Advertisement

Role of MMPs and Oxidants in Lung Diseases

  • Nilanjana Deb
  • Sudipta Mallick
  • Ashish Jaiswal
  • Anirban Manna
  • Ulaganathan Mabalirajan
  • Snehasikta Swarnakar
Chapter

Abstract

The lung matrix consists of numerous extracellular matrix (ECM) proteins and glycoproteins including collagens, elastin, fibronectin, laminin, heparin, and sulfated proteoglycans. Matrix metalloproteinases (MMPs) play a pivotal role in the remodeling of ECM and is central in lung organogenesis. Although not all MMPs are found in the lung matrix, there is considerable evidence that few MMPs are up- and/or downregulated during acute and chronic diseases of the lungs. The association of alveolar ECM is related in chronic inflammatory lung diseases like idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD), asthma, and cystic fibrosis (CF) which have been investigated extensively. IPF is associated with production, deposition, and remodeling of the ECM, whereas COPD is characterized by a loss of the same. MMPs target the structural ECM proteins, cell adhesion molecules, growth factors, cytokines, and chemokines that play role in the genesis and development of chronic lung diseases. The association between MMPs and lung cancer has been long documented although the precise role of MMPs in lung cancer remains unanswered. Herein, we have discussed the role of MMPs along with oxidants in the pathogenesis of chronic lung diseases, cancer, and their potential as targets for therapy.

Keywords

MMPs Idiopathic pulmonary fibrosis COPD Asthma Cystic fibrosis Lung cancer Oxidant in lung diseases 

References

  1. Agrawal A, Mabalirajan U (2016) Rejuvenating cellular respiration for optimizing respiratory function: targeting mitochondria. Am J Physiol Lung Cell Mol Physiol 310:L103–L113PubMedCrossRefPubMedCentralGoogle Scholar
  2. Aguilera-Aguirre L, Bacsi A, Saavedra-Molina A, Kurosky A, Sur S, Boldogh I (2009) Mitochondrial dysfunction increases allergic airway inflammation. J Immunol 183:5379–5387PubMedPubMedCentralCrossRefGoogle Scholar
  3. Ahmad T, Mukherjee S, Pattnaik B, Kumar M, Singh S, Kumar M, Rehman R, Tiwari BK, Jha KA, Barhanpurkar AP, Wani MR, Roy SS, Mabalirajan U, Ghosh B, Agrawal A (2014) Miro1 regulates intercellular mitochondrial transport & enhances mesenchymal stem cell rescue efficacy. EMBO J 33:994–1010PubMedPubMedCentralGoogle Scholar
  4. Atlante A, Favia M, Bobba A, Guerra L, Casavola V, Reshkin SJ (2016) Characterization of mitochondrial function in cells with impaired cystic fibrosis transmembrane conductance regulator (CFTR) function. J Bioenerg Biomembr 48(3):197–210PubMedCrossRefGoogle Scholar
  5. Baker AH, Edwards DR, Murphy G (2002) Metalloproteinase inhibitors: biological actions and therapeutic opportunities. J Cell Sci 115:3719–3727PubMedCrossRefPubMedCentralGoogle Scholar
  6. Bergeron C, Page N, Joubert P, Barbeau B, Hamid Q, Chakir J (2003) Regulation of procollagen I (alpha 1) by interleukin-4 in human bronchial fibroblasts: a possible role in airway remodeling in asthma. Clin Exp Allergy 33:1389–1397PubMedCrossRefPubMedCentralGoogle Scholar
  7. Bezerra FS, Valenca SS, Pires KM, Lanzetti M, Pimenta WA, Schmidt AC, Porto LC, Zin WA (2011) Long–term exposure to cigarette smoke impairs lung function and increases HMGB-1 expression in mice. Respir Physiol Neurobiol 177:120–126PubMedCrossRefPubMedCentralGoogle Scholar
  8. Black RA, White JM (1998) ADAMs: focus on the protease domain. Curr Opin Cell Biol 10(5):654–659PubMedCrossRefPubMedCentralGoogle Scholar
  9. Bosse M, Chakir J, Rouabhia M, Boulet LP, Audette M, Laviolette M (1999) Serum matrix metalloproteinase-9: tissue inhibitor of metalloproteinase-1 ratio correlates with steroid responsiveness in moderate to severe asthma. Am J Respir Crit Care Med 159:596–602PubMedCrossRefPubMedCentralGoogle Scholar
