio L, Otten H, Poulsen JC, Johansen KS, Krogh KB, Jorgensen CI, Tovborg M, Anthonsen A, Tryfona T, Walter CP, Dupree P, Xu F, Davies GJ, Walton PH (2011) Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. Proc Natl Acad Sci U S A 108:15079–15084CrossRefPubMedPubMedCentralGoogle Scholar
  211. Raj A, Kumar S, Singh SK (2013) A highly thermostable xylanase from Stenotrophomonas maltophilia: purification and partial characterization. Enzyme Res 429305:1–8CrossRefGoogle Scholar
  212. Ramanjaneyulu G, Reddy BR (2016) Optimization of xylanase production through response surface methodology by Fusarium sp. BVKT R2 isolated from forest soil and its application in saccharification. Front Microbiol 7:1450CrossRefPubMedPubMedCentralGoogle Scholar
  213. Raweesri P, Riangrungrojana P, Pinphanichakarn P (2008) α-L-arabinofuranosidase from Streptomyces sp. PC22: purification, characterization and its synergistic action with xylanolytic enzymes in the degradation of xylan and agricultural residues. Bioresour Technol 99:8981–8986CrossRefPubMedGoogle Scholar
  214. Razeq FM, Jurak E, Stogios PJ, Yan R, Tenkanen M, Kabel MA, Wang W, Master ER (2018) A novel acetyl xylan esterase enabling complete deacetylation of substituted xylans. Biotechnol Biofuels 11:74CrossRefPubMedPubMedCentralGoogle Scholar
  215. Reilly PJ (2014) Xylanases: structure and function. In: Hollaender AE (ed) Trends in the biology of fermentations for fuels and chemicals. Plenum Press, New York, pp 111–129Google Scholar
  216. Rennie EA, Scheller HV (2014) Xylan biosynthesis. Curr Opin Biotechnol 26:100–107CrossRefPubMedGoogle Scholar
  217. Robledo A, Aguilar CN, Belmares-Cerda RE, Flores-Gallegos AC, Contreras-Esquivel JC, Montanez JC, Mussatto SI (2016) Production of thermostable xylanase by thermophilic fungal strains isolated from maize silage. CYTA – J Food 14:302–308CrossRefGoogle Scholar
  218. Rogowski A, Baslé A, Farinas CS, Solovyova A, Mortimer JC, Dupree P, Gilbert HJ, Bolam DN (2014) Evidence that GH115 α-glucuronidase activity, which is required to degrade plant biomass, is dependent on conformational flexibility. J Biol Chem 289:53–64CrossRefPubMedGoogle Scholar
  219. Rosenthal A, Pyle DL, Niranjan K (1996) Aqueous enzymatic processes for edible oil extraction. Enzym Microb Technol 19:402–420CrossRefGoogle Scholar
  220. Roy N, Rowshanul Habib M (2009) Isolation and characterization of Xylanase producing strain of Bacillus cereus from soil. Iran J Microbiol 1:49–53Google Scholar
  221. Ryabova O, Vrsanska M, Kaneko S, van Zyl WH, Biely P (2009) A novel family of hemicellulolytic alpha-glucuronidase. FEBS Lett 583:1457–1462CrossRefPubMedGoogle Scholar
  222. Sabbadin F, Hemsworth GR, Ciano L, Henrissat B, Dupree P, Tryfona T, Marques RDS, Sweeney ST, Besser K, Elias L, Pesante G, Li Y, Dowle AA, Bates R, Gomez LD, Simister R, Davies GJ, Walton PH, Bruce NC, McQueen-Mason SJ (2018) An ancient family of lytic polysaccharide monooxygenases with roles in arthropod development and biomass digestion. Nat Commun 9:756CrossRefPubMedPubMedCentralGoogle Scholar
  223. Salyers AA (1995) Fermentation of polysaccharides by human colonic anaerobes. In: Cherbut JLB, Lairon D, Durand M (eds) Dietary fibre. John Libbey Eurotext, Paris, pp 29–35Google Scholar
  224. Santiago-Hernandez A, Vega-Estrada J, Del Carmen Montes-Horcasitas M & Hidalgo-Lara ME (2007). Purification and characterization of two sugarcane bagasse-absorbable thermophilic xylanases from the mesophilic Cellulomonas flavigena. J Ind Microbiol Biotechnol 34: 331–338Google Scholar
