Glaucoma pp 27-45 | Cite as

What’s New in Functional Tests for Glaucoma

  • Zakieh Vahedian
  • Ghasem Fakhraie
Part of the Current Practices in Ophthalmology book series (CUPROP)


The main goal of various treatment modalities for glaucoma is to preserve functional vision of the patient. Functional tests help the physician understand how the patients with glaucoma see the world and what difficulties they are likely to face in their day-to-day life. Additionally, this information helps in development of visual aids that help improve quality of life of glaucoma patients. This chapter reviews the recent advances in the available functional tests such as the contrast sensitivity tests, perimetry, and electrophysiologic and color vision tests.


Contrast sensitivity Functional tests Virtual perimetry Microperimetry Structure-function integration 


  1. 1.
    Richman J, Lorenzana LL, Lankaranian D, Dugar J, Mayer J, Wizov SS, et al. Importance of visual acuity and contrast sensitivity in patients with glaucoma. Arch Ophthalmol. 2010;128(12):1576–82.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Velten IM, Korth M, Horn FK, Budde WM. Temporal contrast sensitivity with peripheral and central stimulation in glaucoma diagnosis. Br J Ophthalmol. 1999;83(2):199–205.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Hawkins AS, Szlyk JP, Ardickas Z, Alexander KR, Wilensky JT. Comparison of contrast sensitivity, visual acuity, and Humphrey visual field testing in patients with glaucoma. J Glaucoma. 2003;12(2):134–8.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Wilensky JT, Hawkins A. Comparison of contrast sensitivity, visual acuity, and Humphrey visual field testing in patients with glaucoma. Trans Am Ophthalmol Soc. 2001;99:213.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Ginsburg AP. Contrast sensitivity and functional vision. Int Ophthalmol Clin. 2003;43(2):5–15.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Erb C. Functional disorders in the chronological progression of glaucoma. Ophthalmologe. 2015;112(5):402–9.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Stamper R. Psychophysical changes in glaucoma. Surv Ophthalmol. 1989;33:309–18.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Lundh BL. Central and peripheral contrast sensitivity for static and dynamic sinusoidal gratings in glaucoma. Acta Ophthalmol. 1985;63(5):487–92.CrossRefGoogle Scholar
  9. 9.
    Hot A, Dul MW, Swanson WH. Development and evaluation of a contrast sensitivity perimetry test for patients with glaucoma. Invest Ophthalmol Vis Sci. 2008;49(7):3049–57.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Stamper R. The effect of glaucoma on central visual function. Trans Am Ophthalmol Soc. 1984;82:792.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Richman J, Spaeth GL, Wirostko B. Contrast sensitivity basics and a critique of currently available tests. J Cataract Refract Surg. 2013;39(7):1100–6.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Lahav K, Levkovitch-Verbin H, Belkin M, Glovinsky Y, Polat U. Reduced mesopic and photopic foveal contrast sensitivity in glaucoma. Arch Ophthalmol. 2011;129(1):16–22.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Stamper RL, Hsu-Winges C, Sopher M. Arden contrast sensitivity testing in glaucoma. Arch Ophthalmol. 1982;100(6):947–50.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Onal S, Yenice O, Cakir S, Temel A. FACT contrast sensitivity as a diagnostic tool in glaucoma. Int Ophthalmol. 2008;28(6):407–12.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Kingsnorth A, Drew T, Grewal B, Wolffsohn JS. Mobile app Aston contrast sensitivity test. Clin Exp Optom. 2016;99(4):350–5.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Rodríguez-Vallejo M, Remón L, Monsoriu JA, Furlan WD. Designing a new test for contrast sensitivity function measurement with iPad. J Optom. 2015;8(2):101–8.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Richman J, Zangalli C, Lu L, Wizov SS, Spaeth E, Spaeth GL. The Spaeth/Richman contrast sensitivity test (SPARCS): design, reproducibility and ability to identify patients with glaucoma. Br J Ophthalmol. 2015;99(1):16–20.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Spaeth G, Richman J. SPARCS: a new method of evaluating contrast sensitivity in patients with glaucoma. Acta Ophthalmol. 2012;90(s249):0.Google Scholar
  19. 19.