  10. Boulay ME, Prince P, Deschesnes F, Chakir J, Boulet LP (2004) Metalloproteinase-9 in induced sputum correlates with the severity of the late allergen-induced asthmatic response. Respiration 71:216–224PubMedCrossRefPubMedCentralGoogle Scholar
  11. Bousquet J, Chanez P, Lacoste JY, White R, Vic P, Godard P, Michel FB (1992) Asthma—a disease remodeling the airways. Allergy 47:3–11PubMedCrossRefPubMedCentralGoogle Scholar
  12. Braber S, Overbeek SA, Koelink PJ, Henricks PA, Zaman GJ, Garssen J, Kraneveld AD, Folkerts G (2011) CXCR2 antagonists block the N-Ac-PGP-induced neutrophil influx in the airways of mice, but not the production of the chemokine CXCL1. Eur J Pharmacol 668:443–449PubMedCrossRefPubMedCentralGoogle Scholar
  13. Cataldo D, Munaut C, Noel A, Frankenne F, Bartsch P, Foidart JM, Louis R (2000) MMP-2-and MMP-9-linked gelatinolytic activity in the sputum from patients with asthma and chronic obstructive pulmonary disease. Int Arch Allergy Immunol 123:259–267PubMedCrossRefPubMedCentralGoogle Scholar
  14. Cataldo D, Munaut C, Noel A, Frankenne F, Bartsch P, Foidart JM, Louis R (2001) Matrix metalloproteinases and TIMP-1 production by peripheral blood granulocytes from COPD patients and asthmatics. Allergy 56:145–151PubMedCrossRefPubMedCentralGoogle Scholar
  15. Cataldo D, Gueders M, Noel A, Foidart JM, Bartsch P, Louis R (2002a) Matrix metalloproteinases (MMPs) and tissue inhibitors of matrix metalloproteinases (TIMPs) mRNA transcripts in the bronchial secretions of asthmatics and COPD. Lab Investig 84:418–424CrossRefGoogle Scholar
  16. Cataldo DD, Tournoy KG, Vermaelen K, Munaut C, Foidart JM, Louis R, Noel A, Pauwels RA (2002b) Matrix metalloproteinase-9 deficiency impairs cellular infiltration and bronchial hyper responsiveness during allergen-induced airway inflammation. Am J Pathol 161:491–498PubMedPubMedCentralCrossRefGoogle Scholar
  17. Cataldo DD, Gueders MM, Rocks N, Sounni NE, Evrard B, Bartsch P, Louis R, Noel A, Foidart JM (2003) Pathogenic role of matrix metalloproteases and their inhibitors in asthma and chronic obstructive pulmonary disease and therapeutic relevance of matrix metalloproteases inhibitors. Cell Mol Biol 49:875–884PubMedPubMedCentralGoogle Scholar
  18. Chetty C, Bhoopathi P, Joseph P, Chittivelu S, Rao JS, Lakka S (2006) Adenovirus-mediated small interfering RNA against matrix metalloproteinase-2 suppresses tumor growth and lung metastasis in mice. Mol Cancer Ther 5:2289–2299PubMedCrossRefPubMedCentralGoogle Scholar
  19. Chuang SS, Hung CH, Hua YM, Tien CH, Yang KD, Jong YJ, Hsu SH, Lin CS (2007) Suppression of plasma matrix metalloproteinase-9 following montelukast treatment in childhood asthma. Pediatr Int 49(6):918–922PubMedCrossRefPubMedCentralGoogle Scholar
  20. Churg A, Wang X, Wang RD, Meixner SC, Pryzdial EL, Wright JL (2007a) Alpha1-antitrypsin suppresses TNF-a and MMP-12 production by cigarette smoke-stimulated macrophages. Am J Respir Cell Mol Biol 37:144–151PubMedCrossRefPubMedCentralGoogle Scholar
  21. Churg A, Wang R, Wang X, Onnervik PO, Thim K, Wright JL (2007b) Effect of an MMP-9/MMP-12 inhibitor on smoke-induced emphysema and airway remodelling in guinea pigs. Thorax 62:706–713PubMedPubMedCentralCrossRefGoogle Scholar
  22. Churg A, Zhou S, Wright JL (2012) Series “Matrix metalloproteinases in lung health and disease”: matrix metalloproteinases in COPD. Eur Respir J 39:197–209PubMedCrossRefPubMedCentralGoogle Scholar
  23. Corbel M, Caulet-Maugendre S, Germain N, Molet S, Lagente V, Boichot E (2001) Inhibition of bleomycin induced pulmonary fibrosis in mice by the matrix metalloproteinase inhibitor batimastat. J Pathol 193:538–545PubMedCrossRefPubMedCentralGoogle Scholar