  225. Sato M, Suda M, Okuma J, Kato T, Hirose Y, Nishimura A, Kondo Y, Shibata D (2017) Isolation of highly thermostable β-xylosidases from a hot spring soil microbial community using a metagenomic approach. DNA Res 24:649–656CrossRefPubMedPubMedCentralGoogle Scholar
  226. Schroder C, Selig M, Schonheit P (1994) Glucose fermentation to acetate, CO2 and H2 in the anaerobic hyperthermophilic eubacterium Thermotoga maritima: involvement of the Embden-Meyerhof pathway. Arch Microbiol 161:460–470Google Scholar
  227. Scully SM, Orlygsson J (2015) Recent advances in second generation ethanol production by thermophilic bacteria. Energies 8:1–30CrossRefGoogle Scholar
  228. Shah AK, Sidid SS, Ahmad A, Rele MV (1999) Treatment of bagasse pulp with cellulase-free xylanase from an alkaliphilic Bacillus sp. Sam-3. Bioresour Technol 68:133–140CrossRefGoogle Scholar
  229. Shahrestani H, Taheri-Kafrani A, Soozanipour A, Tavakoli O (2016) Enzymatic clarification of fruit juices using xylanase immobilized on 1,3,5-triazine-functionalized silica-encapsulated magnetic nanoparticles. Biochem Eng J 109:51–58CrossRefGoogle Scholar
  230. Sharma A, Adhikari S, Satyanarayana T (2007) Alkali-thermostable and cellulase-free xylanase production by an extreme thermophile Geobacillus thermoleovorans. World J Microbiol Biotechnol 23:483–490CrossRefGoogle Scholar
  231. Sheng P, Li Y, Marshall SDG, Zhang H (2015) High genetic diversity of microbial cellulase and hemicellulase genes in the hindgut of Holotrichia parallela larvae. Int J Mol Sci 16:16545–16559CrossRefPubMedPubMedCentralGoogle Scholar
  232. Shi W, Ding SY, Yuan JS (2011) Comparison of insect gut cellulase and xylanase activity across different insect species with distinct food sources. Bioenergy Res 4:1–10CrossRefGoogle Scholar
  233. Shi W, Xie S, Chen X, Sun S, Zhou X, Liu L, Gao P, Kyrpides NC, No EG, Yuan JS (2013) Comparative genomic analysis of the endosymbionts of herbivorous insects reveals eco-environmental adaptations: biotechnology applications. PLoS Genet 9:e1003131CrossRefPubMedPubMedCentralGoogle Scholar
  234. Shi H, Zhang Y, Zhang H, Huang Y, Li X, Wang F (2014) Cloning, over-expression and characterization of a thermo- tolerant xylanase from Thermotoga thermarum. Biotechnol Lett 36:587–593CrossRefPubMedGoogle Scholar
  235. Shin J-H, Choi J-H, Lee O-S, Kim Y-M, Lee D-S, Kwak Y-Y, Kim W-C, Rhee I-K (2009) Thermostable xylanase from Streptomyces thermocyaneoviolaceus for optimal production of xylooligosaccharides. Biotechnol Bioprocess Eng 14:391–399CrossRefGoogle Scholar
  236. Singh A, Yadav RD, Kaur A, Mahajan R (2012) An ecofriendly cost effective enzymatic methodology for deinking of school waste paper. Bioresour Technol 120:322–327CrossRefPubMedGoogle Scholar
  237. Singh R, Kumar M, Mittal A, Mehta PK (2016) Microbial enzymes: industrial progress in 21st century. 3 Biotech 6:174CrossRefPubMedPubMedCentralGoogle Scholar
  238. Soder KJ, Heins BJ, Chester-Jones H, Hafla AN, Rubano MD (2018) Evaluation of fodder production systems for organic dairy farms. Prof Anim Sci 34:75–83CrossRefGoogle Scholar
  239. Sriyapai T, Somyoonsap P, Matsui K, Kawai F, Chansiri K (2011) Cloning of a thermostable xylanase from Actinomadura sp. S14 and its expression in Escherichia coli and Pichia pastoris. J Biosci Bioeng 111:528–536CrossRefPubMedGoogle Scholar
  240. St. John FJ, Crooks C, Dietrich D, Hurlbert J (2016) Xylanase 30 a from Clostridium thermocellum functions as a glucuronoxylan xylanohydrolase. J Mol Cat B: Enzym 133:445–451CrossRefGoogle Scholar
