Advertisement

Impacts of Change in Facial Features on Age Estimation and Face Identification: A Review

  • Hitendra Singh Shekhawat
  • Hitendra Singh Rathor
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 141)

Abstract

Our facial features play an important role in the identification of individuals as vital qualities. These features can be utilized by numerous applications, for example, age estimation and face identification. The estimation of these applications depends on a few territories, for example, security applications, law requirement applications, and participation frameworks. What is more, lost people and those who are involved in some suspicious/criminal activities can be easily found through the facial features. In this research work, we have explored various age estimation and face recognition approaches. However, research findings give a scene mapping which depends on incorporation into a judicious and scientific class. In the system segments, the research is deep centered in each article on the “Facial Features”, “Estimation of Individual Age”, and “Face Recognition”, a taxonomy is underlined with the objectives comparison of different approaches. Finally, this research explores the research gaps and helps the researchers to explore their own ideas to fill those research gaps.

Keywords

Age estimation Face recognition Facial expression Facial features 

References

  1. 1.
    Zhang, J., Zhong, F.: Face recognition with enhanced local directional patterns. J. Neurocomp. 119(5), 375–384 (2013)CrossRefGoogle Scholar
  2. 2.
    Zisserman, A., Winn, J., Williams, C.K.I., Gol, Van, et al.: The PASCAL visual object classes challenge: a retrospective. Int. J. Comput. Vis. 111(1), 98–136 (2014)Google Scholar
  3. 3.
    Singh, V., Gaidhane, V.H., et al.: An efficient approach for face recognition using eigenvalues. Pattern Recognit. 47(5), 1869–1879 (2014)CrossRefGoogle Scholar
  4. 4.
    Gai, H., Xu, X., et al.: Quantum neural networks for face recognition classifier. Procedia Eng. 15(3), 1319–1323 (2011)Google Scholar
  5. 5.
    Lu, X., Du, Y., et al.: Vector projection for face recognition. Comput. Electr. Eng. 40(8), 51–65 (2014)CrossRefGoogle Scholar
  6. 6.
    Li, C., Liu, Y., et al.: Robust face recognition using sparse boosting representation. Neurocomputing 214(8), 944–957 (2016)CrossRefGoogle Scholar
  7. 7.
    Singh, P., Behal, S., et al.: Face recognition system using genetic algorithm. Procedia Comput. Sci. 85, 410–417 (2016)CrossRefGoogle Scholar
  8. 8.
    Sil, J., Biswas, S.: An efficient face recognition method using curvelet transform. Saud Univ. Comput. Inf. Sci. 18(5), 1015–1021 (2018)Google Scholar
  9. 9.
    Yang, M.H., Lu, H., Wang, D.: Kernel collaborative face recognition. Pattern Recognit. 48(8), 2025–2037 (2015)Google Scholar
  10. 10.
    Garcia, J.C., et al.: Computing the Principal Local Binary Patterns for face recognition. Expert. Syst. Appl. 38(7), 6165–6172 (2012)Google Scholar
  11. 11.
    Davis, L.S., Guo, H.: A Robust and Scalable Approach to Face Identification. In: European Conference on Computer Vision, vol. 18(5), pp. 476–489 (2010)Google Scholar
  12. 12.
    Chen, L., Yin, Y., et al.: Bilinear discriminative dictionary learning for face recognition. Pattern Recognit. 47(5), 1835–1845 (2014)CrossRefGoogle Scholar
  13. 13.
    Shen, L., Liu, F., et al.: Joint representation and pattern learning for robust face recognition. Neurocomputing 168(8), 70–80 (2015)Google Scholar
  14. 14.
    Ma, J., Shen, W., et al.: Feature extraction using two-dimensional neighborhood margin. Comput. Vis. Image 217(6), 425–431 (2013)Google Scholar
  15. 15.
