Advertisement

Interactions in Soil-Microbe-Plant System: Adaptation to Stressed Agriculture

  • Stefan ShilevEmail author
  • Hassan Azaizeh
  • Nikolay Vassilev
  • Danail Georgiev
  • Ivelina Babrikova
Chapter

Abstract

The intensive use of agrochemicals, increasing population, and imprudent anthropogenic activities impose a great concern in the society about the food safety in all over the world. Considering the climate change with increasing temperature, drought, flooding, etc., it becomes clear that new solutions are needed in agriculture. The present review paper focuses on the contribution of plant growth-promoting microbial populations in changing agro-ecosystems. The importance of each partner in soil-microbe-plant interactions is vital for the system that functions as a well-oiled machine in an optimum estate, while in stress conditions additional actions are needed to maintain a good operation. The microbes that are defined as growth promoters possess different tools that alleviate the stress with abiotic or biotic origin in agriculture. A combination of correct plant variety, good soil conditions, and the right microbial populations could offer a favorable environment to obtain increased and safety plant production. Here are discussed several important subjects of the soil-microbe-plant interactions that are vital for good estate from an agricultural point of view. First part of the chapter treats the interactions in rhizosphere, root exudates and general role of beneficial microorganisms, while in the second part the discussion is focused on the tools of microbial populations regulating plant nutrient supply and pathogen suppression. Finally, the formulation, production, and commercialization of biofertilizers are very actual and important aspects for the practitioners and agriculturists. It is debated in the last section of the present review chapter.

Keywords

Rhizosphere Beneficial microorganisms Plant growth promotion Biofertilizers Agriculture 

Notes

Acknowledgements

This review paper was partially supported by project 09-18 of Agricultural university-Plovdiv.

N. Vassilev has received Project Grant (CTM2014-53186-R) from the Spanish Ministerio de Ciencia e Innovación and EC FEDER Fund.

References

  1. Acuсa J, Jorquera M, Martínez O, Menezes-Blackburn D et al (2011) Indole acetic acid and phytase activity produced by rhizosphere bacilli as affected by pH and metals. J Soil Sci Plant Nutr 11(3):1–12Google Scholar
  2. Ahmad M, Zahir ZA, Khalid M (2013) Efficacy of Rhizobium and Pseudomonas strains to improve physiology, ionic balance and quality of mung bean under salt-affected conditions on farmer’s fields. Plant Physiol Biochem 63:170–176PubMedCrossRefPubMedCentralGoogle Scholar
  3. Ai C, Liang GQ, Sun JW, Wang XB, He P, Zhou W (2015) Reduced dependence of rhizosphere microbiome on plant-derived carbon in 32-year long-term inorganic and organic fertilized soils. Soil Biol Biochem 80:70–78CrossRefGoogle Scholar
  4. Alegria Terrazas R, Giles C, Paterson E, Robertson-Albertyn S et al (2016) Plant-microbiota interactions as a driver of the mineral turnover in the rhizosphere. Adv Appl Microbiol 10:1–67Google Scholar
  5. Ali S, Charles TC, Glick BR (2014) Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase. Plant Physiol Biochem 80:160–167.  https://doi.org/10.1016/j.plaphy.2014.04.003CrossRefGoogle Scholar
  6. Alori ET, Glick BR, Babalola OO (2017) Microbial phosphorus solubilization and its potential for use in sustainable agric. Front Microbiol 8:971.  https://doi.org/10.3389/fmicb.2017.00971CrossRefPubMedPubMedCentralGoogle Scholar
  7. Alquéres S, Meneses C, Rouws L, Rothballer M et al (2013) The bacterial superoxide dismutase and glutathione reductase are crucial for endophytic colonization of rice roots by Gluconacetobacter diazotrophicus PAL5. Mol Plant-Microbe Interact 26:937–945PubMedCrossRefPubMedCentralGoogle Scholar
  8. Amaral FP, Pankievicz VCS, Arisi ACM, Souza EM, Pedrosa F, Stacey G (2016) Differential growth responses of Brachypodium distachyon genotypes to inoculation with plant growth promoting rhizobacteria. Plant Mol Biol 90(6):689–697.  https://doi.org/10.1007/s11103-016-0449-8CrossRefPubMedPubMedCentralGoogle Scholar
  9. Anand K, Kumari B, Mallick MA (2016) Phosphate solubilizing microbes: an effective and alternative approach as bio-fertilizers. Int J Pharm Sci 8(2):37–40Google Scholar
  10. Andrade G, Mihara KL, Linderman RG, Bethlenfalvay GJ (1997) Bacteria from rhizosphere and hyphosphere soils of different arbuscular–mycorrhizal fungi. Plant Soil 192:71–79CrossRefGoogle Scholar
  11. Andreote FD, Rocha UN, Araujo WL, Azevedo JL, van Overbeek LS (2010) Effect of bacterial inoculation, plant genotype and developmental stage on root-associated and endophytic bacterial communities in potato (Solanum tuberosum). Anton Leeuw 97:389–399CrossRefGoogle Scholar
  12. Arkhipova TN, Prinsen E, Veselov SU et al (2007) Cytokinin producing bacteria enhance plant growth in drying soil. Plant Soil 292(1):305–315CrossRefGoogle Scholar
  13. Atkinson D, Black KE, Forbes PJ, Hooker JE, Baddeley JA, Watson CA (2003) The influence of arbuscular mycorrhizal colonization and environment on root development in soil. Eur J Soil Sci 54:751–757CrossRefGoogle Scholar
  14. Audipudi AV et al. (2016) Effect of mixed inoculations of plant growth promoting rhizobacteria of chilli on growth and induced systemic resistance of Capsicum fruitescence L. 4th Asian PGPR Conference Recent trends in PGPR research for sustainable crop productivity 9-20 ref 27Google Scholar
  15. Azaizeh H, Marschner H, Roemheld V, Wittenmayer R (1995) Effects of a vesicular-arbuscular mycorrhizal fungus and other soil microorganisms on growth, mineral acquisition and root exudation of soil-grown maize plants. Mycorrhiza 5:321–327CrossRefGoogle Scholar
  16. Babalola OO, Glick BR (2012) The use of microbial inoculants in African agriculture: current practice and future prospects. J Food Agric Environ 10:540–549Google Scholar
  17. Bacon CW, Hinton DM (2006) Bacterial endophytes: the endophytic niche, its occupants, and its utility. In: Gnanamanickam SS (ed) Plant-associated bacteria. Springer, Dordrecht, pp 155–194CrossRefGoogle Scholar
  18. Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32(6):666–681.  https://doi.org/10.1111/j.1365-3040.2009.01926.xCrossRefPubMedPubMedCentralGoogle Scholar
  19. Bagwell CE, La Rocque JR, Smith GW et al (2002) Molecular diversity of diazotrophs in oligotrophic tropical seagrass bed communities. FEMS Microbiol Ecol 39:113–119.  https://doi.org/10.1016/S0168-6496(01)00204-5CrossRefPubMedPubMedCentralGoogle Scholar
  20. Bais HP, Prithiviraj B, Jha AK, Ausubel FM, Vivanco JM (2005) Mediation of pathogen resistance by exudation of antimicrobials from roots. Nature 434:217PubMedCrossRefPubMedCentralGoogle Scholar
  21. Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266CrossRefGoogle Scholar
  22. Banerjee MR, Yesmin L, Vessey JK (2006) Plant growth promoting rhizobacteria as biofertilizers and biopesticides. In: Rai MK (ed) Handbook of microbial biofertilizers. Haworth Press, New YorkGoogle Scholar
  23. Barry SM, Challis GL (2009) Recent advances in siderophore biosynthesis. Curr Opin Chem Biol 13:1–11CrossRefGoogle Scholar