  241. Su X, Han Y, Dodd D, Moon YH, Yoshida S, Mackie RI, Cann IKO (2013) Reconstitution of a Thermostable Xylan-degrading enzyme mixture from the bacterium Caldicellulosiruptor bescii. Appl Environ Microbiol 79:1481–1490CrossRefPubMedPubMedCentralGoogle Scholar
  242. Subramaniyan S (2012) Isolation, purification and characterisation of low molecular weight xylanase from Bacillus pumilus SSP-34. Appl Biochem Biotechnol 166:1831–1842CrossRefPubMedGoogle Scholar
  243. Subramaniyan S, Prema P (2002) Biotechnology of microbial xylanases: enzymology, molecular biology, and application. Crit Rev Biotechnol 22:33–64CrossRefPubMedGoogle Scholar
  244. Sunna A, Antranikian G (1997) Xylanolytic enzymes from Fungi and Bacteria. Crit Rev Biotechnol 17:39–67CrossRefPubMedGoogle Scholar
  245. Sunna A, Bergquist PL (2003) A gene encoding a novel extremely thermostable 1,4-β-xylanase isolated directly from an environmental DNA sample. Extremophiles 7:63–70CrossRefPubMedGoogle Scholar
  246. Sveinsdottir M, Beck SR, Orlygsson J (2009) Ethanol production from monosugars and lignocellulosic biomass by thermophilic bacteria isolated from Icelandic hot springs. Icel Agric Sci 22:45–58Google Scholar
  247. Taibi Z, Saoudi B, Boudelaa M, Trigui H, Belghith H, Gargouri A, Ladjama A (2012) Purification and biochemical characterization of a highly thermostable xylanase from Actinomadura sp. strain Cpt20 isolated from poultry compost. Appl Biochem Biotechnol 166:663–679CrossRefPubMedGoogle Scholar
  248. Tamburini E, Costa S, Marchetti MG, Pedrini P (2015) Optimized production of xylitol from xylose using a hyper-acidophilic Candida tropicalis. Biomol Ther 5:1979–1989Google Scholar
  249. Taylor EJ, Gloster TM, Turkenburg JP, Vincent F, Brzozowski AM, Dupont C, Shareck F, Centeno MSJ, Prates JAM, Puchart V, Ferreira LM, Fontes CM, Biely P, Davies GJ (2006) Structure and activity of two metal ion-dependent acetylxylan esterases involved in plant cell wall degradation reveals a close similarity to peptidoglycan deacetylases. J Biol Chem 281:10968–10975CrossRefPubMedGoogle Scholar
  250. Thebti W, Riahi Y, Gharsalli R, Belhadj O (2016) Screening and characterization of thermo-active enzymes of biotechnological interest produced by thermophilic Bacillus isolated from hot springs in Tunisia. Acta Biochim Pol 63:581–587CrossRefPubMedGoogle Scholar
  251. Timell TE (1964) Wood hemicelluloses: part I. Adv Carbohydr Chem 19:247–302PubMedGoogle Scholar
  252. Tomas AF (2013) Optimization of bioethanol production from carbohydrate rich wastes by extreme thermophilic microorganisms. Ph.D. thesis. In: Technical University of Denmark. Denmark, CopenhagenGoogle Scholar
  253. Uhl AM, Daniel RM (1999) The first description of an archaeal hemicellulase: the xylanase from Thermococcus zilligii strain AN1. Extremophiles 3:263–267CrossRefPubMedGoogle Scholar
  254. Vaaje-Kolstad G, Westereng B, Horn SJ, Liu Z, Zhai H, Sorlie M, Eijsink VG (2010) An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science 330:219–222CrossRefPubMedGoogle Scholar
  255. Verbeke TJ, Zhang X, Henrissat B, Spicer V, Rydzak T, Krokhin OV, Fristensky B, Levin DV, Sparling R (2013) Genomic evaluation of Thermoanaerobacter spp. for the construction of designer co-cultures to improve lignocellulosic biofuel production. PLoS One 8:e59362CrossRefPubMedPubMedCentralGoogle Scholar
  256. Verma D, Satyanarayana T (2011) An improved protocol for DNA extraction from alkaline soil and sediment samples for constructing metagenomic libraries. Appl Biochem Biotechnol 165:454–464CrossRefPubMedGoogle Scholar
  257. Verma D, Satyanarayana T (2012a) Molecular approaches for ameliorating microbial xylanases. Bioresour Technol 117:360–367CrossRefPubMedGoogle Scholar