  24. Correa A, Trojanek JB, Diemer S, Mall MA, Schultz C (2009) Membrane-bound FRET probe visualizes MMP-12 activity in pulmonary inflammation. Nat Chem Biol 5(9):628–630CrossRefGoogle Scholar
  25. Coultas DB, Zumwalt RE, Black WC, Sobonya RE (1994) The epidemiology of interstitial lung disease. Am J Respir Crit Care Med 150:967–972PubMedCrossRefPubMedCentralGoogle Scholar
  26. Craig VJ, Zhang L, Hagood JS, Owen CA (2015) Matrix metalloproteinases as therapeutic targets for idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol 53:585–600PubMedPubMedCentralCrossRefGoogle Scholar
  27. Crouch E (1990) Pathobiology of pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 259:L-159–LL184CrossRefGoogle Scholar
  28. Dasilva AG, Yong VW (2008) Expression and regulation of matrix metalloproteinase-12 in experimental autoimmune encephalomyelitis and by bone marrow derived macrophages in vitro. J Neuroimmunol 199(1–2):24–34PubMedCrossRefPubMedCentralGoogle Scholar
  29. Davey A, McAuley DF, O’Kane CM (2011) Matrix metalloproteinases in acute lung injury: mediators of injury and drivers of repair. Eur Respir J 38:959–970PubMedCrossRefPubMedCentralGoogle Scholar
  30. Dean RA, Cox JH, Bellac CL, Doucet A, Starr AE, Overall CM (2008) Macrophage-specific metalloelastase (MMP-12) truncates and inactivates ELR+ CXC chemokines and generates CCL2, -7, -8, and -13 antagonists: potential role of the macrophage in terminating polymorphonuclear leukocyte influx. Blood 112:3455–3464PubMedCrossRefPubMedCentralGoogle Scholar
  31. Delacourt C, Le Bourgeois M, D’Ortho MP, Doit C, Scheinmann P, Navarro J, Harf A, Hartmann DJ, Lafuma C (1995) Imbalance between 95 kDa type IV collagenase and tissue inhibitor of metalloproteinases in sputum of patients with cystic fibrosis. Am J Respir Crit Care Med 152(2):765–774PubMedCrossRefPubMedCentralGoogle Scholar
  32. Demedts IK, Brusselle GG, Bracke KR, Vermaelen KY, Pauwels RA (2005) Matrix metalloproteinases in asthma and COPD. Curr Opin Pharmacol 5:257–263PubMedCrossRefPubMedCentralGoogle Scholar
  33. El-Badrawy MK, Yousef AM, Shaalan D, Elsamanoudy AZ (2014) Matrix metalloproteinase-9 expression in lung cancer patients and its relation to serum mmp-9 activity, pathologic type, and prognosis. J Bronchol Interv Pulmonol 21:327–334CrossRefGoogle Scholar
  34. Fujita M The role of MMPs in the progression of chronic lung inflammatory diseases, lung inflammation Kian Chung Ong, Intech Open, May 14th 2014Google Scholar
  35. Gaggar A, Li Y, Weathington N, Winkler M, Kong M, Jackson P, Blalock JE, Clancy JP (2007) Matrix metalloprotease-9 dysregulation in lower airway secretions of cystic fibrosis patients. Am J Physiol Lung Cell Mol Physiol 293(1):L96–L104PubMedCrossRefPubMedCentralGoogle Scholar
  36. Gaggar A, Jackson PL, Noerager BD, O’Reilly PJ, McQuaid DB, Rowe SM, Clancy JP, Blalock JE (2008) A novel proteolytic cascade generates an extracellular matrix-derived chemoattractant in chronic neutrophilic inflammation. J Immunol 180(8):5662–5669PubMedPubMedCentralCrossRefGoogle Scholar
  37. Ghada MM, Mohamed NF, Mahmoud H (2012) Interplay between matrix metalloproteinase-9 and tissue inhibitor of matrix metalloproteinase-1 in acute asthma exacerbation and airway remodeling. Egypt J Chest Dis Tuberc 16:35–39Google Scholar
  38. Giannandrea M, Parks WC (2014) Diverse functions of matrix metalloproteinases during fibrosis. Dis Model Mech 7:193–203PubMedPubMedCentralCrossRefGoogle Scholar
  39. Gifford JR, Trinity JD, Kwon OS, Layec G, Garten RS, Park SY, Nelson AD, Richardson RS (2018) Altered skeletal muscle mitochondrial phenotype in COPD: disease vs. disuse. J Appl Physiol (1985) 124:1045–1053CrossRefGoogle Scholar