  24. Bashan Y (1998) Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnol Adv 16:729–770CrossRefGoogle Scholar
  25. Bashan Y, de-Bashan LE, Prabhu SR, Hernandez JP (2014) Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant Soil 378:1–33CrossRefGoogle Scholar
  26. Beattie GA (2006) Plant-associated bacteria: survey, molecular phylogeny, genomics and recent advances. In: Gnanamanickam SS (ed) Plant-associated bacteria. Springer, Dordrecht, pp 1–56Google Scholar
  27. Beauregard PB, Chai Y, Vlamakis H, Losick R, Kolter R (2013) Bacillus subtilis biofilm induction by plant polysaccharides. Proc Natl Acad Sci U S A 110:E1621–E1630PubMedCentralCrossRefGoogle Scholar
  28. Bécard G, Fortin JA (1988) Early events of vesicular-arbuscuLar mycorrhiza formation on Ri T-DNA transformed roots. New Phytol 108:211–218CrossRefGoogle Scholar
  29. Berendsen RL, Verk MCV, Stringlis IA et al (2015) Unearthing the genomes of plant-beneficial Pseudomonas model strains WCS358, WCS374 and WCS417. BMC Genomics 16:539PubMedPubMedCentralCrossRefGoogle Scholar
  30. Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68:1–13PubMedCrossRefGoogle Scholar
  31. Berg G, Grube M, Schloter M, Smalla K (2014) Unraveling the plant microbiome: looking back and future perspectives. Front Microbiol 5:148PubMedCentralPubMedGoogle Scholar
  32. Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechol 28:1327–1350CrossRefGoogle Scholar
  33. Bogar B, Srakers G (2003) Optimization of phytase production by solid substrate fermentation. J Ind Microbiol Biotechnol 30:183–189PubMedCrossRefPubMedCentralGoogle Scholar
  34. Boukhalfa H, Crumbliss AL (2002) Chemical aspects of siderophore mediated iron transport. Biometals 15:325–339CrossRefGoogle Scholar
  35. Briat JF (2008) Iron dynamics in plants. Adv Bot Res 46:137–180CrossRefGoogle Scholar
  36. Brown ME (1974) Seed and root bacterization. Annu Rev Phytopathol 12:181–197CrossRefGoogle Scholar
  37. Brundrett MC (2009) Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 320:37–77.  https://doi.org/10.1007/s11104-008-9877-9CrossRefGoogle Scholar
  38. Bücking H, Abubaker J, Govindarajulu M, Tala M et al (2008) Root exudates stimulate the uptake and metabolism of organic carbon in germinating spores of Glomus intraradices. New Phytol 180:684–695PubMedCrossRefPubMedCentralGoogle Scholar
  39. Buée M, De Boer W, Martin F, van Overbeek L, Jurkevitch E (2009) The rhizosphere zoo: an overview of plant-associated communities of microorganisms, including phages, bacteria, archaea, and fungi, and of some of their structuring factors. Plant Soil 321:189–212CrossRefGoogle Scholar
  40. Cai T, Cai W, Zhang J, Zheng H, Tsou AM et al (2009) Host legume-exuded antimetabolites optimize the symbiotic rhizosphere. Mol Microbiol 73:507–517PubMedCrossRefPubMedCentralGoogle Scholar
  41. Cai Z, Kastell A, Knorr D, Smetanska I (2012) Exudation: an expanding technique for continuous production and release of secondary metabolites from plant cell suspension and hairy root cultures. Plant Cell Rep 31:461–477PubMedCrossRefPubMedCentralGoogle Scholar
  42. Caporale AG, Sarkar D, Datta R, Punamiya P, Violante A (2014) Effect of arbuscular mycorrhizal fungi (Glomus spp.) on growth and arsenic uptake of vetiver grass (Chrysopogon zizanioides L.) from contaminated soil and water systems. J Soil Sci Plant Nutr 14:955–972Google Scholar
  43. Carvalhais LC, Dennis PG, Fedoseyenko D (2011) Root exudation of sugars, amino acids, and organic acids by maize as affected by nitrogen, phosphorus, potassium, and iron deficiency. J Plant Nutr Soil Sci 174:3–11.  https://doi.org/10.1002/jpln.201000085CrossRefGoogle Scholar
  44. Carvalhais LC, Dennis PG, Fan B, Fedoseyenko D et al (2013) Linking plant nutritional status to plant-microbe interactions. PLoS One 8:e68555PubMedPubMedCentralCrossRefGoogle Scholar
  45. Cassidy MB, Lee H, Trevors JT (1996) Environmental applications of immobilized microbial cells: a review. J Ind Microbiol 16:79–101CrossRefGoogle Scholar
  46. Chalot M, Brun A (1998) Physiology of organic nitrogen acquisition by ectomycorrhizal fungi and ectomycorrhizas. FEMS Microbiol Rev 22:21–44PubMedCrossRefPubMedCentralGoogle Scholar
  47. Chang P, Gerhardt KE, Huang X-D, Yu X-M, Glick BR, Gerwing PD, Greenberg BM (2014) Plant growth-promoting bacteria facilitate the growth of barley and oats in salt-impacted soil: implications for phytoremediation of saline soils. Int J Phytoremediation 16:1133–1147.  https://doi.org/10.1080/15226514.2013.821447CrossRefPubMedPubMedCentralGoogle Scholar
  48. Chaparro JM, Badri DV, Vivanco JM (2014) Rhizosphere microbiome assemblage is affected by plant development. ISME J 8:790–803.  https://doi.org/10.1038/ismej.2013.196CrossRefPubMedPubMedCentralGoogle Scholar
  49. Chen YP, Rekha PD, Arun AB, Shen FT, Lai WA, Young CC (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol 34:33–41CrossRefGoogle Scholar
  50. Chhonkar PK (1978) Influence of light on pectic enzymes in root exudates of Trifolium alexandrinum inoculated with Rhizobium trifolii. Zentralbl Bakteriol Naturwiss 133(1):50–53. Co., New York, NYPubMedPubMedCentralGoogle Scholar
  51. Costa PB, Granada CE, Ambrosini A, Moreira F, de Souza R et al (2014) A model to explain plant growth promotion traits: a multivariate analysis of 2,211 bacterial isolates. PLoS One 9(12):e116020.  https://doi.org/10.1371/journal.pone.0116020CrossRefPubMedPubMedCentralGoogle Scholar
  52. Costa JAV, Treichel H, Kumar V, Pandey A (2018) Advances in solid-state fermentation. In: Pandey A, Larroche CH, Soccol C (eds) Current developments in biotechnology and bioengineering. Curr Adv Solid-State Ferm. Elsevier B.V. 1–17Google Scholar
  53. Dimkpa CO, Svatos A, Dabrowska P, Schmidt A, Boland W, Kothe E (2008) Involvement of siderophores in the reduction of metal-induced inhibition of auxin synthesis in Streptomyces spp. Chemosphere 74:19–25PubMedCrossRefPubMedCentralGoogle Scholar
  54. Dimkpa CO, Merten D, Svatos A, Büchel G, Kothe E (2009) Siderophores mediate reduced and increased uptake of cadmium by Streptomyces tendae F4 and sunflower (Helianthus annuus), respectively. J Appl Microbiol 5:687–1696Google Scholar
  55. Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22:107–149CrossRefGoogle Scholar
  56. Donn S, Kirkegaard JA, Perera G, Richardson AE, Watt M (2015) Evolution of bacterial communities in the wheat crop rhizosphere. Environ Microbiol 17:610–621PubMedCrossRefPubMedCentralGoogle Scholar
  57. Duca D, Lorv J, Patten CL, Rose D, Glick BR (2014) Indole-3-acetic acid in plant–microbe interactions. Antonie Van Leeuwenhoek 106:85–125PubMedCrossRefPubMedCentralGoogle Scholar
  58. Duffner A, Hoffland E, Temminghoff EJM (2012) Bioavailability of zinc and phosphorus in calcareous soils as affected by citrate exudation. Plant Soil 361:165–175CrossRefGoogle Scholar
  59. Dvorakova J (1998) Phytase: sources, preparation and exploitation. Folia Microbiol 43:323–338CrossRefGoogle Scholar
  60. Edwards J, Johnson C, Santos-Medellõn C, Lurie E, Podishetty NK, Bhatnagar S et al (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. Proc Natl Acad Sci U S A 112(8):E911–EE20.  https://doi.org/10.1073/pnas.1414592112. WOS:000349911700014CrossRefPubMedPubMedCentralGoogle Scholar
  61. Etesami H, Mirseyed H, Alikhani H (2014) In planta selection of plant growth promoting endophytic bacteria for rice (Oryza sativa L.). J Soil Sci Plant Nutr 14:491–503Google Scholar