  258. Verma D, Satyanarayana T (2012b) Cloning, expression and applicability of thermo-alkali-stable xylanase of Geobacillus thermoleovorans in generating xylooligosaccharides from agro-residues. Bioresour Technol 107:333–338CrossRefGoogle Scholar
  259. Verma D, Satyanarayana T (2013c) Improvement in thermostability of GH11 xylanases by site directed mutagenesis. J Ind Microbiol Biotechnol 40:1373–1381CrossRefGoogle Scholar
  260. Verma D, Satyanarayana T (2013d) Cloning and expression of xylanase gene in Bacillus subtilis and optimization of fermentation conditions for extracellular xylanase from recombinant strain. Biotechnol Prog 29:1441–1447CrossRefPubMedGoogle Scholar
  261. Verma D & Satyanarayana T (2016). Retrieval of xylanase genes from environmental metagenomes by metagenomic approaches. In Biotechnology Progress and Applications, (eds. Saif Hameed & Zeeshan Fatima), Hardbound, pp. 19–34Google Scholar
  262. Verma D, Kawarabayasi Y, Satyanarayana T (2010) Developments in metagenomics for accessing novel genes for useful microbial products. In: Trivedi PC (ed) Appl. Microbiol. Aavishkar Publishers, Jaipur, pp 27–57Google Scholar
  263. Verma D, Kawarabayasi Y, Miyazaki K, Satyanarayana T (2013a) Cloning, expression and characteristics of a novel alkalistable and thermostable xylanase encoding gene (Mxyl) retrieved from compost-soil metagenome. PLoS One 8:e52459CrossRefPubMedPubMedCentralGoogle Scholar
  264. Verma D, Anand A, Satyanarayana T (2013b) Thermostable and alkalistable endoxylanase of the extremely thermophilic bacterium Geobacillus thermodenitrificans TSAA1: cloning, expression, characteristics and its applicability in generating xylooligosaccharides and fermentable sugars. Appl Biochem Biotechnol 170:119–130CrossRefPubMedGoogle Scholar
  265. Viikari L, Ranua M, Kantelinen A, Sunduist J, Linko M (1986) Bleaching with enzymes in: proceedings of 3rd international conference on biotechnology in the pulp and paper industry, STFI, Stockholm. Sweden 67–9Google Scholar
  266. Virk AP, Puri M, Gupta V, Capalash N, Sharma P (2013) Combined enzymatic and physical deinking methodology for efficient eco-friendly recycling of old newsprint. PLoS One 8:e72346CrossRefPubMedPubMedCentralGoogle Scholar
  267. Vu VV, Beeson WT, Phillips CM, Cate JH, Marletta MA (2014) Determinants of regioselective hydroxylation in the fungal polysaccharide monooxygenases. J Am Chem Soc 136:562–565CrossRefPubMedGoogle Scholar
  268. Wagner ID, Wiegel J (2008) Diversity of thermophilic anaerobes. In: Annals of the new York Academy of Sciences. Blackwell Publishing Inc, pp 1–43Google Scholar
  269. Walia A, Guleria S, Mehta P, Chauhan A, Parkash J (2017) Microbial xylanases and their industrial application in pulp and paper biobleaching: a review. 3 Biotech 7:11CrossRefPubMedPubMedCentralGoogle Scholar
  270. Walton PH, Davies GJ (2016) On the catalytic mechanisms of lytic polysaccharide monooxygenases. Curr Opin Chem Biol 31:195–207CrossRefPubMedGoogle Scholar
  271. Wang G, Wang Y, Yang P, Luo H, Huang H, Shi P, Meng K, Yao B (2010) Molecular detection and diversity of xylanase genes in alpine tundra soil. Appl Microbiol Biotechnol 87:1383–1393CrossRefPubMedGoogle Scholar
  272. Wang Y, Feng S, Zhan T, Huang Z, Wu G, Liu Z (2013) Improving catalytic efficiency of endo-β-1,4-xylanase from Geobacillus stearothermophilus by directed evolution and H179 saturation mutagenesis. J Biotechnol 168:341–347CrossRefPubMedGoogle Scholar