    Friström B. Colour contrast sensitivity in ocular hypertension. A five‐year prospective study. Acta Ophthalmol. 2002;80(2):155–62.CrossRefGoogle Scholar
  20. 20.
    Wood JM, Lovie-Kitchin JE. Evaluation of the efficacy of contrast sensitivity measures for the detection of early primary open-angle glaucoma. Optom Vis Sci. 1992;69(3):175–81.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Sample PA, Juang PS, Weinreb RN. Isolating the effects of primary open-angle glaucoma on the contrast sensitivity function. Am J Ophthalmol. 1991;112(3):308–16.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Amanullah S, Okudolo J, Rahmatnejad K, Lin S-C, Wizov SS, Muhire RSM, et al. The relationship between contrast sensitivity and retinal nerve fiber layer thickness in patients with glaucoma. Graefes Arch Clin Exp Ophthalmol. 2017;255(12):2415–22.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Sun Y, Erdem E, Lyu A, Zangalli C, Wizov SS, Lo D, et al. The SPARCS: a novel assessment of contrast sensitivity and its reliability in patients with corrected refractive error. Br J Ophthalmol. 2016;100(10):1421–6.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Faria B, Duman F, Ali M, Zangalli C, Wizov S, Lu L, et al. Spaeth/Richman contrast sensitivity test in macular degeneration. Invest Ophthalmol Vis Sci. 2013;54(15):5024.Google Scholar
  25. 25.
    Faria BM, Duman F, Zheng CX, Waisbourd M, Gupta L, Ali M, et al. Evaluating contrast sensitivity in age-related macular degeneration using a novel computer-based test, the Spaeth/Richman contrast sensitivity test. Retina. 2015;35(7):1465–73.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Gupta L, Cvintal V, Delvadia R, Sun Y, Erdem E, Zangalli C, et al. SPARCS and Pelli–Robson contrast sensitivity testing in normal controls and patients with cataract. Eye. 2017;31(5):753.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Ekici F, Loh R, Waisbourd M, Sun Y, Martinez P, Nayak N, et al. Relationships between measures of the ability to perform vision-related activities, vision-related quality of life, and clinical findings in patients with glaucoma. JAMA Ophthalmol. 2015;133(12):1377–85.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Waisbourd M, Parker S, Ekici F, Martinez P, Murphy R, Scully K, et al. A prospective, longitudinal, observational cohort study examining how glaucoma affects quality of life and visually-related function over 4 years: design and methodology. BMC Ophthalmol. 2015;15(1):91.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Gandolfi SA, Cimino L, Sangermani C, Ungaro N, Mora P, Tardini MG. Improvement of spatial contrast sensitivity threshold after surgical reduction of intraocular pressure in unilateral high-tension glaucoma. Invest Ophthalmol Vis Sci. 2005;46(1):197–201.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Evans D, Hosking S, Gherghel D, Bartlett J. Contrast sensitivity improves after brimonidine therapy in primary open angle glaucoma: a case for neuroprotection. Br J Ophthalmol. 2003;87(12):1463–5.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Harris A, Arend O, Kagemann L, Garrett M, Chung HS, Martin B. Dorzolamide, visual function and ocular hemodynamics in normal-tension glaucoma. J Ocul Pharmacol Ther. 1999;15(3):189–97.PubMedCrossRefGoogle Scholar
  32. 32.
    Arend O, Harris A, Wolter P, Remky A. Evaluation of retinal haemodynamics and retinal function after application of dorzolamide, timolol and latanoprost in newly diagnosed open-angle glaucoma patients. Acta Ophthalmol Scand. 2003;81(5):474–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Gugleta K. Topical carbonic anhydrase inhibitors and visual function in glaucoma and ocular hypertension. Curr Med Res Opin. 2010;26(6):1255–67.PubMedCrossRefGoogle Scholar
  34. 34.
    Ianchulev T, Pham P, Makarov V, Francis B, Minckler D. Peristat: a computer-based perimetry self-test for cost-effective population screening of glaucoma. Curr Eye Res. 2005;30(1):1–6.PubMedCrossRefGoogle Scholar
  35. 35.
    Lowry EA, Hou J, Hennein L, Chang RT, Lin S, Keenan J, et al. Comparison of peristat online perimetry with the humphrey perimetry in a clinic-based setting. Transl Vis Sci Technol. 2016;5(4):4.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Johnson C, Robin A, Thapa S. Visual field screening to detect glaucoma and diabetic retinopathy in Nepal using an iPad application program. Orlando, FL: American Academy Optometry; 2014.Google Scholar
  37. 37.