  62. Fatima S, Anjum T (2017) Identification of a potential ISR determinant from Pseudomonas aeruginosa PM12 against Fusarium wilt in tomato. Front Plant Sci 8:848PubMedPubMedCentralCrossRefGoogle Scholar
  63. Filion M, St-Arnaud M, Fortin JA (1999) Direct interaction between the arbuscular mycorrhizal fungus Glomus intraradices and different rhizosphere micro-organisms. New Phytol 141:525–533CrossRefGoogle Scholar
  64. Fransson PMA, Johansson EM (2010) Elevated CO2 and nitrogen influence exudation of soluble organic compounds by ectomycorrhizal root systems. FEMS Microbiol Ecol 71:186–196.  https://doi.org/10.1111/j.1574-6941.2009.00795.xCrossRefPubMedPubMedCentralGoogle Scholar
  65. Frugier F, Kosuta S, Murray JD, Crespi M, Szczyglowski K (2008) Cytokinin: secret agent of symbiosis. Trends Plant Sci 13:115–120PubMedCrossRefPubMedCentralGoogle Scholar
  66. Fujita J, Budda N, Tujimoto M, Yamane Y, Fukuda H, Mikami S, Kizaki Y (2000) Isolation and characterization of phytase isozymes produced by Aspergillus oryzae. Biotechnol Lett 22:1797–1802CrossRefGoogle Scholar
  67. Gachomo E, Allen JW, Pfeffer PE, Govindarajulu M, Douds DD, Jin HR, Nagahashi G, Lammers PJ, Shachar-Hill Y, Bücking H (2009) Germinating spores of Glomus intraradices can use internal and exogenous nitrogen sources for de novo biosynthesis of amino acids. New Phytol 184:399–411PubMedCrossRefPubMedCentralGoogle Scholar
  68. Gamalero E, Glick BR (2012) Ethylene and abiotic stress tolerance in plants. In: Ahmad P, Prasad MNV (eds) Environmental adaptations and stress tolerance of plants in the era of climate change. Springer, New York, pp 395–412CrossRefGoogle Scholar
  69. Garcias-Bonet N, Arrieta JM, Duarte CM, Marbà N (2016) Nitrogen fixing bacteria in Mediterranean seagrass (Posidonia oceanica) roots. Aquat Bot 131:57–60.  https://doi.org/10.1016/j.aquabot.2016.03.002CrossRefGoogle Scholar
  70. Ghazalibigla H et al (2016) Is induced systemic resistance the mechanism for control of black rot in Brassica oleracea by a Paenibacillus sp.? Biol Control 92:195–201CrossRefGoogle Scholar
  71. Ghosh U, Subhashini P, Dilipan E et al (2012) Isolation and characterization of phosphate-solubilizing bacteria from seagrass rhizosphere soil. J Ocean Univ China 11:86–92.  https://doi.org/10.1007/s11802-012-1844-7CrossRefGoogle Scholar
  72. Gianinazzi-Pearson V, Dumas-Gaudot E, Gollotte A, Tahiri-Alaoui A, Gianinazzi S (1996) Cellular and molecular defence-related root responses to invasion by arbuscular mycorrhizal fungi. New Phytol 133:45–57CrossRefGoogle Scholar
  73. Gianinazzi-Pearson V, Branzanti B, Gianinazzi S (1989) In vitro enhancement of spore germination and early hyphal growth of a vesicular-arbuscular mycorrhizal fungus by host root exudates and plant flavonoids. Symbiosis 7:243–255Google Scholar
  74. Glandorf DC, Bakker PA, Van Loon LC (1997) Influence of the production of antibacterial and antifungal proteins by transgenic plants on the saprophytic soil microflora. Acta Bot Neerl 46:85–104CrossRefGoogle Scholar
  75. Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 251:1–7PubMedPubMedCentralCrossRefGoogle Scholar
  76. Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367–374CrossRefGoogle Scholar
  77. Glick B (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012:1–15CrossRefGoogle Scholar
  78. Glick BR (2015) Beneficial plant–bacterial interactions. Springer, ChamCrossRefGoogle Scholar
  79. Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth promoting bacteria. J Theor Biol 190:63–68CrossRefGoogle Scholar
  80. Goldstein AH (1994) Involvement of the quinoprotein glucose dehydrogenase in the solubilization of exogenous mineral phosphates by Gram negative bacteria. In: Torriani-Gorni A, Yagil E, Silver S (eds) Phosphate in microorganisms: cellular and molecular biology. ASM Press, Washington, DC, pp 197–203Google Scholar
  81. Gosling P, Hodge A, Goodlass G, Bending GD (2006) Arbuscular mycorrhizal fungi and organic farming. Agric Ecosyst Environ 113:17–35CrossRefGoogle Scholar
  82. Gouda S, Kerry R, Dasc G, Paramithiotisd S, Shine H, Patra J (2018) Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiol Res 206:131–140CrossRefGoogle Scholar
  83. Graham JH (1982) Effect of citrus root exudates on germination of chlamydospores of the vesicular-arbuscular mycorrhizal fungus Glomus epigaeum. Mycologia 74:831–835CrossRefGoogle Scholar
  84. Graham PH (1988) Principles and application of soil microbiology. Prentice Hall, Upper Saddle RiverGoogle Scholar
  85. Gravel V, Antoun H, Tweddell RJ (2007) Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: possible role of indole acetic acid (IAA). Soil Biol Biochem 39(8):1968–1977CrossRefGoogle Scholar
  86. Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol Biochem 37:395–412CrossRefGoogle Scholar
  87. Grover M, Ali SKZ, Sandhya V, Rasul A, Venkateswarlu B (2011) Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J Microbiol Biotechnol 27:1231–1240CrossRefGoogle Scholar
  88. Gupta G, Parihar SS, Ahirwar NK, Snehi SK, Singh V (2015) Plant growth promoting rhizobacteria (pgpr): current and future prospects for development of sustainable agriculture. J Microbiol Biochem Technol 7:96–102.  https://doi.org/10.4172/1948-5948.1000188CrossRefGoogle Scholar
  89. Gutiérrez-Mañero FJ, Ramos B, Probanza A, Mehouachi J, Talon M (2001) The plant growthpromoting rhizobacteria Bacillus pumilus and Bacillus licheniformis producehigh amounts of physiologically active gibberellins. Physiol Plant 111:206–211CrossRefGoogle Scholar
  90. Guttman D, McHardy AC, Schulze-Lefert P (2014) Microbial genome-enabled insights into plant-microorganism interactions. Nat Rev Genet 15:797–813CrossRefGoogle Scholar
  91. Haichar FZ, Marol C, Berge O, Rangel-Castro JI, Prosser JI et al (2008) Plant host habitat and root exudates shape soil bacterial community structure. ISME J 2:1221–1230CrossRefGoogle Scholar
  92. Halder AK, Chakrabarty PK (1993) Solubilization of inorganic phosphate by Rhizobium. Folia Microbiol 38:325–330CrossRefGoogle Scholar
  93. Halder AK, Mishra AK, Bhattacharya P, Chakrabarthy PK (1990) Solubilization of rock phosphate by Rhizobium and Bradyrhizobium. J Gen Appl Microbiol 36:1–92CrossRefGoogle Scholar
  94. Hale L, Luth M, Kenney R et al (2014) Evaluation of pinewood biochar as a carrier of bacterial strain Enterobacter cloacae UW5 for soil inoculation. Appl Soil Ecol 84:192–199CrossRefGoogle Scholar
  95. Hao Y, Charles TC, Glick BR (2007) ACC deaminase from plant growth promoting bacteria affects crown gall development. Can J Microbiol 53:1291–1299PubMedCrossRefPubMedCentralGoogle Scholar
  96. Hardoim PR, Andreote FD, Reinhold-Hurek B, Sessitsch A, van Overbeek LS, van Elsas JD (2011) Rice root-associated bacteria: insights into community structures across 10 cultivars. FEMS Microbiol Ecol 77:154–164PubMedPubMedCentralCrossRefGoogle Scholar
  97. Haros M, Rosell M, Benedito C (2001) Fungal phytase as a potential breadmaking additive. Eur Food Res Technol 213:317–322CrossRefGoogle Scholar
  98. Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598.  https://doi.org/10.1007/s13213-010-0117-1CrossRefGoogle Scholar
  99. Hepper CM, Jakobsen I (1983) Hyphal growth from spores of the mycorrhizal fungus Glomus caledonius: effect of amino acids. Soil Biol Biochem 15:55–58CrossRefGoogle Scholar
