Advertisement

Glaucoma pp 115-123 | Cite as

What’s the Future of Glaucoma Diagnosis and Neuroprotection

  • Sahil Thakur
Chapter
Part of the Current Practices in Ophthalmology book series (CUPROP)

Abstract

From the use of advanced computer-based imaging technology, tablet-based perimeters, novel biomarkers to genetic markers, glaucoma diagnostics is currently one of the most exciting areas to work in. This chapter gives an insight at the future of glaucoma diagnosis and how cutting-edge research is improving accuracy in detecting glaucomatous change.

Keywords

Biomarkers Genetic markers Tablet perimetry Virtual reality goggle-based perimetry Stem cell therapy 

References

  1. 1.
    Fallon M, Valero O, Pazos M, Anton A. Diagnostic accuracy of imaging devices in glaucoma: a meta-analysis. Surv Ophthalmol. 2017;62(4):446–61.CrossRefGoogle Scholar
  2. 2.
    Kansal V, Armstrong JJ, Pintwala R, Hutnik C. Optical coherence tomography for glaucoma diagnosis: an evidence based meta-analysis. PLoS One. 2018;13(1):e0190621.CrossRefGoogle Scholar
  3. 3.
    Della Santina L, Ou Y. Who’s lost first? Susceptibility of retinal ganglion cell types in experimental glaucoma. Exp Eye Res. 2017;158:43–50.CrossRefGoogle Scholar
  4. 4.
    Chen X, Hou P, Jin C, et al. Quantitative analysis of retinal layer optical intensities on three-dimensional optical coherence tomographyquantitative analysis of OCT optical intensity. Invest Ophthalmol Vis Sci. 2013;54(10):6846–51.CrossRefGoogle Scholar
  5. 5.
    Belghith A, Bowd C, Weinreb RN, Zangwill LM. A hierarchical framework for estimating neuroretinal rim area using 3D spectral domain optical coherence tomography (SD-OCT) optic nerve head (ONH) images of healthy and glaucoma eyes. Conf Proc IEEE Eng Med Biol Soc. 2014;2014:3869–72.PubMedGoogle Scholar
  6. 6.
    Belghith A, Bowd C, Medeiros FA, et al. Does the location of Bruch’s membrane opening change over time? Longitudinal analysis using San Diego automated layer segmentation algorithm (SALSA). Invest Ophthalmol Vis Sci. 2016;57(2):675–82.CrossRefGoogle Scholar
  7. 7.
    Manalastas PIC, Belghith A, Weinreb RN, et al. Automated beta zone parapapillary area measurement to differentiate between healthy and glaucoma eyes. Am J Ophthalmol. 2018;191:140.CrossRefGoogle Scholar
  8. 8.
    Mwanza JC, Warren JL, Budenz DL. Utility of combining spectral domain optical coherence tomography structural parameters for the diagnosis of early Glaucoma: a mini-review. Eye Vis (Lond). 2018;5:9.CrossRefGoogle Scholar
  9. 9.
    Van Melkebeke L, Barbosa-Breda J, Huygens M, Stalmans I. Optical coherence tomography angiography in glaucoma: a review. Ophthalmic Res. 2018;60:139–51.CrossRefGoogle Scholar
  10. 10.
    Liu L, Jia Y, Takusagawa HL, et al. Optical coherence tomography angiography of the peripapillary retina in glaucoma. JAMA Ophthalmol. 2015;133(9):1045–52.CrossRefGoogle Scholar
  11. 11.
    Kurysheva NI, Maslova EV. Optical coherence tomography angiography in glaucoma diagnosis. Vestn Oftalmol. 2016;132(5):98–102.CrossRefGoogle Scholar
  12. 12.
    Cvenkel B, Sustar M, Perovsek D. Ganglion cell loss in early glaucoma, as assessed by photopic negative response, pattern electroretinogram, and spectral-domain optical coherence tomography. Doc Ophthalmol. 2017;135(1):17–28.CrossRefGoogle Scholar
  13. 13.
    Tai TYT. Visual evoked potentials and glaucoma. Asia Pac J Ophthalmol (Phila). 2018;7:352.Google Scholar
  14. 14.
    Chen X-W, Zhao Y-X. Comparison of isolated-check visual evoked potential and standard automated perimetry in early glaucoma and high-risk ocular hypertension. Int J Ophthalmol. 2017;10(4):599–604.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Johnson CA, Thapa S, George Kong YX, Robin AL. Performance of an iPad application to detect moderate and advanced visual field loss in Nepal. Am J Ophthalmol. 2017;182:147.CrossRefGoogle Scholar
  16. 16.
    Tsapakis S, Papaconstantinou D, Diagourtas A, et al. Visual field examination method using virtual reality glasses compared with the Humphrey perimeter. Clin Ophthalmol. 2017;11:1431–43.CrossRefGoogle Scholar
  17. 17.
    Satgunam P, Datta S, Chillakala K, Bobbili KR, Joshi D. Pediatric perimeter-a novel device to measure visual fields in infants and patients with special needs. Transl Vis Sci Technol. 2017;6(4):3.CrossRefGoogle Scholar
  18. 18.
    Kassam F, Yogesan K, Sogbesan E, Pasquale LR, Damji KF. Teleglaucoma: improving access and efficiency for glaucoma care. M E Afr J Ophthalmol. 2013;20(2):142–9.CrossRefGoogle Scholar