    Johnson CA, Thapa S, Kong YXG, Robin AL. Performance of an iPad application to detect moderate and advanced visual field loss in Nepal. Am J Ophthalmol. 2017;182:147–54.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Santos A, Morabe E. “VisualFields Easy”: an iPad application as a simple tool for detecting visual field defects. Phillip J Ophthalmol. 2016;41:22–6.Google Scholar
  39. 39.
    Vingrys AJ, Healey JK, Liew S, Saharinen V, Tran M, Wu W, et al. Validation of a tablet as a tangent perimeter. Transl Vis Sci Technol. 2016;5(4):3.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Schulz AM, Graham EC, You Y, Klistorner A, Graham SL. Performance of iPad‐based threshold perimetry in glaucoma and controls. Clin Experiment Ophthalmol. 2017.Google Scholar
  41. 41.
    Kong YXG, He M, Crowston JG, Vingrys AJ. A comparison of perimetric results from a tablet perimeter and Humphrey field analyzer in glaucoma patients. Transl Vis Sci Technol. 2016;5(6):2.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Nakanishi M, Wang Y-T, Jung T-P, Zao JK, Chien Y-Y, Diniz-Filho A, et al. Detecting glaucoma with a portable brain-computer interface for objective assessment of visual function loss. JAMA Ophthalmol. 2017;135(6):550–7.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Rossetti L, Digiuni M, Rosso A, Riva R, Barbaro G, Smolek MK, et al. Compass: clinical evaluation of a new instrument for the diagnosis of glaucoma. PLoS One. 2015;10(3):e0122157.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Rao HL, Raveendran S, James V, Dasari S, Palakurthy M, Reddy HB, et al. Comparing the performance of compass perimetry with humphrey field analyzer in eyes with glaucoma. J Glaucoma. 2017;26(3):292–7.PubMedCrossRefGoogle Scholar
  45. 45.
    Matsuura M, Murata H, Fujino Y, Hirasawa K, Yanagisawa M, Asaoka R. Evaluating the usefulness of MP-3 microperimetry in glaucoma patients. Am J Ophthalmol. 2018;187:1–9.PubMedCrossRefGoogle Scholar
  46. 46.
    Palkovits S, Hirnschall N, Georgiev S, Leisser C, Findl O. Test–retest reproducibility of the microperimeter MP3 with fundus image tracking in healthy subjects and patients with macular disease. Transl Vis Sci Technol. 2018;7(1):17.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Hirooka K, Misaki K, Nitta E, Ukegawa K, Sato S, Tsujikawa A. Comparison of macular integrity assessment (MAIA™), MP-3, and the humphrey field analyzer in the evaluation of the relationship between the structure and function of the macula. PLoS One. 2016;11(3):e0151000.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Sato S, Hirooka K, Baba T, Tenkumo K, Nitta E, Shiraga F. Correlation between the ganglion cell-inner plexiform layer thickness measured with cirrus HD-OCT and macular visual field sensitivity measured with microperimetry. Invest Ophthalmol Vis Sci. 2013;54(4):3046–51.PubMedCrossRefGoogle Scholar
  49. 49.
    Rao HL, Januwada M, Hussain RS, Pillutla LN, Begum VU, Chaitanya A, et al. Comparing the structure–function relationship at the macula with standard automated perimetry and microperimetry. Invest Ophthalmol Vis Sci. 2015;56(13):8063–8.PubMedCrossRefGoogle Scholar
  50. 50.
    Horner DG, Dul MW, Swanson WH, Liu T, Tran I. Blur-resistant perimetric stimuli. Optometry and vision science: official publication of the. Am Acad Optom. 2013;90(5):466.CrossRefGoogle Scholar
  51. 51.
    Swanson WH, Dul MW, Horner DG, Liu T, Tran I. Assessing spatial and temporal properties of perimetric stimuli for resistance to clinical variations in retinal illumination. Invest Ophthalmol Vis Sci. 2014;55(1):353–9.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Swanson WH, Malinovsky VE, Dul MW, Malik R, Torbit JK, Sutton BM, et al. Contrast sensitivity perimetry and clinical measures of glaucomatous damage. Optom Vis Sci. 2014;91(11):1302.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    el-Khoury S, Hannen T, Dragnea DC, Ngounou F, Preußner P-R. Pattern noise (PANO): a new automated functional glaucoma test. Int Ophthalmol. 2018;38:1993–2003.PubMedCrossRefGoogle Scholar
  54. 54.
