Advertisement

Improvement in XML Keyword Search and Ranking for Data Analytics

  • Vasudev Yadav
  • Pradeep TomarEmail author
  • Prabhjot Singh
  • Gurjit Kaur
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 141)

Abstract

The success of web search engine for an ordinary user (Initially, search engine requires very precise query which only expert can write.) motivates the search engine for XML database. XML-based search engine requires DOM parser to parse the XML database. DOM parser produces a tree, which developed only in main memory. But generally XML database is larger than the main memory. Therefore, DOM parser has a disadvantage in case of large database. Instead of using DOM parser, Sax parser is used. SAX parser parses the XML file character by character. Means no requirement of the whole file in main memory, and unlikely DOM parser SAX parser requires no tree. SAX parser consumes less time than DOM Parser also. Searching take a lot of time by hitting the database again and again to fetch the same or recently used data. The solution is a simple cache memory. Cache memory is developed by storing recently used data into hashmap because hash map provides the O(1) search time complexity. Ranking use only use IDF*TF score to calculate the result. But this algorithm does not provide the best ranking. Ranking using cosine similarity algorithm is a better approach. (Basically, Cosine algorithm is used to find similarity between two documents.)

Keywords

Data analytics XML traversing Keyword search in XML file Ranking Caching for better search 

References

  1. 1.
    Wikipedia dataset in form XML file. https://dumps.wikimedia.org/
  2. 2.
    Amer-Yahia, S., Lakshmanan, L.V.S., Pandit, S.: Flexpath: flexible structure and full-text querying for XML. In: Proceedings of the ACM SIGIR, pp. 151–158 (2003)Google Scholar
  3. 3.
    Bao, Z., Chen, B., Ling, T.W., Lu, J.: Effective XML keyword search with relevance oriented ranking. In: Proceedings of the IEEE International Conference on Data Engineering (ICDE), pp. 517–528 (2009)Google Scholar
  4. 4.
    Fuhr, N., Großjohann, K.: XIRQL: a query language for information retrieval in XML Documents. In: Proceedings of the ACM SIGIR, pp. 172–180 (2001)Google Scholar
  5. 5.
    Carmel, D., Maarek, Y.S., Mandelbrod, M., Mass, Y., Soffer, A.: Search XML documents via XML fragments. In: Proceedings of the ACM SIGIR, pp. 151–158 (2003)Google Scholar
  6. 6.
    Cohen, S., Kanza, Y., Kimelfeld, B., Sagiv, Y.: Interconnection semantics for keyword search in XML. In: Proceedings of the ACM International Conference on Information and Knowledge Management (CIKM), pp. 389–396 (2005)Google Scholar
  7. 7.
    Cohen, S., Mamou, J., Kanza, Y., Sagiv, Y.: XSEarch: a semantic search engine for XML. In: Proceedings of the International Conference on Very Large Data Bases (VLDB), pp. 45–56 (2003)CrossRefGoogle Scholar
  8. 8.
    Jarvelin, K., Kekalainen, J., Trans, A.C.M.: Cumulated gain based evaluation of IR techniques. Inf. Syst. 20, 422–446 (2002)Google Scholar
  9. 9.
    He, H., Wang, H., Yang, J., Yu, P.S.: Blinks: ranked keyword searches on graphs. In: Proceedings of the ACM SIGMOD Conference, pp. 305–316 (2007)Google Scholar
  10. 10.
    Jones, R., Rey, B., Madani, O., Greiner, W.: Generating query substitutions. In: Proceedings of the International Conference on World Wide Web (WWW) (2006)Google Scholar
  11. 11.
    Bao, Z., Lu, J., Ling, T.W.: Towards an effective XML keyword search. IEEE Trans. Knowl. Data Eng. 22(8) (2010)CrossRefGoogle Scholar
  12. 12.
    Hristidis, V., Papakonstantinou, Y., Balmin, A.: Keyword proximity search on XML graphs. In: Proceedings of the IEEE International Conference on Data Engineering (ICDE), pp. 367–378 (2003)Google Scholar
  13. 13.
    Hristidis, V., Koudas, N., Papakonstantinou, Y., Srivastava, D.: Keyword proximity search in XML trees. IEEE Trans. Knowl. Data Eng. 18(4), 525–539 (2006)CrossRefGoogle Scholar
  14. 14.
    Guo, L., Shao, F., Botev, C., Shanmugasundaram, J.: XRANK: ranked keyword search over XML documents. In: Proceedings of the ACM SIGMOD Conference (2003)Google Scholar
  15. 15.
    Li, G., Feng, J., Wang, J., Zhou, L.: Effective keyword search for valuable LCAs over XML documents. In: Proceedings of the ACM International Conference on Information and Knowledge Management (CIKM), pp. 31–40 (2007)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Vasudev Yadav
    • 1
  • Pradeep Tomar
    • 1
    Email author
  • Prabhjot Singh
    • 2
  • Gurjit Kaur
    • 3
  1. 1.Department of Computer Science and Engineering, School of Information and Communication TechnologyGautam Buddha UniversityNoidaIndia
  2. 2.SalesforceSan FranciscoUSA
  3. 3.Department of Electronics and Communication EngineeringDelhi Technological UniversityNew DelhiIndia

Personalised recommendations