  100. Herrmann L, Lesueur D (2013) Challenges of formulation and quality of biofertilizers for successful inoculation. Appl Microbiol Biotechnol 97:8859–8873PubMedCrossRefPubMedCentralGoogle Scholar
  101. Hinsinger P, Fernandes Barros ON, Benedetti MF, Noack Y, Callot G (2001) Plant-induced weathering of a basaltic rock: experimental evidence. Geochim Cosmochim Acta 65:137–152CrossRefGoogle Scholar
  102. Hinsinger P, Plassard C, Jaillard B, Tang CX (2003) Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: a review. Plant Soil 248:43–59CrossRefGoogle Scholar
  103. Hinsinger P, Bengough AG, Vetterlein D, Young IM (2009) Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant Soil 321:117–152CrossRefGoogle Scholar
  104. Hirimuthugoda N, Zhenming C, Longfei W (2007) Probiotic yeasts with phytase activity identified from the gastrointestinal tract of sea cucumbers. SPC Beche de Mer Inform Bull 26:31–32Google Scholar
  105. Hodge A (2001) Arbuscular mycorrhizal fungi influence decomposition of, but not plant nutrient capture from, glycine patches in soil. New Phytol 151:725–734CrossRefGoogle Scholar
  106. Holmer M, Andersen FO, Nielsen SL, Boschker HTS (2001) The importance of mineralization based on sulfate reduction for nutrient regeneration in tropical seagrass sediments. Aquat Bot 71:1–17.  https://doi.org/10.1016/S0304-3770(01)00170-XCrossRefGoogle Scholar
  107. Hussain A, Hasnain S (2011) Interactions of bacterial cytokinins and IAA in the rhizosphere may alter phytostimulatory efficiency of rhizobacteria. World J Microbiol Biotechnol 27:2645–2654CrossRefGoogle Scholar
  108. Igual JM, Valverde A, Cervantes E, Velázquez E (2001) Phosphatesolubilizing bacteria as inoculants for agriculture: use of updated molecular techniques in their study. Agronomie 21:561–568CrossRefGoogle Scholar
  109. Illmer P, Schinner F (1992) Solubilization of inorganic phosphates by microorganisms isolated from forest soil. Soil Biol Biochem 24:389–395CrossRefGoogle Scholar
  110. Ingle K, Padole D (2017) Phosphate solubilizing microbes: an overview. Int J Curr Microbiol Appl Sci 1:844–852CrossRefGoogle Scholar
  111. Iqbal MA, Khalid M, Shahzad SM, Ahmad M, Soleman N et al (2012) Integrated use of Rhizobium leguminosarum, plant growth promoting rhizobacteria and enriched compost for improving growth, nodulation and yield of lentil (Lens culinaris Medik). Chilean J Agric Res 72:104–110CrossRefGoogle Scholar
  112. Jacoby R, Peukert M, Succurro A, Koprivova A, Kopriva S (2017) The role of soil microorganisms in plant mineral nutrition-current knowledge and future directions. Front Plant Sci 8:1617PubMedPubMedCentralCrossRefGoogle Scholar
  113. Jalal MAF, van der Helm D (1991) Isolation and spectroscopic identification of fungal siderophores. In: Winkelmann G (ed) CRC handbook of microbial iron chelates. CRC Press, p 235–269Google Scholar
  114. Jambhulkar PP, Sharma P, Yadav R (2016) Systems for introduction of microbial inoculants in the field. In: Singh DP, Singh HB, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity. Vol 2. Functional applications. Springer, New Delhi, pp 199–218CrossRefGoogle Scholar
  115. Jin HR, Jiang DH, Zhang PH (2011) Effect of carbon and nitrogen availability on the metabolism of amino acids in the germinating spores of arbuscular mycorrhizal fungi. Pedosphere 21:432–442CrossRefGoogle Scholar
  116. Jones DL (1998) Organic acids in the rhizosphere – a critical review. Plant Soil 205:25–44CrossRefGoogle Scholar
  117. Jones DL, Farrar J, Giller KE (2003) Associative nitrogen fixation and root exudation – what is theoretically possible in the rhizosphere? Symbiosis 35:19–38Google Scholar
  118. Jones DL, Hodge A, Kuzyakov Y (2004) Plant and mycorrhizal regulation of rhizodeposition. New Phytol 163:459–480.  https://doi.org/10.1111/j.1469-8137.2004.01130.xCrossRefGoogle Scholar
  119. Jonsson LM, Nilsson LC, Wardle DA, Zackrisson O (2001) Context dependent effects of ectomycorrhizal species richness on tree seedling productivity. Oikos 93:353–364CrossRefGoogle Scholar
  120. Kaldy JE, Eldridge PM, Cifuentes LA, Jones WB (2006) Utilization of DOC from seagrass rhizomes by sediment bacteria: 13C-tracer experiments and modeling. Mar Ecol Prog Ser 317:41–55.  https://doi.org/10.3354/meps317041CrossRefGoogle Scholar
  121. Kang BG, Kim WT, Yun HS, Chang SC (2010) Use of plant growth-promoting rhizobacteria to control stress responses of plant roots. Plant Biotechnol Rep 4:179–183CrossRefGoogle Scholar
  122. Karin H, Anna M, Andreas V, Franz H, Siegrid S (2013) Alterations in root exudation of intercropped tomato mediated by the arbuscular mycorrhizal fungus Glomus mosseae and the soilborne pathogen Fusarium oxysporum f. sp. Lycopersici. J Phytopathol 161:763–773CrossRefGoogle Scholar
  123. Kawasaki A, Watson ER, Kertesz MA (2012) Indirect effects of polycyclic aromatic hydrocarbon contamination on microbial communities in legume and grass rhizospheres. Plant Soil 358:162–175.  https://doi.org/10.1007/s11104-011-1089-z. WOS:000308190400015CrossRefGoogle Scholar
  124. Kawasaki A, Warren CR, Kertesz MA (2016a) Specific influence of white clover on the rhizosphere microbial community in response to polycyclic aromatic hydrocarbon (PAH) contamination. Plant Soil 401:365–379.  https://doi.org/10.1007/s11104-015-2756-2. WOS:000372947800026CrossRefGoogle Scholar
  125. Kawasaki A, Donn S, Ryan PR, Mathesius U, Devilla R, Jones A et al (2016b) Microbiome and exudates of the root and rhizosphere of Brachypodium distachyon, a model for wheat. PLoS One 11:e0164533.  https://doi.org/10.1371/journal.pone.0164533CrossRefPubMedPubMedCentralGoogle Scholar
  126. Kidd P, Barceló J, Bernal MP, Navari-Izzo F, Poschenrieder C, Shilev S, Clemente R, Monteroso C (2009) Trace element behavior at the root-soil interface: implications in phytoremediation. J Environ Exp Bot 67:243–259CrossRefGoogle Scholar
  127. Kilminster K, Garland J (2009) Aerobic heterotrophic microbial activity associated with seagrass roots: effects of plant type and nutrient amendment. Aquat Microb Ecol 57:57–68.  https://doi.org/10.3354/ame01332CrossRefGoogle Scholar
  128. Kim YO, Kim HK, Bae KS, Yu JH, Oh TK (1998) Purification and properties of a thermostable phytase from Bacillus sp. DS11. Enzym Microb Technol 22:2–7CrossRefGoogle Scholar
  129. Kim YO, Lee JK, Oh BC, Oh TK (1999) High-level of a recombinant thermostable phytase in Bacillus subtilis. Biosci Biotechnol Biochem 63:2205–2207CrossRefGoogle Scholar
  130. King JS, Albaugh TJ, Allen HL, Buford M, Strain BR, Dougherty P (2002) Below-ground carbon input to soil is controlled by nutrient availability and fine root dynamics in loblolly pine. New Phytol 154:389–398CrossRefGoogle Scholar
  131. Kloepper JW (1994) Plant growth-promoting rhizobacteria (other systems). In: Okon Y (ed) Azospirillum/plant associations. CRC Press, Boca Raton, pp 111–118Google Scholar
  132. Knauth S, HurekT BD, Reinhold-Hurek B (2005) Influence of different Oryza cultivars on expression of nifH gene pools in roots of rice. Environ Microbiol 7:1725–1733PubMedCrossRefPubMedCentralGoogle Scholar
  133. Kong Z, Glick BR (2017) The role of plant growth-promoting bacteria in metal phytoremediation. Adv Microb Physiol 71:97–132PubMedCrossRefPubMedCentralGoogle Scholar