    Nouri-Mahdavi K, Zarei R, Caprioli J. Influence of visual field testing frequency on detection of glaucoma progression with trend analyses. Arch Ophthalmol. 2011;129(12):1521–7.PubMedCrossRefGoogle Scholar
  55. 55.
    Gardiner S, Crabb D. Frequency of testing for detecting visual field progression. Br J Ophthalmol. 2002;86(5):560–4.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Wu Z, Saunders LJ, Daga FB, Diniz-Filho A, Medeiros FA. Frequency of testing to detect visual field progression derived using a longitudinal cohort of glaucoma patients. Ophthalmology. 2017;124(6):786–92.PubMedCrossRefGoogle Scholar
  57. 57.
    Anderson AJ. Significant glaucomatous visual field progression in the first two years: what does it mean? Transl Vis Sci Technol. 2016;5(6):1.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Anderson AJ, Bedggood PA, Kong YXG, Martin KR, Vingrys AJ. Can home monitoring allow earlier detection of rapid visual field progression in glaucoma? Ophthalmology. 2017;124(12):1735–42.PubMedCrossRefGoogle Scholar
  59. 59.
    Nouri-Mahdavi K, Nowroozizadeh S, Nassiri N, Cirineo N, Knipping S, Giaconi J, et al. Macular ganglion cell/inner plexiform layer measurements by spectral domain optical coherence tomography for detection of early glaucoma and comparison to retinal nerve fiber layer measurements. Am J Ophthalmol. 2013;156(6):1297–307.e2.PubMedCrossRefGoogle Scholar
  60. 60.
    Arvanitaki V, Tsilimbaris MK, Pallikaris A, Moschandreas I, Minos E, Pallikaris IG, et al. Macular retinal and nerve fiber layer thickness in early glaucoma: clinical correlations. M E Afr J Ophthalmol. 2012;19(2):204.CrossRefGoogle Scholar
  61. 61.
    Springelkamp H, Lee K, Wolfs RC, Buitendijk GH, Ramdas WD, Hofman A, et al. Population-based evaluation of retinal nerve fiber layer, retinal ganglion cell layer, and inner plexiform layer as a diagnostic tool for glaucoma. Invest Ophthalmol Vis Sci. 2014;55(12):8428–38.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Hood DC, Raza AS, de Moraes CGV, Liebmann JM, Ritch R. Glaucomatous damage of the macula. Prog Retin Eye Res. 2013;32:1–21.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Hood DC, Nguyen M, Ehrlich AC, Raza AS, Sliesoraityte I, De Moraes CG, et al. A test of a model of glaucomatous damage of the macula with high-density perimetry: implications for the locations of visual field test points. Transl Vis Sci Technol. 2014;3(3):5.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Hood DC, Raza AS, de Moraes CGV, Odel JG, Greenstein VC, Liebmann JM, et al. Initial arcuate defects within the central 10 degrees in glaucoma. Invest Ophthalmol Vis Sci. 2011;52(2):940–6.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Hood DC, Slobodnick A, Raza AS, de Moraes CG, Teng CC, Ritch R. Early glaucoma involves both deep local, and shallow widespread, retinal nerve fiber damage of the macular region. Invest Ophthalmol Vis Sci. 2014;55(2):632–49.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Traynis I, De Moraes CG, Raza AS, Liebmann JM, Ritch R, Hood DC. Prevalence and nature of early glaucomatous defects in the central 10 of the visual field. JAMA Ophthalmol. 2014;132(3):291–7.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Abe RY, Diniz-Filho A, Costa VP, Gracitelli CP, Baig S, Medeiros FA. The impact of location of progressive visual field loss on longitudinal changes in quality of life of patients with glaucoma. Ophthalmology. 2016;123(3):552–7.PubMedCrossRefGoogle Scholar
  68. 68.