  19. 19.
    Von Thun Und Hohenstein-Blaul N, Kunst S, Pfeiffer N, Grus FH. Biomarkers for glaucoma: from the lab to the clinic. Eye (Lond). 2017;31(2):225–31.CrossRefGoogle Scholar
  20. 20.
    Boehm N, Wolters D, Thiel U, et al. New insights into autoantibody profiles from immune privileged sites in the eye: a glaucoma study. Brain Behav Immun. 2012;26(1):96–102.CrossRefGoogle Scholar
  21. 21.
    Benoist d’Azy C, Pereira B, Chiambaretta F, Dutheil F. Oxidative and anti-oxidative stress markers in chronic glaucoma: a systematic review and meta-analysis. PLoS One. 2016;11(12):e0166915.CrossRefGoogle Scholar
  22. 22.
    Gong G, Kosoko-Lasaki S, Haynatzki G, et al. Inherited, familial and sporadic primary open-angle glaucoma. J Natl Med Assoc. 2007;99(5):559–63.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Bettin P, Di Matteo F. Glaucoma: present challenges and future trends. Ophthalmic Res. 2013;50(4):197–208.CrossRefGoogle Scholar
  24. 24.
    Fan BJ, Wang DY, Fan DS, et al. SNPs and interaction analyses of myocilin, optineurin, and apolipoprotein E in primary open angle glaucoma patients. Mol Vis. 2005;11:625–31.PubMedGoogle Scholar
  25. 25.
    Dong Z, Khor CC, Wiggs JL. Genome-Wide Association studies of glaucoma. In: Prakash G, Iwata T, editors. Advances in vision research, volume I: genetic eye research in Asia and the Pacific. Tokyo: Springer Japan; 2017. p. 275–90.CrossRefGoogle Scholar
  26. 26.
    Khawaja AP, Viswanathan AC. Are we ready for genetic testing for primary open-angle glaucoma? Eye. 2018;32(5):877–83.CrossRefGoogle Scholar
  27. 27.
    Souzeau E, Burdon KP, Dubowsky A, et al. Higher prevalence of myocilin mutations in advanced glaucoma in comparison with less advanced disease in an Australasian disease registry. Ophthalmology. 2013;120(6):1135–43.CrossRefGoogle Scholar
  28. 28.
    Danesh-Meyer HV. Neuroprotection in glaucoma: recent and future directions. Curr Opin Ophthalmol. 2011;22(2):78–86.CrossRefGoogle Scholar
  29. 29.
    Sigireddi RR, Frankfort BJ. Neuroprotection in glaucoma. Int Ophthalmol Clin. 2018;58(3):51–67.CrossRefGoogle Scholar
  30. 30.
    WoldeMussie E, Yoles E, Schwartz M, Ruiz G, Wheeler LA. Neuroprotective effect of memantine in different retinal injury models in rats. J Glaucoma. 2002;11(6):474–80.CrossRefGoogle Scholar
  31. 31.
    Hare WA, WoldeMussie E, Lai RK, et al. Efficacy and safety of memantine treatment for reduction of changes associated with experimental glaucoma in monkey, I: functional measures. Invest Ophthalmol Vis Sci. 2004;45(8):2625–39.CrossRefGoogle Scholar
  32. 32.
    Dong CJ, Guo Y, Agey P, Wheeler L, Hare WA. Alpha2 adrenergic modulation of NMDA receptor function as a major mechanism of RGC protection in experimental glaucoma and retinal excitotoxicity. Invest Ophthalmol Vis Sci. 2008;49(10):4515–22.CrossRefGoogle Scholar
  33. 33.
    Krupin T, Liebmann JM, Greenfield DS, Ritch R, Gardiner S. A randomized trial of brimonidine versus timolol in preserving visual function: results from the low-pressure glaucoma treatment study. Am J Ophthalmol. 2011;151(4):671–81.CrossRefGoogle Scholar
  34. 34.
    Sena DF, Lindsley K. Neuroprotection for treatment of glaucoma in adults. Cochrane Database Syst Rev. 2017;(1):CD006539.Google Scholar
  35. 35.
    Sun Y, Williams A, Waisbourd M, Iacovitti L, Katz LJ. Stem cell therapy for glaucoma: science or snake oil? Surv Ophthalmol. 2015;60(2):93–105.CrossRefGoogle Scholar
  36. 36.
    Manuguerra-Gagne R, Boulos PR, Ammar A, et al. Transplantation of mesenchymal stem cells promotes tissue regeneration in a glaucoma model through laser-induced paracrine factor secretion and progenitor cell recruitment. Stem Cells. 2013;31(6):1136–48.CrossRefGoogle Scholar
  37. 37.
    Cho GY, Justus S, Sengillo JD, Tsang SH. CRISPR in the retina: evaluation of future potential. Adv Exp Med Biol. 2017;1016:147–55.CrossRefGoogle Scholar
  38. 38.
    Fry LE, Fahy E, Chrysostomou V, et al. The coma in glaucoma: retinal ganglion cell dysfunction and recovery. Prog Retin Eye Res. 2018;65:77.CrossRefGoogle Scholar
  39. 39.
    Lawlor M, Danesh-Meyer H, Levin LA, et al. Glaucoma and the brain: trans-synaptic degeneration, structural change, and implications for neuroprotection. Surv Ophthalmol. 2018;63(3):296–306.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Sahil Thakur
    • 1
  1. 1.Department of Ocular EpidemiologySingapore Eye Research InstituteSingaporeSingapore

Personalised recommendations