  273. Wang W, Yan R, Nocek BP, Vuong TV, Leo RD, Xu X, Cui H, Gatenholm P, Toriz G, Tenkanen M, Savechko A, Master ER (2016) Biochemical and structural characterization of a five-domain GH115 α-Glucuronidase from the marine bacterium Saccharophagus degradans 2-40T. J Biol Chem 291:14120–14133CrossRefPubMedPubMedCentralGoogle Scholar
  274. Wi SG, Choi IS, Kim KH, Kim HM, Bae H-J (2013) Bioethanol production from rice straw by popping pretreatment. Biotechnol Biofuels 6:1–7CrossRefGoogle Scholar
  275. Winterhalter C, Liebl W (1995) Two extremely thermostable xylanases of the hyperthermophilic bacterium Thermotoga maritima MSB8, vol 61, pp 1810–1815Google Scholar
  276. Woodward J (1984) Xylanases: functions, properties and applications, Top. Enzyme Ferment. Biotechnol., 8:9–30Google Scholar
  277. Wong KK, Tan LU, Saddler JN (1988) Multiplicity of beta-1,4-xylanase in microorganisms: functions and applications. Microbiol Rev 52:305–317PubMedPubMedCentralGoogle Scholar
  278. Wu M, Beckham GT, Larsson AM, Ishida T, Kim S, Payne CM, Himmel ME, Crowley MF, Horn SJ, Westereng B, Igarashi K, Samejima M, Stanhlberg J, Eijsink VG & Sandgren (2013). Crystal structure and computational characterization of the lytic polysaccharide monooxygenase GH61D from the Basidiomycota fungus Phanerochaete chrysosporium. J Biol Chem 288: 12828–12839Google Scholar
  279. Xu F, Sweeney MD, Quinlan RJ, Johansen KS (2012) Compositions comprising a polypeptide having cellulolytic enhancing activity and an organic compound and uses thereof. U.S. Patent No WO2012021396A1. Davies CA: Novozymes, IncGoogle Scholar
  280. Yamada K, Terahara T, Kurata S, Yokomaku T, Tsuneda S, Harayama S (2008) Retrieval of entire genes from environmental DNA by inverse PCR with pre-amplification of target genes using primers containing locked nucleic acids. Environ Microbiol 10:978–987CrossRefPubMedPubMedCentralGoogle Scholar
  281. Yan R, Vuong TV, Wang W, Master ER (2017) Action of a GH115 α-glucuronidase from Amphibacillus xylanus at alkaline condition promotes release of 4-O-methylglucopyranosyluronic acid from glucuronoxylan and arabinoglucuronoxylan. Enzym Microb Technol 104:22–28CrossRefGoogle Scholar
  282. Yang J, Summanen PH, Henning SM, Hsu M, Lam H, Huang J, Tseng CH, Dowd SE, Finegold SM, Heber D, Li Z (2015) Xylooligosaccharide supplementation alters gut bacteria in both healthy and prediabetic adults: a pilot study. Front Physiol 6:216PubMedPubMedCentralGoogle Scholar
  283. Ying Y, Meng D, Chen X, Li F (2013) An extremely thermophilic anaerobic bacterium Caldicellulosiruptor sp. F32 exhibits distinctive properties in growth and xylanases during xylan hydrolysis. Enzym Microb Technol 53:194–199CrossRefGoogle Scholar
  284. Yu T, Anbarasan S, Wang Y, Telli K, Aslan AS, Su Z, Zhou Y, Zhang L, Iivonen P, Havukainen S, Mentunen T, Hummel M, Sixta H, Binay B, Turunen O, Xiong H (2016) Hyperthermostable Thermotoga maritima xylanase XYN10B shows high activity at high temperatures in the presence of biomass-dissolving hydrophilic ionic liquids. Extremophiles 20:515–524CrossRefPubMedPubMedCentralGoogle Scholar
  285. Zaide G, Shallom D, Shulami S, Zolotnitsky G, Golan G, Baasov T, Shoham G, Shoham Y (2001) Biochemical characterization and identification of catalytic residues in alpha-glucuronidase from Bacillus stearothermophilus T-6. Eur J Biochem 268:3006–3016CrossRefPubMedGoogle Scholar
  286. Zhang GM, Huang J, Huang GR, Ma LX, Zhang XE (2007) Molecular cloning and heterologous expression of a new xylanase gene from Plectosphaerella cucumerina. Appl Microbiol Biotechnol 74:339–346CrossRefPubMedGoogle Scholar
  287. Zhang W, Lou K, Li G (2010) Expression and characterization of the Dictyoglomus thermophilum Rt46B.1 xylanase gene (xynB) in Bacillus subtilis. Appl Biochem Biotechnol 160:1484–1495CrossRefPubMedGoogle Scholar