    Sun Y, Lin C, Waisbourd M, Ekici F, Erdem E, Wizov SS, et al. The impact of visual field clusters on performance-based measures and vision-related quality of life in patients with glaucoma. Am J Ophthalmol. 2016;163:45–52.PubMedCrossRefGoogle Scholar
  69. 69.
    Blumberg DM, De Moraes CG, Prager AJ, Yu Q, Al-Aswad L, Cioffi GA, et al. Association between undetected 10-2 visual field damage and vision-related quality of life in patients with glaucoma. JAMA Ophthalmol. 2017;135(7):742–7.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Grillo LM, Wang DL, Ramachandran R, Ehrlich AC, De Moraes CG, Ritch R, et al. The 24-2 visual field test misses central macular damage confirmed by the 10-2 visual field test and optical coherence tomography. Transl Vis Sci Technol. 2016;5(2):15.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    De Moraes CG, Hood DC, Thenappan A, Girkin CA, Medeiros FA, Weinreb RN, et al. 24-2 visual fields miss central defects shown on 10-2 tests in glaucoma suspects, ocular hypertensives, and early glaucoma. Ophthalmology. 2017;124(10):1449–56.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Park H-YL, Hwang B-E, Shin H-Y, Park CK. Clinical clues to predict the presence of parafoveal scotoma on Humphrey 10-2 visual field using a Humphrey 24-2 visual field. Am J Ophthalmol. 2016;161:150–9.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Sullivan-Mee M, Tran MTK, Pensyl D, Tsan G, Katiyar S. Prevalence, features, and severity of glaucomatous visual field loss measured with the 10-2 achromatic threshold visual field test. Am J Ophthalmol. 2016;168:40–51.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Leblanc RP, Becker B. Peripheral nasal field defects. Am J Ophthalmol. 1971;72(2):415–9.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Caprioli J, Spaeth GL. Static threshold examination of the peripheral nasal visual field in glaucoma. Arch Ophthalmol. 1985;103(8):1150–4.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Mönter VM, Crabb DP, Artes PH. Reclaiming the periphery: automated kinetic perimetry for measuring peripheral visual fields in patients with glaucoma. Invest Ophthalmol Vis Sci. 2017;58(2):868–75.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Freeman EE, Munoz B, Rubin G, West SK. Visual field loss increases the risk of falls in older adults: the Salisbury eye evaluation. Invest Ophthalmol Vis Sci. 2007;48(10):4445–50.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Odden JL, Mihailovic A, Boland MV, Friedman DS, West SK, Ramulu PY. Evaluation of central and peripheral visual field concordance in glaucoma. Invest Ophthalmol Vis Sci. 2016;57(6):2797–804.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Schiefer U, Papageorgiou E, Sample PA, Pascual JP, Selig B, Krapp E, et al. Spatial pattern of glaucomatous visual field loss obtained with regionally condensed stimulus arrangements. Invest Ophthalmol Vis Sci. 2010;51(11):5685–9.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Nevalainen J, Paetzold J, Papageorgiou E, Sample PA, Pascual JP, Krapp E, et al. Specification of progression in glaucomatous visual field loss, applying locally condensed stimulus arrangements. Graefes Arch Clin Exp Ophthalmol. 2009;247(12):1659.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Schiefer U, Flad M, Stumpp F, Malsam A, Paetzold J, Vonthein R, et al. Increased detection rate of glaucomatous visual field damage with locally condensed grids: a comparison between fundus-oriented perimetry and conventional visual field examination. Arch Ophthalmol. 2003;121(4):458–65.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Schiefer U, Malsam A, Flad M, Stumpp F, Dietrich TJ, Paetzold J, et al. Evaluation of glaucomatous visual field loss with locally condensed grids using fundus-oriented perimetry (FOP). Eur J Ophthalmol. 2001;11(Suppl 2):S57–62.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Schiefer U, Benda N, Dietrich TJ, Selig B, Hofmann C, Schiller J. Angioscotoma detection with fundus-oriented perimetry. A study with dark and bright stimuli of different sizes. Vision Res. 1999;39(10):1897–909.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Nakatani Y, Ohkubo S, Higashide T, Iwase A, Kani K, Sugiyama K. Detection of visual field defects in pre-perimetric glaucoma using fundus-oriented small-target perimetry. Jpn J Ophthalmol. 2012;56(4):330–8.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Chong LX, Turpin A, McKendrick AM. Assessing the GOANNA visual field algorithm using artificial scotoma generation on human observers. Transl Vis Sci Technol. 