  134. Krapp A (2015) Plant nitrogen assimilation and its regulation: a complex puzzle with missing pieces. Curr Opin Plant Biol 25:115–122PubMedPubMedCentralCrossRefGoogle Scholar
  135. Krewulak KD, Vogel HJ (2008) Structural biology of bacterial iron uptake. Biochim Biophys Acta 1778:1781–1804PubMedCrossRefPubMedCentralGoogle Scholar
  136. Kumar S, Bauddh K, Barman SC, Singh RP (2014) Amendments of microbial bio fertilizers and organic substances reduces requirement of urea and DAP with enhanced nutrient availability and productivity of wheat (Triticum aestivum L.). Ecol Eng 71:432–437.  https://doi.org/10.1016/j.ecoleng.2014.07.007CrossRefGoogle Scholar
  137. Kumar P, Thakur S, Dhingra GK, Singh A, Pal MK et al (2018) Inoculation of siderophore producing rhizobacteria and their consortium for growth enhancement of wheat plant. Biocatal Agric Biotechnol 15:264–269CrossRefGoogle Scholar
  138. Küsel K, Blöthe M, Schulz D, Reiche M, Drake HL (2008) Microbial reduction of iron and porewater biogeochemistry in acidic peatlands. Biogeosciences 5(6):1537–1549CrossRefGoogle Scholar
  139. Lakshmanan V, Kitto SL, Caplan JL, Hsueh YH, Kearns DB, Wu YS (2012) Microbe-associated molecular patterns-triggered root responses mediate beneficial rhizobacterial recruitment in Arabidopsis. Plant Physiol 160(3):1642–1661.  https://doi.org/10.1104/pp.112.200386. WOS:000310584200037CrossRefPubMedPubMedCentralGoogle Scholar
  140. Lambers H, Chapin FS, Pons TL (2008a) Plant physiologica ecology, 2nd edn. Springer, New YorkCrossRefGoogle Scholar
  141. Lambers H, Shaver G, Raven JA, Smith SE (2008b) N and Pacquisition change as soils age. Trends Ecol Evol 23:95–103PubMedCrossRefPubMedCentralGoogle Scholar
  142. Lambrechts C, Boze H, Molin G, Galzy P (1992) Utilization of phytate by some yeasts. Biotech Lett 14:61–66CrossRefGoogle Scholar
  143. Lambrecht M, Okon Y, Vande Broek A, Vanderleyden J (2000) Indole-3-acetic acid: a reciprocal signalling molecule in bacteria–plant interactions. Trends Microbiol 8(7):298–300PubMedCrossRefPubMedCentralGoogle Scholar
  144. Langley JA, Hungate BA (2003) Mycorrhizal controls on belowground litter quality. Ecology 84:2302–2312CrossRefGoogle Scholar
  145. Lerat S, Lapointe L, Gutjahr S, Piché Y, Vierheilig H (2003) Carbon partitioning in a split-root system of arbuscular mycorrhizal plants is fungal and plant species dependent. New Phytol 157:589–595CrossRefGoogle Scholar
  146. Lesueur D, Deaker R, Herrmann L, Bräu L, Jansa J (2016) The production and potential of biofertilizers to improve crop yields. In: Arora NK et al (eds) Bioformulations: for sustainable agriculture. Springer, New DelhiGoogle Scholar
  147. Leveau JHJ, Lindow SE (2005) Utilization of the plant hormone indole-3-acetic acid for growth by Pseudomonas putida strain 1290. Appl Environ Microbiol 71:2365–2371PubMedPubMedCentralCrossRefGoogle Scholar
  148. Liao H, Wan H, Shaff J, Wang X, Yan X, Kochian LV (2006) Phosphorus and aluminum interactions in soybean in relation to aluminum tolerance. Exudation of specific organic acids from different regions of the intact system. Plant Physiol 141:674–684.  https://doi.org/10.1104/pp.105.076497CrossRefPubMedCentralGoogle Scholar
  149. Lodewyckx C, Vangronsveld J, Porteous F, Moore ERB et al (2002) Endophytic bacteria and their potential applications. Crit Rev Plant Sci 21:583–606.  https://doi.org/10.1080/0735-260291044377CrossRefGoogle Scholar
  150. Lugtenberg BJ, Chin AWTF, Bloemberg GV (2002) Microbe-plant interactions: principles and mechanisms. Antonie Van Leeuwenhoek 81:373–383PubMedCrossRefPubMedCentralGoogle Scholar
  151. Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S et al (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488(7409):86–90.  https://doi.org/10.1038/nature11237. WOS:000307010700038CrossRefPubMedPubMedCentralGoogle Scholar
  152. Ma JF, Ueno H, Ueno D, Rombolà AD, Iwashita T (2003) Characterization of phytosiderophore secretion under Fe deficiency stress in Festuca rubra. Plant Soil 256:131–137CrossRefGoogle Scholar
  153. Madigan MT et al. (1997) Brock’s biology of microorganisms. Prentice-Hall and Southern Illinois UniversityGoogle Scholar
  154. Mahanty T, Bhattacharjee S, Goswami M, Bhattacharyya P, Das B, Ghosh A, Tribedi P (2017) Biofertilizers: a potential approach for sustainable agriculture development. Environ Sci Pollut Res 24:3315–3335CrossRefGoogle Scholar
  155. Malusa E, Vassilev N (2014) A contribution to set a legal framework for biofertilisers. Appl Microbiol Biotechnol 98:6599–6607PubMedPubMedCentralCrossRefGoogle Scholar
  156. Malusa E, Sas–Paszt L, Ciesielska J (2012) Technologies for beneficial microorganisms inocula used as biofertilizers. Sci World J 49:1206Google Scholar
  157. Markets and markets (2016) Biofertilizers market by type (nitrogen-fixing, phosphate-solubilizing, potash-mobilizing), microorganism (Rhizobium, Azotobacter, Azospirillum, Cyanobacteria, P-solubilizer), mode of application, crop type, form, and region – global forecast to 2022Google Scholar
  158. Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, London, p 889Google Scholar
  159. Marschner P (2012) Mineral nutrition of higher plants, 3rd edn. Academic, LondonGoogle Scholar
  160. Martin BC, Statton J, Siebers AR, Grierson PF, Ryan MH, Kendrick GA (2017) Colonizing tropical seagrasses increase root exudation under fluctuating and continuous low light. Limnol Oceanogr.  https://doi.org/10.1002/lno.10746CrossRefGoogle Scholar
  161. Martin BC, Gleeson D, Statton J, Siebers AR, Grierson P, Ryan MH, Kendrick GA (2018) Low light availability alters root exudation and reduces putative beneficial microorganisms in seagrass roots. Front Microbiol 8:2667PubMedPubMedCentralCrossRefGoogle Scholar
  162. Matsukawa E, Nakagawa Y, Iimura Y, Hayakawa M (2007) Stimulatory effect of indole-3-acetic acid on aerial mycelium formation and antibiotic production in Streptomyces sp. Actinomycetologica 21:32–39CrossRefGoogle Scholar
  163. McCoy CW, Samson RA, Boucias DG (1988) In: Ignoffo CM, Mandava NB (eds) Handbook of natural pesticides: microbial pesticides, part A. Entomogenous protozoa and fungi. CRC Press, Boca Raton, pp 151–236Google Scholar
  164. McGrath JW, Hammerschmidt F, Quinn JP (1998) Biodegradation of phosphonomycin by Rhizobium huakuii PMY1. Appl Environ Microbiol 64:356–358PubMedPubMedCentralGoogle Scholar
  165. Meier IC, Avis PG, Phillips RP (2013) Fungal communities influence root exudation rates in pine seedlings. FEMS Microbiol Ecol 83:585–595.  https://doi.org/10.1111/1574-6941.12016CrossRefPubMedPubMedCentralGoogle Scholar
  166. Mendes GO, Silva NMRM, Anastacio TC, Vassilev NB, Ribeiro JI, Silva IR, Costa MD (2015) Optimization of Aspergillus niger rock phosphate solubilization in solid-state fermentation and use of the resulting product as a P fertilizer. Microb Biotechnol 8:930–939PubMedCentralCrossRefPubMedGoogle Scholar
  167. Mendes G, Galvez A, Vassileva M, Vassilev N (2017) Fermentation liquid containing microbially solubilized P significantly improved plant growth and P uptake in both soil and soilless experiments. Appl Soil Ecol 117–118:208–211CrossRefGoogle Scholar