  40. Gomis-Ruth FX (2009) Catalytic domain architecture of metzincin metalloproteases. J Biol Chem 284(23):15353–15357PubMedPubMedCentralCrossRefGoogle Scholar
  41. Gosselink JV, Hayashi S, Elliott WM, Xing L, Chan B, Yang L et al (2010) Differential expression of tissue repair genes in the pathogenesis of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 181:1329–1335PubMedPubMedCentralCrossRefGoogle Scholar
  42. Han Z, Jun XU, Zhong N (2003) Expression of matrix metalloproteinases MMP-9 within the airways in asthma. Respir Med 97:563–567PubMedCrossRefPubMedCentralGoogle Scholar
  43. Harju T, Kinnula VL, Paakko P, Salmenkivi K, Juha Risteli J, Kaarteenaho R (2010) Variability in the precursor proteins of collagen I and III in different stages of COPD. Respir Res 11:165PubMedPubMedCentralCrossRefGoogle Scholar
  44. Hautamaki RD, Kobayashi DK, Senior RM, Shapiro SD (1997) Requirement for macrophage elastase for cigarette smoke-induced emphysema in mice. Science 277:2002–2004PubMedCrossRefPubMedCentralGoogle Scholar
  45. Houghton AM (2015) Matrix metalloproteinases in destructive lung disease. Matrix Biol 44–46:167–174PubMedCrossRefPubMedCentralGoogle Scholar
  46. Houghton AM, Grisolano JL, Baumann ML, Kobayashi DK, Hautamaki RD, Nehring LC, Cornelius LA, Shapiro SD (2006) Macrophage elastase (matrix metalloproteinase-12) suppresses growth of lung metastases. Cancer Res 66:6149–6155PubMedCrossRefPubMedCentralGoogle Scholar
  47. Ichiyasu H, McCormack JM, McCarthy KM, Dombkowski D, Preff er FI, Schneeberger EE (2004) Matrix metalloproteinase-9-deficient dendritic cells have impaired migration through tracheal epithelial tight junctions. Am J Respir Cell Mol Biol 30(6):761–770PubMedCrossRefPubMedCentralGoogle Scholar
  48. Islam MN, Das SR, Emin MT, Wei M, Sun L, Westphalen K, Rowlands DJ, Quadri SK, Bhattacharya S, Bhattacharya J (2012) Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat Med 18:759–765PubMedPubMedCentralCrossRefGoogle Scholar
  49. Jackson PL, Xu X, Wilson L, Weathington NM, Clancy JP, Blalock JE, Gaggar A (2010) Human neutrophil elastase-mediated cleavage sites of MMP-9 and TIMP-1: implications to cystic fibrosis proteolytic dysfunction. Mol Med 16(5–6):159–166PubMedPubMedCentralCrossRefGoogle Scholar
  50. Jana S, Chatterjee K, Ray AK, Dasmahapatra P, Swarnakar S (2016) Regulation of matrix metalloproteinases- 2 activity by Cox-2-PGE2-Pakt axis promotes angiogenesis in endometriosis. PLoS One 11(10):e0163540PubMedPubMedCentralCrossRefGoogle Scholar
  51. Jeffery PK (2001) Remodeling in asthma and chronic obstructive lung disease. Am J Respir Crit Care Med 164(10. Pt 2):S28–S38PubMedCrossRefPubMedCentralGoogle Scholar
  52. Jenkins RG, Moore BB, Chambers RC, Eickelberg O, Königshoff M, Kolb M, Laurent GJ, Nanthakumar CB, Olman MA, Pardo A, Selman M, Sheppard D, Sime PJ, Tager AM, Tatler AL, Thannickal VJ, White ES (2017) ATS assembly on respiratory cell and molecular biology. An official American thoracic society workshop report: use of animal models for the preclinical assessment of potential therapies for pulmonary fibrosis. Am J Respir Cell Mol Biol 56:667–679PubMedPubMedCentralCrossRefGoogle Scholar
  53. Johnson S, Knox A (1999) Autocrine production of matrix metalloproteinase-2 is required for human airway smooth muscle proliferation. Am J Physiol Lung Cell Mol Physiol 277:L1109–L1117CrossRefGoogle Scholar
  54. Kang MJ, Shadel GS (2016) A mitochondrial perspective of chronic obstructive pulmonary disease pathogenesis. Tuberc Respir Dis (Seoul) 79:207–213CrossRefGoogle Scholar
  55. Katzenstein ALA, Myers JL (1998) Idiopathic pulmonary fibrosis. Clinical relevance of pathologic classification. Am J Respir Crit Care Med 157:1301–1315PubMedCrossRefPubMedCentralGoogle Scholar