    Pan, J., Zang, F., et al.: Face recognition using elastic faces. Pattern Recognit. 44(5), 3766–3776 (2012)Google Scholar
  16. 16.
    Zhu X., Wang, B., et al.: The nearest-farthest subspace classification for face recognition. Neurocomputing 123, 141–150 (2013)Google Scholar
  17. 17.
    Satoh, Y., Kaneko, S., et al.: Robust face recognition using the GAP feature. Pattern Recognit. 45(11), 1647–1657 (2013)Google Scholar
  18. 18.
    Lien, J., et al.: Kernel discriminant transformation for image set-based face recognition. Pattern Recognit. 42(8), 2567–2580 (2011)Google Scholar
  19. 19.
    Wolf, L., et al.: Deepface: closing the gap to human-level performance in face verification. In: Proceedings Conference on Computer Vision and Pattern Recognition, pp. 1701–1708 (2014)Google Scholar
  20. 20.
    Alqqudah, et al.: Efficient k-class approach for face recognition. Comput. Electr. Eng. 45, 260–273 (2015)CrossRefGoogle Scholar
  21. 21.
    Yi, W., Guan, N., et al.: Multi-feature fusion for thermal face recognition. Infrared Phys. Technol. 77, 366–374 (2016)CrossRefGoogle Scholar
  22. 22.
    Guo, X., Zhang, P., et al.: A cascade face recognition system using hybrid feature extraction. Digit. Signal Process. 21(7), 887–893 (2012)MathSciNetGoogle Scholar
  23. 23.
    Om, H., et al.: Newborn face recognition using deep convolutional neural network. Multimed. Tools Appl. 76(18), 19005–19015 (2017)CrossRefGoogle Scholar
  24. 24.
    Jacobs, D.W., Ramanathan, N., et al.: Face detection using discriminating method. Trans. Inf. Forensics Secur. 5(2), 82–91 (2010)Google Scholar
  25. 25.
    Yang, Y.Y., Hsu, M.C., et al.: Local contrast enhance using adaptive features for face recognition. Pattern Recognit. 42(6), 2736–2747 (2010)Google Scholar
  26. 26.
    Triggs, B., Tan, X., et al.: Enhanced local texture feature sets for face recognition under difficult lighting conditions. Trans. Image Process. 19(6), 1635–1650 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Torre, D., Salido, J., et al.: Face recognition using histograms of oriented gradients. Pattern Recognit. Lett. 31(11), 2598–2603 (2011)Google Scholar
  28. 28.
    Kar, A.T., Jin, A.T.B., et al.: Kernel discriminant embedding in face recognition. J. Vis. Commun. Image Represent. 23(6), 734–742 (2011)Google Scholar
  29. 29.
    Hu, G., et al.: Face recognition with deep learning: an evaluation of CNNs for face recognition. In: Proceedings of International Conference on Computer Vision, pp. 140–152 (2015)Google Scholar
  30. 30.
    Suen, C.Y., Li, H.: Robust face recognition based on dynamic rank representation. Pattern Recognit. 60, 13–24 (2016)CrossRefGoogle Scholar
  31. 31.
    Masood, S.Z., Shu, G., et al.: Deep age, gender and emotion recognition using CNNs. https://arxiv.org/abs/1702.04280 (2017)
  32. 32.
    Wang, M., Su, Y.: Age variation face recognition based on bayes inference. Int. J. Pattern Recognit. Artif. Intell. 31(7), 1756–013 (2017)CrossRefGoogle Scholar
  33. 33.
    Li, Z., Lie, Z., et al.: Age estimation by multi scale CNN. In: Proceedings of Asian Conference on Computer Vision, pp. 144–158 (2014)Google Scholar
  34. 34.
    Liu, Y., Wang, F., et al.: Hybrid constraint SVR for facial age estimation. Signal Process. 94, 576–582 (2014)CrossRefGoogle Scholar
  35. 35.
    Chen, C.S., Chang, K.Y. et al.: Automatic age estimation from face images via deep ranking. Networks 36(8), 1872–1886 (2015)Google Scholar
  36. 36.
    Alhamid, M.F., Hossain, A. et al.: Facial recognition using deep learning and estimation of age. EURASIP J. Image Video Process. 16(1), 47 (2016)Google Scholar
  37. 37.
    Guo, G., Mu, G., et al.: A study on apparent age estimation. In: Proceedings of International Conference on Computer Vision Workshops, pp. 267–273 (2015)Google Scholar