  288. Zhang J, Siika-Aho M, Tenkanen M, Viikari L (2011) The role of acetyl xylan esterase in the solubilization of xylan and enzymatic hydrolysis of wheat straw and giant reed. Biotechnol Biofuels 4:60CrossRefPubMedPubMedCentralGoogle Scholar
  289. Zhang F, Chen JJ, Ren WZ, Lin LB, Zhou Y, Zhi XY, Tang SK, Li WJ (2012) Cloning, expression, and characterization of an alkaline thermostable GH11 xylanase from Thermobifida halotolerans YIM 90462T. J Ind Microbiol Biotechnol 39:1109–1116CrossRefPubMedGoogle Scholar
  290. Zhang M, Chekan JR, Dodd D, Hong PY, Radlinski L, Revindran V, Nair SK, Mackie RI, Cann I (2014) Xylan utilization in human gut commensal bacteria is orchestrated by unique modular organization of polysaccharide-degrading enzymes. Proc Natl Acad Sci U S A 111:E3708–E3717CrossRefPubMedPubMedCentralGoogle Scholar
  291. Zhang Y, An J, Yang G, Zhang X, Xie CL, Feng Y (2016) Structure features of GH10 xylanase from Caldicellulosiruptor bescii: implication for its thermophilic adaption and substrate binding preference. Acta Biochim Biophys Sin Shanghai 48:948–957CrossRefPubMedGoogle Scholar
  292. Zhao S, Bu D, Wang J, Liu K, Zhu Y, Dong Z, Yu Z (2010) Novel glycoside hydrolases from a metagenome library of the rumen of Chinese Holstein dairy cows. Appl Environ Microbiol 76:6701–6705CrossRefPubMedPubMedCentralGoogle Scholar
  293. Zhao L, Geng J, Guo Y, Liao X, Liu X, Wu R, Zheng Z, Zhang R (2015) Expression of the Thermobifida fusca xylanase Xyn11A in Pichia pastoris and its characterization. BMC Biotechnol 15:18CrossRefPubMedPubMedCentralGoogle Scholar
  294. Zheng H, Liu Y, Liu X, Han Y, Wang J, Lu F (2012a) Over-expression of a Paenibacillus campinasensis xylanase in Bacillus megaterium and its applications to biobleaching of cotton stalk pulp and saccharification of recycled paper sludge. Bioresour Technol 125:182–187CrossRefPubMedGoogle Scholar
  295. Zheng H, Liu Y, Liu X, Wang J, Han Y, Lu F (2012b) Isolation, purification, and characterization of a thermostable xylanase from a novel strain, Paenibacillus campinasensis G1-1. K Microb Biotechnol 22:930–938CrossRefGoogle Scholar
  296. Zheng H, Ming-zhe S, Ling-cai M, Hai-sheng P, Xiu-qing Z, Zheng Y, Zeng W-h, Zhang J, Hu J, Lu F, Sun J (2014) Purification and characterization of a thermostable xylanase from Paenibacillus sp. NF1 and its application in xylooligosaccharides production. J Microbiol Biotechnol 24:489–496CrossRefPubMedGoogle Scholar
  297. Zhou J, Bao L, Chang L, Liu Z, You C, Lu H (2012) β-Xylosidase activity of a GH-3 glucosidase/xylosidase from yak rumen metagenome promotes the enzymatic degradation of hemicellulosic xylans. Lett Appl Microbiol 54:79–87CrossRefGoogle Scholar
  298. Zimmermann W, Winter B, Broda P (1988) Xylanolytic enzyme activities produced by mesophilic and thermophilic actinomycetes grown on graminaceous xylan and lignocellulose. FEMS Microbiol Lett 55:181–185CrossRefGoogle Scholar
  299. Zverlov VV, Schantz N, Schmitt-Kopplin P, Schwarz WH (2005) Two new major subunits in the cellulosome of Clostridium thermocellum: Xyloglucanase Xgh74A and endoxylanase Xyn10D. Microbiology 151:3395–3401CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Digvijay Verma
    • 1
  • Ravi Kumar
    • 2
  • Tulasi Satyanarayana
    • 2
  1. 1.Department of MicrobiologyBabasaheb Bhimrao Ambedkar (Central) UniversityLucknowIndia
  2. 2.Division of Biological Sciences and EngineeringNetaji Subhas University of Technology (NSUT)New DelhiIndia

Personalised recommendations