  56. Kelly EAB, Busse WW, Jarjour NN (2000) Increased matrix metalloproteinase-9 in the airway after allergen challenge. Am J Respir Crit Care Med 162:1157–1161PubMedCrossRefPubMedCentralGoogle Scholar
  57. Killar L, White J, Black R, Peschon J (1999) Adamalysins. A family of metzincins including TNF-alpha converting enzyme (TACE). Ann N Y Acad Sci 878:442–452PubMedCrossRefPubMedCentralGoogle Scholar
  58. Ko FWS, Diba C, Roth M, McKay K, Johnson PR, Salome C, King GG (2005) A comparison of airway and serum matrix metalloproteinase-9 activity among normal subjects, asthmatic patients, and patients with asthmatic mucus hypersecretion. Chest 27:1919–1927CrossRefGoogle Scholar
  59. Kochanek K, Xu J, Murphy S, Miniño A, Kung H (2011) Deaths: final data for 2009. Natl Vital Stat Rep 60:3–11Google Scholar
  60. Lagente V, Le Quement C, Boichot E (2009) Macrophage metalloelastase (MMP-12) as a target for inflammatory respiratory diseases. Expert Opin Ther Targets 13:287–295PubMedCrossRefPubMedCentralGoogle Scholar
  61. Lange P, Parner J, Vestbo J, Schnohr P, Jensen G (1998) A 15-year follow-up study of ventilatory function in adults with asthma. N Engl J Med 339:1194–1200PubMedCrossRefPubMedCentralGoogle Scholar
  62. Lappalainen U, Whitsett JA, Wert SE, Tichelaar JW, Bry K (2005) Interleukin-1b causes pulmonary inflammation, emphysema, and airway remodeling in the adult murine lung. Am J Respir Cell Mol Biol 32:311–318PubMedCrossRefPubMedCentralGoogle Scholar
  63. Lasky JA, Brody AR (2000) Interstitial fibrosis and growth factors. Environ Health Prospect 108:S761–S762Google Scholar
  64. Li L, Mei TH, Zhou XD, Zhang XG (2009) Expression and clinical significance of matrix metalloproteinase (MMP)-26 protein in non-small cell lung cancer. Ai Zheng 28:60–63PubMedPubMedCentralGoogle Scholar
  65. Loffek S, Schilling O, Franzke CW (2011) Series “Matrix metalloproteinases in lung health and disease”: biological role of matrix metalloproteinases: a critical balance. Eur Respir J 38:191–208PubMedCrossRefPubMedCentralGoogle Scholar
  66. Mabalirajan U, Ghosh B (2013) Mitochondrial dysfunction in metabolic syndrome and asthma. J Allergy (Cairo) 2013:340476Google Scholar
  67. Mabalirajan U, Dinda AK, Kumar S, Roshan R, Gupta P, Sharma SK, Ghosh B (2008) Mitochondrial structural changes and dysfunction are associated with experimental allergic asthma. J Immunol 181:3540–3548PubMedCrossRefPubMedCentralGoogle Scholar
  68. Mabalirajan U, Dinda AK, Sharma SK, Ghosh B (2009) Esculetin restores mitochondrial dysfunction and reduces allergic asthma features in experimental murine model. J Immunol 183(3):2059–2067PubMedCrossRefPubMedCentralGoogle Scholar
  69. Malik M, Bakshi CS, McCabe K, Catlett SV, Shah A, Singh R, Jackson PL, Gaggar A, Metzger DW, Melendez JA, Blalock JE, Sellati TJ (2007) Matrix metalloproteinase 9 activity enhances host susceptibility to pulmonary infection with type A and B strains of Francisella tularensis. J Immunol 178:1013–1020PubMedCrossRefPubMedCentralGoogle Scholar
  70. Mannam P, Srivastava A, Sugunaraj JP, Lee PJ, Sauler M (2014) Oxidants in acute and chronic lung disease. J Blood Lymph 4:1000128PubMedPubMedCentralCrossRefGoogle Scholar
  71. Martinet Y, Menard O, Vaillant P, Vignaud JM, Martinet N (1996) Cytokines in human lung fibrosis. Arch Toxicol Suppl 18:127–139PubMedCrossRefPubMedCentralGoogle Scholar
  72. Mautino G, Oliver N, Chanez P, Bousquet J, Capony F (1997) Increased release of matrix metalloproteinase-9 in bronchoalveolar lavage fluid and by alveolar macrophages of asthmatics. Am J Respir Cell Mol Biol 17:583–591PubMedCrossRefPubMedCentralGoogle Scholar