  168. Meneses CH, Rouws LF, Simões-Araújo JL, Vidal MS, Baldani JI (2011) Exopolysaccharide production is required for biofilm formation and plant colonization by the nitrogenfixing endophyte Gluconacetobacter diazotrophicus. Mol Plant-Microbe Interact 24:1448–1458PubMedCrossRefPubMedCentralGoogle Scholar
  169. Merzaeva OV, Shirokikh IG (2006) Colonization of plant rhizosphere by actinomycetes of different genera. Microbiology 75:226–230CrossRefGoogle Scholar
  170. Miethke M, Marahiel MA (2007) Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev 71:413–451PubMedPubMedCentralCrossRefGoogle Scholar
  171. Miransari M, Bahrami HA, Rejali F, Malakouti MJ (2008) Using arbuscular mycorrhiza to reduce the stressful effects of soil compaction on wheat (Triticum aestivum L.) growth. Soil Biol Biochem 40:1197–1206CrossRefGoogle Scholar
  172. Mukerji KG, Manoharachary C, Chamola B (2002) Techniques in mycorrhizal studies. Kluwer Academic Publishers, London/Dordrecht, pp 285–296CrossRefGoogle Scholar
  173. Nakamura Y, Fukuhara H, Sano K (2000) Secreted phytase activities of yeasts. Biosci Biotechnol Biochem 64:841–844PubMedCrossRefPubMedCentralGoogle Scholar
  174. Nascimento FX, Rossi MJ, Glick BR (2018) Ethylene and 1-aminocyclopropane-1-carboxylate (ACC) in plant–bacterial interactions. Front Plant Sci 9:114.  https://doi.org/10.3389/fpls.2018.00114CrossRefPubMedPubMedCentralGoogle Scholar
  175. Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M et al (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–439PubMedCrossRefPubMedCentralGoogle Scholar
  176. Neilands JB (1983) Siderophores. In: Eichhorn L, Marzilla LG (eds) Advances in inorganic biochemistry. Elsevier, p 137–166Google Scholar
  177. Nobbe F, Hiltner L (1896) Inoculation of the soil for cultivating leguminous plants. US Patent n. 570813Google Scholar
  178. Norman JR, Hooker JE (2000) Sporulation of Phytophthora fragariae shows greater stimulation by exudates of non-mycorrhizal than by mycorrhizal strawberry roots. Mycol Res 104:1069–1073CrossRefGoogle Scholar
  179. Ohtake H, Wu H, Imazu K, Ambe Y, Kato J, Kuroda A (1996) Bacterial phosphonate degradation, phosphite oxidation and polyphosphate accumulation. Resour Conserv Recycl 18:125–134CrossRefGoogle Scholar
  180. Onofre-Lemus J, Hernández-Lucas I, Girard L, Caballero-Mellado J (2009) ACC (1-aminocyclopropane-1-carboxylate) deaminase activity, a widespread trait in Burkholderia species, and its growth-promoting effect on tomato plants. Appl Environ Microbiol 75:6581–6590PubMedCentralCrossRefGoogle Scholar
  181. Oteino N, Lally RD, Kiwanuka S, Lloyd A, Ryan D, Germaine KJ, Dowling DN (2015) Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Front Microbiol 6:745PubMedCentralCrossRefGoogle Scholar
  182. Pahari A, Mishra BB (2017) Antibiosis of siderophore producing bacterial isolates against phytopathogens and their effect on growth of okra. Int J Curr Microbiol App Sci 6:1925–1929CrossRefGoogle Scholar
  183. Pandey A, Szakacs G, Soccol CR, Rodriguez–Leon JA, Soccol VT (2001) Production, purification and properties of microbial phytases. Bioresour Technol 77:203–214PubMedCrossRefPubMedCentralGoogle Scholar
  184. Parada M, Vinardell J, Ollero F, Hidalgo A, Gutiérrez R et al (2006) Sinorhizobium fredii HH103 mutants affected in capsular polysaccharide (KPS) are impaired for nodulation with soybean and Cajanus cajan. Mol Plant-Microbe Interact 19:43–52PubMedCrossRefPubMedCentralGoogle Scholar
  185. Pathak DV, Kumar M (2016) Microbial inoculants as biofertilizers and biopesticides. In: Singh DP et al (eds) Microbial inoculants in sustainable agricultural productivity: research perspectives, vol 1. Springer, New Delhi, pp 197–209CrossRefGoogle Scholar
  186. Pattan J, Kajale S, Pattan S (2017) Isolation, production and optimization of siderophores (iron chilators) from Pseudomonas fluorescence NCIM 5096 and Pseudomonas from soil rhizosphere and marine water. Int J Curr Microbiol App Sci 6:919–928CrossRefGoogle Scholar
  187. Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42:207–220PubMedCrossRefGoogle Scholar
  188. Pavlova K, Gargova S, Tankova Z (2008) Phytase from Antarctic yeast strain Cryptococcus laurentii AL27. Folia Microbiol 53:29–34CrossRefGoogle Scholar
  189. Peiffer JA, Spor A, Koren O, Jin Z, Tringe SG, Dangl JL (2013) Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc Natl Acad Sci U S A 110:6548–6553.  https://doi.org/10.1073/pnas.1302837110. WOS:000318041500067CrossRefPubMedPubMedCentralGoogle Scholar
  190. Pertry I, Vereecke D (2009) Identification of Rhodococcus fascians cytokinins and their modus operandi to reshape the plant. Proc Natl Acad Sci 106:929–934CrossRefGoogle Scholar
  191. Pham VHT, Kim J (2012) Cultivation of unculturable soil bacteria. Trends Biotechnol 30:475–484PubMedCrossRefGoogle Scholar
  192. Pilet PE, Saugy M (1987) Effect of root growth on endogenous and applied IAA and ABA. Plant Physiol 83:33–38PubMedPubMedCentralCrossRefGoogle Scholar
  193. Postma J, Nijhuis EH, Someus E (2010) Selection of phosphorus solubilizing bacteria with biocontrol potential for growth in phosphorus rich animal bone charcoal. Appl Soil Ecol 46:464–469CrossRefGoogle Scholar
  194. Quan C (2002) Purification and properties of a phytase from Candida krusei WZ-001. J Biosci Bioeng 94:419–425PubMedGoogle Scholar
  195. Qurashi AW, Sabri AN (2012) Bacterial exopolysaccharide and biofilm formation stimulate chickpea growth and soil aggregation under salt stress. Braz J Microbiol 43:1183–1191PubMedPubMedCentralCrossRefGoogle Scholar
  196. Rajkumar M, Ae N, Narasimha M, Prasad V, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal. Phytoextraction 28:142–149Google Scholar
  197. Ramadan EM, Abdel Hafez AA, Hassan EA, Saber FM (2016) Plant growth promoting rhizobacteria and their potential for biocontrol of phytopathogens. Afr J Microbiol Res 10:486–504CrossRefGoogle Scholar
  198. Raymond KM, Denz E (2004) Biochemical and physical properties of siderophores. In: Crosa et al (eds) Iron transport in bacteria. ASM Press, p 3–17Google Scholar
  199. Raza W, Yousaf S, Rajer FU (2016) Plant growth promoting activity of volatile organic compounds produced by bio-control strains. Sci Lett 4:40–43Google Scholar
  200. Reinhold-Hurek B, Hurek T (1998) Life in grasses: diazotrophic endophytes. Trends Microbiol 6:139–144.  https://doi.org/10.1016/S0966-842X(98)01229-3CrossRefPubMedPubMedCentralGoogle Scholar
  201. Reinhold-Hurek B, Hurek T (2011) Living inside plants: bacterial endophytes. Curr Opin Plant Biol 14:435–443PubMedCrossRefPubMedCentralGoogle Scholar
  202. Reinhold-Hurek B, Bünger W, Burbano CS, Sabale M, Hurek T (2015) Roots shaping their microbiome: global hotspots for microbial activity. Annu Rev Phytopathol 53:403–424.  https://doi.org/10.1146/annurev-phyto-082712-102342CrossRefGoogle Scholar
  203. Richardson AE, Barea J-M, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339CrossRefGoogle Scholar
  204. Rillig MC, Wright SF, Nichols KA, Schmidt WF, Torn MS (2001) Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils. Plant Soil 233:167–177CrossRefGoogle Scholar
  205. Rillig MC, Wright SF, Eviner VT (2002) The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: comparing effects of five plant species. Plant Soil 238:325–333CrossRefGoogle Scholar
  206. Rillig MC, Ramsey PW, Morris S, Paul EA (2003) Glomalin, an arbuscular-mycorrhizal fungal soil protein, responds to land-use change. Plant Soil 253:293–299CrossRefGoogle Scholar