2016;5(5):1.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Chong LX, McKendrick AM, Ganeshrao SB, Turpin A. Customized, automated stimulus location choice for assessment of visual field defects. Invest Ophthalmol Vis Sci. 2014;55(5):3265–74.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Rubinstein NJ, McKendrick AM, Turpin A. Incorporating spatial models in visual field test procedures. Transl Vis Sci Technol. 2016;5(2):7.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Wild D, Kucur ŞS, Sznitman R. Spatial entropy pursuit for fast and accurate perimetry testing. Invest Ophthalmol Vis Sci. 2017;58(9):3414–24.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Denniss J, McKendrick AM, Turpin A. Towards patient-tailored perimetry: automated perimetry can be improved by seeding procedures with patient-specific structural information. Transl Vis Sci Technol. 2013;2(4):3.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Ganeshrao SB, McKendrick AM, Denniss J, Turpin A. A perimetric test procedure that uses structural information. Optom Vis Sci. 2015;92(1):70–82.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Asman P, Heijl A. Arcuate cluster analysis in glaucoma perimetry. J Glaucoma. 1993;2(1):13–20.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Nouri-Mahdavi K, Mock D, Hosseini H, Bitrian E, Yu F, Afifi A, et al. Pointwise rates of visual field progression cluster according to retinal nerve fiber layer bundles. Invest Ophthalmol Vis Sci. 2012;53(4):2390–4.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Hirasawa K, Murata H, Hirasawa H, Mayama C, Asaoka R. Clustering visual field test points based on rates of progression to improve the prediction of future damage. Invest Ophthalmol Vis Sci. 2014;55(11):7681–5.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Hirasawa K, Murata H, Asaoka R. Revalidating the usefulness of a “sector-wise regression” approach to predict glaucomatous visual function progression. Invest Ophthalmol Vis Sci. 2015;56(8):4332–5.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Mandava S, Zulauf M, Zeyen T, Caprioli J. An evaluation of clusters in the glaucomatous visual field. Am J Ophthalmol. 1993;116(6):684–91.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Suzuki Y, Araie M, Ohashi Y. Sectorization of the central 30 degrees visual field in glaucoma. Ophthalmology. 1993;100(1):69–75.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Aoki S, Murata H, Fujino Y, Matsuura M, Miki A, Tanito M, et al. Investigating the usefulness of a cluster-based trend analysis to detect visual field progression in patients with open-angle glaucoma. Br J Ophthalmol. 2017;101(12):1658–65.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Gardiner SK, Mansberger SL, Demirel S. Detection of functional change using cluster trend analysis in glaucoma. Invest Ophthalmol Vis Sci. 2017;58(6):BIO180–BIO90.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Zhu H, Russell RA, Saunders LJ, Ceccon S, Garway-Heath DF, Crabb DP. Detecting changes in retinal function: analysis with non-stationary Weibull error regression and spatial enhancement (ANSWERS). PLoS One. 2014;9(1):e85654.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Zhu H, Crabb DP, Ho T, Garway-Heath DF. More accurate modeling of visual field progression in glaucoma: ANSWERS. Invest Ophthalmol Vis Sci. 2015;56(10):6077–83.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Yousefi S, Goldbaum MH, Varnousfaderani ES, Belghith A, Jung T-P, Medeiros FA, et al. Detecting glaucomatous change in visual fields: analysis with an optimization framework. J Biomed Inform. 2015;58:96–103.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Yousefi S, Balasubramanian M, Goldbaum MH, Medeiros FA, Zangwill LM, Weinreb RN, et al. Unsupervised Gaussian mixture-model with expectation maximization for detecting glaucomatous progression in standard automated perimetry visual fields. Transl Vis Sci Technol. 2016;5(3):2.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Warren JL, Mwanza J-C, Tanna AP, Budenz DL. A statistical model to analyze clinician expert consensus on glaucoma progression using spatially correlated visual field data. Transl Vis Sci Technol. 2016;5(4):14.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Zakieh Vahedian
    • 1
  • Ghasem Fakhraie
    • 1
  1. 1.Glaucoma Service, Farabi Eye HospitalTehran University of Medical SciencesTehranIran

Personalised recommendations