  73. Moises S, Victor R, Sandra C, Lourdes S, Remedios R, Roberto B, Annie P (2000) TIMP-1,2,3and 4 in idiopathic pulmonary fibrosis. A prevailing nondegradative lung microenvironment? Am J Physiol Lung Cell Mol Physiol 279:L-562–LL574CrossRefGoogle Scholar
  74. Nakamaru Y, Vuppusetty C, Wada H, Milne JC, Ito M, Rossios C, Elliot M, Hogg J, Kharitonov S, Goto H, Bemis JE, Elliott P, Barnes PJ, Ito K (2009) A protein deacetylase SIRT1 is a negative regulator of metalloproteinase-9. FASEB J 23:2810–2819PubMedCrossRefPubMedCentralGoogle Scholar
  75. Nenan S, Boichot E, Lagente V, Bertrand CP (2005) Macrophage elastase (MMP-12): a pro-inflammatory mediator? Mem Inst Oswaldo Cruz 100:167–172PubMedCrossRefPubMedCentralGoogle Scholar
  76. Ohno I, Ohtani H, Nitta Y, Suzuki J, Hoshi H, Honma M, Isoyama S, Tanno Y, Tamura G, Yamauchi K, Nagura H, Shirato K (1997) Eosinophils as a source of matrix metalloproteinase-9 in asthmatic airway inflammation. Am J Respir Cell Mol Biol 16:212–219PubMedCrossRefPubMedCentralGoogle Scholar
  77. Oshita Y, Koga T, Kamimura T, Matsuo K, Rikimaru T, Aizawa H (2003) Increased circulating 92 kDa matrix metalloproteinase (MMP-9) activity in exacerbations of asthma. Thorax 58:757–760PubMedPubMedCentralCrossRefGoogle Scholar
  78. Pardo A, Cabrera S, Maldonado M, Selman M (2016) Role of matrix metalloproteinases in the pathogenesis of idiopathic pulmonary fibrosis. Respir Res 17:23PubMedPubMedCentralCrossRefGoogle Scholar
  79. Pongnimitprasert N, El-Benna J, Foglietti MJ, Gougerot-Pocidalo MA, Bernard M, Braut-Boucher F (2008) Potential role of the “NADPH oxidases” (NOX/DUOX) family in cystic fibrosis. Ann Biol Clin (Paris) 66:621–629Google Scholar
  80. Porter S, Clark IM, Kevorkian L, Edwards DR (2005) The ADAMTS metalloproteinases. Biochem J 386(Pt 1):15–27PubMedPubMedCentralCrossRefGoogle Scholar
  81. Prikk K, Maisi P, Pirila E, Reintam MA, Salo T, Sorsa T, Sepper R (2002) Airway obstruction correlates with collagenase-2 (MMP-8) expression and activation in bronchial asthma. Lab Investig 82:1535–1545PubMedCrossRefPubMedCentralGoogle Scholar
  82. Raby BA, Klanderman B, Murphy A, Mazza S, Camargo CA Jr, Silverman EK, Weiss ST (2007) A common mitochondrial haplogroup is associated with elevated total serum IgE levels. J Allergy Clin Immunol. 120:351–358PubMedCrossRefPubMedCentralGoogle Scholar
  83. Raghu G, Striker L, Hudson LD, Striker GE (1985) Extracellular matrix in normal and fibrotic lungs. Am Rev Respir Dis 131:281–289PubMedPubMedCentralGoogle Scholar
  84. Raza SL, Nehring LC, Shapiro SD, Cornelius LA (2000) Proteinase-activated receptor-1 regulation of macrophage elastase (MMP-12) secretion by serine proteinases. J Biol Chem 275:41243–41250PubMedCrossRefPubMedCentralGoogle Scholar
  85. Reddy PH (2011) Mitochondrial dysfunction and oxidative stress in asthma: implications for mitochondria-targeted antioxidant therapeutics. Pharmaceuticals (Basel) 4:429–456CrossRefGoogle Scholar
  86. Renauld JC (2001) New insights into the role of cytokines in asthma. J Clin Pathol 54:577–589PubMedPubMedCentralCrossRefGoogle Scholar
  87. Riese RJ, Wolf PR, Bromme D, Natkin LR, Villadangos JA, Ploegh HL, Chapman HA (1996) Essential role for cathepsin S in MHC class II- associated invariant chain processing and peptide loading. Immunity 4(4):357–366PubMedCrossRefPubMedCentralGoogle Scholar
  88. Riese RJ, Mitchell RN, Villadangos J, Shi GP, Palmer JT, Karp ER, De Sanctis GT, Ploegh HL, Chapman HA (1998) Cathepsin S activity regulates antigen presentation and immunity. J Clin Invest 101(11):2351–2363PubMedPubMedCentralCrossRefGoogle Scholar
  89. Rocks N, Paulissen G, El Hour M, Quesada F, Crahay C, Gueders M, Foidart JM, Noel A, Cataldo D (2008) Emerging roles of ADAM and ADAMTS metalloproteinases in cancer. Biochimie 90(2):369–379PubMedCrossRefPubMedCentralGoogle Scholar