  38. 38.
    Kambhamettu, C., Guo, G., et al.: Deeply learned feature for age estimation. In: Proceedings of Winter Conference on Applications of Computer Vision (WACV), pp. 534–541 (2015)Google Scholar
  39. 39.
    Hassner, T., Levi, G.: Age and gender classification using CNNs, In: Proceedings of Conference on Computer Vision and Pattern Recognition Workshops, pp. 34–42 (2015)Google Scholar
  40. 40.
    Yang, X., Gool, et al., Deep label distribution learning for apparent age estimation. In: Proceedings International Conference on Computer Vision, pp. 102–108 (2015)Google Scholar
  41. 41.
    van Gool, L., Timofte, R., et al.: Deep expectation of real and apparent age from a single image. In: Proceedings International Conference on Computer Vision, pp. 10–15, (2015)Google Scholar
  42. 42.
    Liu, X., Zhang, J., et al.: Deeply learned regressor and classifier for robust apparent age estimation. In: Proceedings International Conference on Computer Vision, pp. 16–24, (2015)Google Scholar
  43. 43.
    Dibeklioglu, H., Kaya, H., et al.: Kernel ELM and CNN based facial age estimation. In: Proceedings of Conference on Computer Vision and Pattern Recognition Workshops, pp. 80–86 (2016)Google Scholar
  44. 44.
    Huo, Z., Dugelay, et al.: Deep age distribution learning for apparent age estimation. In: Proceedings of conference on Computer Vision and Pattern Recognition Workshops, pp. 17–24 (2016)Google Scholar
  45. 45.
    Dugelay, J.L., Berrani, S.A., et al.: Apparent age estimation from face images combining general and children specialized deep learning models. In: Proceedings of conference on Computer Vision and Pattern Recognition Workshops, pp. 96–104 (2016)Google Scholar
  46. 46.
    Chellappa, R., Alavi, A., et al.: A cascaded CNN for age estimation of unconstrained faces. In: Proceedings 8th International Conference on Biometrics Theory, Applications and Systems (BTAS), pp. 1–8 (2016)Google Scholar
  47. 47.
    Kryjak, T., Hebda, B.: A compact deep convolutional neural network architecture for video based age and gender estimation. In: Proceedings of the Federated Conference on Computer Science and Information Systems, (FedCSIS), pp. 787–790 (2016)Google Scholar
  48. 48.
    Hua, G., Gao, X. et al.: Ordinal regression with multiple output CNN for age estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4920–4928 (2016)Google Scholar
  49. 49.
    Ekenel, H.K., Aytar, Y. et al.: How transferable are CNN-based features for age and gender classification? In: Proceedings of the International Conference of the Biometrics Special Interest Group (BIOSIG), pp. 1–6 (2016)Google Scholar
  50. 50.
    Sousa, V.F., Medeiros, J.L.P. et al.: A data augmentation methodology to improve age estimation using CNNs. In: Proceedings of the 29th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pp. 88–95 (2016)Google Scholar
  51. 51.
    Lian, S., Liu, Y., et al.: Automatic age estimation based on deep learning algorithm. Neurocomputing 187, 4–10 (2016)CrossRefGoogle Scholar
  52. 52.
    Ekenel, H.K., Malli, R.C. et al.: Apparent age estimation using ensemble of deep learning models. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 714–721 (2016)Google Scholar
  53. 53.
    Zhang, Z., Wang, W., et al.: Apparent age estimation with CNN. In: Proceedings of IV International Conference on ICMMITA, pp. 1–6 (2016)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Hitendra Singh Shekhawat
    • 1
  • Hitendra Singh Rathor
    • 1
  1. 1.Department of Computer and Communication Engineering, School of Computing & ITManipal University JaipurJaipurIndia

Personalised recommendations