Advertisement

Community Detection Using Maximizing Modularity and Similarity Measures in Social Networks

  • Laxmi ChaudharyEmail author
  • Buddha Singh
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 141)

Abstract

We introduce a new method to unveil the structure of community in large complex networks. The proposed community detection algorithm uses the well-known notion of network modularity optimization. To achieve this, our method uses a cosine similarity measure which depends on shared links. This similarity measure helps to efficiently find the similarity between nodes in large networks. It also considers the sparse nodes present in the network with low complexity as compared to other similarity measures. Once the similarity is computed, the method selects the pairwise proximity among the nodes of the complex networks. Further, it detects the communities taking a procedure motivated from well-known state-of-the-art Louvain method efficiently maximizing the modularity value. We carried out experiments to show that our method surpasses other approaches and marginally improve the results of the other existing methods, providing reliable results. The performance analysis of methods evaluated in terms of communities, modularity value, and quality of community obtained in the network.

Keywords

Community detection Community structure Modularity Social network 

References

  1. 1.
    Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69(2), 026113 (2004)Google Scholar
  2. 2.
    Radicchi, F., et al.: Defining and identifying communities in networks. Proc. Natl. Acad. Sci. USA 101(9), 2658–2663 (2004)CrossRefGoogle Scholar
  3. 3.
    Newman, M.E.J.: Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E 74(3), 036104 (2006)Google Scholar
  4. 4.
    Newman, M.E.J.: Fast algorithm for detecting community structure in networks. Phys. Rev. E 69(6), 066133 (2004)Google Scholar
  5. 5.
    Blondel, V.D., et al.: Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008(10), 10008 (2008)CrossRefGoogle Scholar
  6. 6.
    Julien, O., Saint-Guillain, M.: Automatic detection of community structure in networks (2012)Google Scholar
  7. 7.
    Traag, V.A.: Faster unfolding of communities: speeding up the Louvain algorithm. Phys. Rev. E 92(3), 032801 (2015)Google Scholar
  8. 8.
    Danon, L., Díaz-Guilera, A., Arenas, A.: The effect of size heterogeneity on community identification in complex networks. J. Stat. Mech. Theory Exp. 2006(11), 11010 (2006)CrossRefGoogle Scholar
  9. 9.
    Guimera, R., Sales-Pardo, M., Amaral, L.A.N.: Modularity from fluctuations in random graphs and complex networks. Phys. Rev. E 70(2), 025101 (2004)Google Scholar
  10. 10.
    Duch, J., Arenas, A.: Community detection in complex networks using extremal optimization. Phys. Rev. E 72(2), 027104 (2005)CrossRefGoogle Scholar
  11. 11.
    Jaccard, P.: Distribution de la flore alpine dans le bassin des Dranses et dans quelques régions voisines. Bull. Société Vaudoise Sci. Naturelles 37, 241–272 (1901)Google Scholar
  12. 12.
    Girvan, M., Newman, M.E.J.: Network of American football games. Proc. Natl. Acad. Sci. U.S.A. 99, 7821–7826 (2002)CrossRefGoogle Scholar
  13. 13.
    Guimera, R., Danon, L., Diaz-Guilera, A., Giralt, F., Arenas, A.: Phys. Rev. E 68, 065103 (2003)CrossRefGoogle Scholar
  14. 14.
    McAuley, J., Leskovec, J.: Learning to discover social circles in ego networks. NIPS (2012)Google Scholar
  15. 15.
    Leskovec, J., Kleinberg, J., Faloutsos, C.: Graphs over time: densification laws, shrinking diameters and possible explanations. In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD) (2005)Google Scholar
  16. 16.
    Cho, E., Myers, S.A., Leskovec. J.: Friendship and mobility: user movement in location-based social networks. In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD) (2011)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Jawaharlal Nehru UniversityNew DelhiIndia

Personalised recommendations