  90. Seals DF, Courtneidge SA (2003) The ADAMs family of metalloproteases: multidomain proteins with multiple functions. Genes Dev 17(1):7–30PubMedCrossRefPubMedCentralGoogle Scholar
  91. Selman M, King TE, Pardo A (2001) Idiopathic pulmonary fibrosis: prevailing evolving hypotheses about its pathogenesis and implications for therapy. Ann Intern Med 134:136–151PubMedCrossRefPubMedCentralGoogle Scholar
  92. Sethi S, Murphy T (2008) Infection in the pathogenesis and course of chronic obstructive pulmonary disease. N Engl J Med 359:2355–2365PubMedCrossRefPubMedCentralGoogle Scholar
  93. Shapiro SD, Goldstein NM, Houghton AM, Kobayashi DK, Kelley D, Belaaouaj A (2003) Neutrophil elastase contributes to cigarette smoke–induced emphysema in mice. Am J Pathol 163:2329–2335PubMedPubMedCentralCrossRefGoogle Scholar
  94. Siegel RL, Miller KD, Jemal A (2016) Cancer statistics, 2016. CA Cancer J Clin 66:7–30CrossRefGoogle Scholar
  95. Sin DD, Pahlavan PS, Man SF (2008) Surfactant protein D: a lung specific biomarker in COPD? Ther Adv Respir Dis 2:65–74PubMedCrossRefPubMedCentralGoogle Scholar
  96. Snelgrove RJ (2011) Leukotriene A4 hydrolase: an anti-inflammatory role for a proinflammatory enzyme. Thorax 66:550–551PubMedCrossRefPubMedCentralGoogle Scholar
  97. Stocker W, Grams F, Baumann U, Reinemer P, Gomis-Ruth FX, McKay DB, Bode W (1995) The metzincins—topological and sequential relations between the astacins, adamalysins, serralysins, and matrixins (collagenases) define a superfamily of zinc peptidases. Protein Sci 4(5):823–840PubMedPubMedCentralCrossRefGoogle Scholar
  98. Tanaka H, Miyazaki N, Oashi K, Tanaka S, Ohmichi M, Abe S (2000) Sputum matrix metalloproteinase-9: tissue inhibitor of metalloproteinase-1 ratio in acute asthma. J Allergy Clin Immunol 105:900–905PubMedCrossRefPubMedCentralGoogle Scholar
  99. Thomas P, Khokha R, Shepherd FA, Feld R, Tsao MS (2000) Differential expression of matrix metalloproteinases and their inhibitors in non-small cell lung cancer. J Pathol 190:150–156PubMedCrossRefPubMedCentralGoogle Scholar
  100. Togawa D, Koshino T, Saito T, Takagi T, Machida J (1999) Highly activated matrix metalloproteinase- 2 secreted from clones of metastatic lung nodules of nude mice injected with human fibrosarcoma HT1080. Cancer Lett 146:25–33PubMedCrossRefPubMedCentralGoogle Scholar
  101. Van Houwelingen AH, Weathington NM, Verweij V, Blalock JE, Nijkamp FP, Folkerts G (2008) Induction of lung emphysema is prevented by L-arginine-threonine-arginine. FASEB J 22:3403–3408PubMedPubMedCentralCrossRefGoogle Scholar
  102. Vestbo J, Hurd SS, Rodriguez-Roisin R (2012) The 2011 revision of the global strategy for the diagnosis, management and prevention of COPD (GOLD)—why and what? Clin Respir J 6:208–214PubMedCrossRefPubMedCentralGoogle Scholar
  103. Vestbo J, Hurd SS, Agustí AG, Jones PW, Vogelmeier C, Anzueto A et al (2013) Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med 187:347–365PubMedCrossRefPubMedCentralGoogle Scholar
  104. Vignola AM, Chanez P, Siena L, Chiappara G, Bonsignore G, Bousquet J (1998a) Airways remodelling in asthma. Pulm Pharmacol Ther 11:359–367PubMedCrossRefPubMedCentralGoogle Scholar
  105. Vignola AM, Riccobono L, Mirabella A, Profita M, Chanez P, Bellia V, Mautino G, D’Accardi P, Bousquet J, Bonsignore G (1998b) Sputum metalloproteinase-9 tissue inhibitor of metalloproteinase-1 ratio correlates with airflow obstruction in asthma and chronic bronchitis. Am J Respir Crit Care Med 158:1945–1950PubMedCrossRefPubMedCentralGoogle Scholar