  207. Robin A, Vansuyt G, Hinsinger P, Meyer JM, Briat JF, Lemanceau P (2008) Iron dynamics in the rhizosphere: consequences for plant health and nutrition. Adv Agron 99:183–225CrossRefGoogle Scholar
  208. Rodríguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339PubMedCrossRefPubMedCentralGoogle Scholar
  209. Rodríguez H, Fraga R, Gonzalez T, Bashan T (2006) Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant Soil 287:15–21CrossRefGoogle Scholar
  210. Rodriguez H, Vessely S, Shah S, Glick BR (2008) Effect of a nickel-tolerant ACC deaminase-producing Pseudomonas strain on growth of nontransformed and transgenic canola plants. Curr Microbiol 57:170–174CrossRefGoogle Scholar
  211. Römheld V (1987) Different strategies for iron acquisition in higher plants. Physiol Plant 70:231–234CrossRefGoogle Scholar
  212. Ryan PR, Dessaux Y, Thomashow LS, Weller DM (2009) Rhizosphere engineering and management for sustainable agriculture. Plant Soil 321:363–383CrossRefGoogle Scholar
  213. Sahu PK, Brahmaprakash GP (2016) Formulations of biofertilizers – approaches and advances. In: Singh DP, Singh HB, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity. Vol 2 functional applications. Springer, New Delhi, pp 179–198CrossRefGoogle Scholar
  214. Sahu PK, Lavanya G, Brahmaprakash GP (2013) Fluid bed dried microbial inoculants formulation with improved survival and reduced contamination level. J Soil Biol Ecol 33:81–94CrossRefGoogle Scholar
  215. Salamone IEG, Hynes RK, Nelson LM (2005) Role of cytokinins in plant growth promotionby rhizosphere bacteria. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 173–195CrossRefGoogle Scholar
  216. Sandhya V, Ali SKZ, Grover M, Reddy G, Venkateswarlu B (2009) Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45. Biol Fertil Soils 46:17–26CrossRefGoogle Scholar
  217. Sano K, Fukuhara H, Nakamura JJ (1999) Phytase of the yeast Arxula adeninivorans. Biotechnol Lett 21:33–38CrossRefGoogle Scholar
  218. Schalk IJ, Hannauer M, Braud A (2011) New roles for bacterial siderophores in metal trans-port and tolerance. Environ Microbiol 13:2844–2854CrossRefGoogle Scholar
  219. Scheffknecht S, Mammerler R, Steinkellner S, Vierheilig H (2006) Root exudates of mycorrhizal tomato plants exhibit a different effect on microconidia germination of Fusarium oxysporum f. sp.lycopesici than root exudates from nonmycorrhizal tomato plants. Mycorrhiza 16:365–370PubMedCrossRefPubMedCentralGoogle Scholar
  220. Schreiter S, Ding GC, Heuer H, Neumann G, Sandmann M (2014) Effect of the soil type on the microbiome in the rhizosphere of field-grown lettuce. Front Microbiol 5:144PubMedPubMedCentralCrossRefGoogle Scholar
  221. Scott JC, Greenhut IV, Leveau JH (2013) Functional characterization of the bacterial iac genes for degradation of the plant hormone indole-3-acetic acid. J Chem Ecol 39:942–951PubMedCrossRefPubMedCentralGoogle Scholar
  222. Segueilha L, Lambrechts C, Boze H, Moulin G, Galzy P (1992) Purification and properties of the phytase from Schwaniomyces castellii. J Ferment Bioeng 74:7–11CrossRefGoogle Scholar
  223. Seguel A, Cumming J, Klugh-Stewart K, Cornejo P, Borie F (2013) The role of arbuscular mycorrhizas in decreasing aluminium phytotoxicity in acidic soils: a review. Mycorrhiza 23:167–183CrossRefGoogle Scholar
  224. Shaharoona B, Arshad M, Zahir ZA (2006) Effect of plant growth promoting rhizobacteria containing ACC-deaminase on maize (Zea mays L.) growth under axenic conditions and on nodulation in mung bean (Vigna radiata L.). Lett Appl Microbiol 42:155–159PubMedCrossRefGoogle Scholar
  225. Shanmugam V, Kanoujia N, Singh M et al (2011) Biocontrol of vascular wilt and corm rot of gladiolus caused by Fusarium oxysporum f. sp. gladioli using plant growth promoting rhizobacterial mixture. Crop Prot 30:807–813CrossRefGoogle Scholar
  226. Sharma A, Johri BN, Sharma AK, Glick BR (2013a) Plant growth-promoting bacterium Pseudomonas sp. strain GRP3 influences iron acquisition in mung bean (Vignaradiata L. Wilzeck). Soil Biol Biochem 35:887–894CrossRefGoogle Scholar
  227. Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013b) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springerplus 2:587–600.  https://doi.org/10.1186/2193-1801-2-587CrossRefPubMedPubMedCentralGoogle Scholar
  228. Shen J, Li C, Mi G, Li L, Yuan L, Jiang R, Zhang F (2013) Maximizing root/rhizosphere efficiency to improve crop productivity and nutrient use efficiency in intensive agriculture of China. J Exp Bot 64:1181–1192PubMedCrossRefPubMedCentralGoogle Scholar
  229. Shidore T, Dinse T, Ohrlein J, Becker A, Reinhold-Hurek B (2012) Transcriptomic analysis of responses to exudates reveal genes required for rhizosphere competence of the endophyte Azoarcus sp. strain BH72. Environ Microbiol 14:2775–2787PubMedCrossRefPubMedCentralGoogle Scholar
  230. Shilev S (2013) Soil Rhizobacteria regulating the uptake of nutrients and undesirable elements by plants. In: Arora NK (ed) Plant microbe symbiosis: fundamentals and advances, p 147–167CrossRefGoogle Scholar
  231. Shilev S, Naydenov M, Sancho Prieto M, Sancho ED, Vassilev N (2012a) PGPR as inoculants in management of lands contaminated with trace elements. In: Maheshwari DK (ed) Bacteria in agrobiology: stress management. Springer, Berlin/Heidelberg, pp 259–277CrossRefGoogle Scholar
  232. Shilev S, Sancho ED, Benlloch M (2012b) Rhizospheric bacteria alleviate salt-produced stress in sunflower. J Environ Manag 95(Issue SUPPL):S37–S41CrossRefGoogle Scholar
  233. Shimizu M (1992) Purification and characterization of phytase from Bacillus subtillis (nato) N-77. Biosci Biotechnol Biochem 56:1266–1269CrossRefGoogle Scholar
  234. Simpson CJ, Wise A (1990) Binding of zinc and calcium to inositol phosphates (phytate) in vitro. Br J Nutr 64:225–232PubMedCrossRefPubMedCentralGoogle Scholar
  235. Singleton P, Keyser H, Sande E (2002) Development and evaluation of liquid inoculants. Inoculants and nitrogen fixation of legumes in Vietnam. Australian Centre for International Agricultural Research, Canberra, pp 52–66Google Scholar
  236. Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Elsevier, CityCrossRefGoogle Scholar
  237. Smith SE, Smith FA, Jakobsen I (2003) Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiol 133:16–20PubMedPubMedCentralCrossRefGoogle Scholar
  238. Somers E, Vanderleyden J, Srinivasan M (2004) Rhizosphere bacterial signalling: a love parade beneath our feet. Crit Rev Microbiol 30:205–240PubMedCrossRefPubMedCentralGoogle Scholar
  239. Souza R, Beneduzi A, Ambrosini A, Costa PB, Meyer J, Vargas LK, Schoenfeld R, Passaglia LMP (2013) The effect of plant growth-promoting rhizobacteria on the growth of rice (Oryza sativa L.) cropped in southern Brazilian fields. Plant Soil 366:585–603CrossRefGoogle Scholar
  240. de Souza R, Ambrosini A, Passaglia LMP (2015) Plant growth-promoting bacteria as inoculants in agricultural soils. Gen Mol Biol 38:401–419CrossRefGoogle Scholar
  241. Srinivasan R, Yandigeri MS, Kashyap S, Alagawadi AR (2012) Effect of salt on survival and P-solubilization potential of phosphate solubilizing microorganisms from salt affected soils. Saudi J Biol Sci 19:427–434.  https://doi.org/10.1016/j.sjbs.2012.05.004CrossRefPubMedPubMedCentralGoogle Scholar