  106. Vignola AM, Riccobono L, Mirabella A, Profita M, Chanez P, Bellia V, Mautino G, D’accardi P, Bousquet J, Bonsignore G (1999) Sputum metalloproteinase-9/tissue inhibitor of metalloproteinase-1 ratio correlates with airflow obstruction in asthma and chronic bronchitis. Am J Respir Crit Care Med 158:1945–1950CrossRefGoogle Scholar
  107. Vliagoftis H, Hollenberg MD, Befus AD, Moqbel R (2000) Airway epithelial cells release eosinophil survival promoting factors following stimulation of proteinase-activated receptor-2 (PAR-2). J Allergy Clin Immunol 105:S171CrossRefGoogle Scholar
  108. Vucic EA, Chari R, Thu KL, Wilson IM, Cotton AM, Kennett JY, Zhang M et al (2014) DNA methylation is globally disrupted and associated with expression changes in chronic obstructive pulmonary disease small airways. Am J Respir Cell Mol Biol 50:912–922PubMedPubMedCentralCrossRefGoogle Scholar
  109. Vuillemenot BR, Rodriguez JF, Hoyle GW (2004) Lymphoid tissue and emphysema in the lungs of transgenic mice inducibly expressing tumor necrosis factor-a. Am J Respir Cell Mol Biol 30:438–448PubMedCrossRefPubMedCentralGoogle Scholar
  110. Weathington NM, Van Houwelingen AH, Noerager BD, Jackson PL, Kraneveld AD, Galin FS, Folkerts G, Nijkamp FP, Blalock JE (2006) A novel peptide CXCR ligand derived from extracellular matrix degradation during airway inflammation. Nat Med 12:317–323PubMedCrossRefPubMedCentralGoogle Scholar
  111. Wenzel SE, Balzar S, Cundall M, Chu HW (2003) Subepithelial basement membrane immunoreactivity for matrix metalloproteinase 9. Association with asthma severity, neutrophilic inflammation, and wound repair. J Allergy Clin Immunol 111:1345–1352PubMedCrossRefPubMedCentralGoogle Scholar
  112. Williams KE, Olsen DR (2009) Matrix metalloproteinase-1 cleavage site recognition and binding in full-length human type III collagen. Matrix Biol 28(6):373–379PubMedCrossRefPubMedCentralGoogle Scholar
  113. Woessner JF Jr (1994) The family of matrix metalloproteinases. Ann N Y Acad Sci 732:11–21PubMedCrossRefPubMedCentralGoogle Scholar
  114. Yao H, Hwang JW, Sundar IK, Friedman AE, McBurney MW, Guarente L, Gu W, Kinnula VL, Rahman I (2013) SIRT1 redresses the imbalance of tissue inhibitor of matrix metalloproteinase-1 and matrix metalloproteinase-9 in the development of mouse emphysema and human COPD. Am J Physiol Lung Cell Mol Physiol 305:L615–L624PubMedPubMedCentralCrossRefGoogle Scholar
  115. Yoshida M, Whitsett JA (2006) Alveolar macrophages and emphysema in surfactant protein-D-deficient mice. Respirology 11(Suppl):S37–S40PubMedCrossRefPubMedCentralGoogle Scholar
  116. Yu Y, Sakai H, Misawa M, Chiba Y (2012) Matrix metalloproteinases-9 (MMPs-9) and -12 are upregulated in the airways of mice with chronic airway inflammation and remodeling. ISRN Pulmonology 2012:1–7CrossRefGoogle Scholar
  117. Zheng T, Zhu Z, Wang ZD, Homer RJ, Ma B, Riese RJ, Chapman HA, Shapiro SD, Elias JA (2000) Inducible targeting of IL-13 to the adult lung causes matrix metalloproteinase- and cathepsin-dependent emphysema. J Clin Invest 106:1081–1093PubMedPubMedCentralCrossRefGoogle Scholar
  118. Zuo F, Kaminski N, Eugui E, Allard J, Yakhini Z, Ben-Dor A, Lollini L, Morris D, Kim Y, DeLustro B, Sheppard D, Pardo A, Selman M, Heller RA (2002) Gene expression analysis reveals matrilysin as a key regulator of pulmonary fibrosis in mice and humans. Proc Natl Acad Sci U S A 99(9):6292–6297PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Nilanjana Deb
    • 1
  • Sudipta Mallick
    • 1
  • Ashish Jaiswal
    • 2
  • Anirban Manna
    • 1
  • Ulaganathan Mabalirajan
    • 2
  • Snehasikta Swarnakar
    • 1
  1. 1.Cancer Biology and Inflammatory Disorder DivisionCSIR-Indian Institute of Chemical BiologyKolkataIndia
  2. 2.Cell Biology and Physiology DivisionCSIR-Indian Institute of Chemical BiologyKolkataIndia

Personalised recommendations