  242. Staddon PL, Bronk Ramsey C, Ostle N, Ineson P, Fitter AH (2003) Rapid turnover of hyphae of mycorrhizal fungi determined by AMS microanalysis of 14C. Science 300:1138–1140PubMedCrossRefPubMedCentralGoogle Scholar
  243. Steinkellner S, Lendzemo V, Langer I, Schweiger P, Khaosaad T, Toussaint J-P, Vierheilig H (2007) Flavonoids and strigolactones in root exudates as signals in symbiotic and pathogenic plant–fungus interactions. Molecules 12:1290–1306.  https://doi.org/10.3390/12071290CrossRefPubMedPubMedCentralGoogle Scholar
  244. Stephens J, Rask H (2000) Inoculant production and formulation. Field Crop Res 65:249–258CrossRefGoogle Scholar
  245. Stoltzfus JR, So R, Malarvithi PP, Ladha JK, de Bruijn FJ (1997) Isolation of endophytic bacteria from rice and assessment of their potential for supplying rice with biologically fixed nitrogen. Plant Soil 194:25–36.  https://doi.org/10.1023/a:1004298921641CrossRefGoogle Scholar
  246. Sturz AV, Christie BR, Nowak J (2000) Bacterial endophytes: potential role in developing sustainable systems of crop production. Crit Rev Plant Sci 19:1–30.  https://doi.org/10.1080/07352680091139169CrossRefGoogle Scholar
  247. Sun Y-P, Unestam T, Lucas SD, Johanson KJ, Kenne L, Finlay R (1999) Exudation-reabsorption in a mycorrhizal fungus, the dynamic interface for interaction with soil and soil microorganisms. Mycorrhiza 9:137–144CrossRefGoogle Scholar
  248. Swain T (1974) Ethylene in plant biology. Academic, New YorkGoogle Scholar
  249. Szilagyi-Zecchin VJ, Ikeda AC, Hungria M, Adamoski D, Kava-Cordeiro V, Glienke C, Galli-Terasawa LV (2014) Identification and characterization of endophytic bacteria from corn (Zea mays L.) roots with biotechnological potential in agriculture. AMB Express.  https://doi.org/10.1186/s13568-014-0026
  250. Tahat MM, Radziah O, Kamaruzaman S, Kadir J, Masdek NH (2008) Role of plant host in determining differential responses to Ralstonia solanacearum and Glomus mosseae. Plant Pathol J 7:140–147CrossRefGoogle Scholar
  251. Tahat MM, Sijam K, Othman R (2010) The role of tomato and corn root exudates on Glomus mosseae spores germination and Ralstonia solanacearum growth in vitro. Int J Plant Pathol 1:1–12CrossRefGoogle Scholar
  252. Tahat MM, Sijam K, Othman R (2011) Bio-compartmental in vitro system for Glomus mosseae and Ralstonia solanacearum interaction. Int J Bot 7:295–299CrossRefGoogle Scholar
  253. Tahir HAS, Gu Q, Wu H, Raza W, Safdar A et al (2017) Effect of volatile compounds produced by Ralstonia solanacearum on plant growth promoting and systemic resistance inducing potential of Bacillus volatiles. BMC Plant Biol., BMC series – open, inclusive and trusted 17:133PubMedPubMedCentralCrossRefGoogle Scholar
  254. Tamasloukht MB, Séjalon-Delmas N, Kluever A (2003) Root factors induce mitochondrial-related gene expression and fungal respiration during the developmental switch from asymbiosis to presymbiosis in the arbuscular mycorrhizal fungus Gigaspora rosea. Plant Physiol 131:1–11CrossRefGoogle Scholar
  255. Tanimoto E (2005) Regulation of root growth by plant hormones-roles for auxin and gibberellin. Crit Rev Plant Sci 24:249–265CrossRefGoogle Scholar
  256. Tewari S, Arora NK (2014) Multifunctional exopolysaccharides from Pseudomonas aeruginosa PF23 involved in plant growth stimulation, biocontrol and stress amelioration in sunflower under saline conditions. Curr Microbiol 69:484–494PubMedCrossRefPubMedCentralGoogle Scholar
  257. Thomas L, Larroche C, Pandey A (2013) Current developments in solid-state fermentation. Biochem Eng J 81:146–161CrossRefGoogle Scholar
  258. Tilak KVBR, Ranganayaki N, Pal KK, De R, Saxena AK, Nautiyal CS, Mittal S, Tripathi AK, Johri BN (2005) Diversity of plant growth and soil health supporting bacteria. Curr Sci India 89:136–150Google Scholar
  259. Tkacz A, Cheema J, Chandra G, Grant A, Poole PS (2015) Stability and succession of the rhizosphere microbiota depends upon plant type and soil composition. ISME J 9:2349–2359.  https://doi.org/10.1038/ismej.2015.41CrossRefPubMedPubMedCentralGoogle Scholar
  260. Tortora ML, Díaz-Ricci JC, Pedraza RO (2011) Azospirillum brasilense siderophores with antifungal activity against Colletotrichum acutatum. Arch Microbiol 193:275–286PubMedCrossRefPubMedCentralGoogle Scholar
  261. Trevathan-Tackett SM, Seymour JR, Nielsen DA, Macreadie PI, Jeffries TC, Sanderman J et al (2017) Sediment anoxia limits microbial-driven seagrass carbon remineralization under warming conditions. FEMS Microbiol Ecol 93:1–15.  https://doi.org/10.1093/femsec/fix033CrossRefGoogle Scholar
  262. Ulloa-Ogaz AL, Munoz-Castellanos LN, Nevarez-Moorillon GV (2015) Biocontrol of phytopathogens: antibiotic production as mechanism of control, the battle against microbial pathogens. In: Mendez Vilas A (ed) Technological advance and educational programs 1. pp 305–309Google Scholar
  263. Vacheron J, Desbrosses G, Bouffaud ML, Touraine B, Moenne-Loccoz Y, Muller D, Legendre L, Wisniewski-Dye F, Prigent-Combaret C (2013) Plant growth–promoting rhizobacteria and root system functioning. Front Plant Sci 4:1–19CrossRefGoogle Scholar
  264. Vance CP, Uhde-Stone C, Allan DL (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol 157:423–447CrossRefGoogle Scholar
  265. Vassilev N, Mendes G (2018) Solid-state fermentation and plant-beneficial microorganisms. In: Pandey A, Larroche CH, Soccol C (eds) Current developments in biotechnology and bioengineering. Curr Adv Solid-State Ferment. Elsevier, p 435–450Google Scholar
  266. Vassilev N, Vassileva M, Fenice M, Federici F (2001) Immobilized cell technology applied in solubilization of insoluble inorganic (rock) phosphates and P plant acquisition. Bioresour Technol 79:263–271PubMedCrossRefPubMedCentralGoogle Scholar
  267. Vassilev N, Nikolaeva I, Vassileva M (2005) Polymer-based preparation of soil inoculants: applications to arbuscular mycorrhizal fungi. Rev Environ Sci Biotechnol 4:235–243CrossRefGoogle Scholar
  268. Vassilev N, Nikolaeva I, Vassileva M (2007) Indole-3-acetic acid production by gel-entrapped Bacillus thuringiensis in the presence of rock phosphate ore. Chem Eng Commun 194:441–445CrossRefGoogle Scholar
  269. Vassilev N, Martos E, Mendes G, Martos V, Vassileva M (2013) Biochar of animal origin: a sustainable solution of the high-grade rock phosphate scarcity. J Sci Food Agric 93:1799–1804PubMedCrossRefPubMedCentralGoogle Scholar
  270. Vassilev N, Vassileva M, Lopez A et al (2015) Unexploited potential of some biotechnological techniques for biofertilizer production. Appl Microbiol Biotechnol 99:4983–4996PubMedCrossRefPubMedCentralGoogle Scholar
  271. Vassilev N, Eichler Löbermann B, Flor Peregrin E, Martos V, Reyes A, Vassileva M (2017a) Production of a potential liquid plant bio-stimulant by immobilized Piriformospora indica in repeated-batch fermentation process. AMB Express 7(1):1–7CrossRefGoogle Scholar
  272. Vassilev N, Malusa E, Requena A et al (2017b) Potential application of glycerol in the production of plant beneficial microorganisms. J Ind Microbiol Biotechnol 44:735–743PubMedCrossRefPubMedCentralGoogle Scholar
  273. Vassileva M, Azcon R, Barea JM, Vassilev N (1999) Effect of encapsulated cells of Enterobacter sp. on plant growth and phosphate uptake. Bioresour Technol 67:229–232CrossRefGoogle Scholar
  274. Vassileva M, Serrano M, Bravo V, Jurado E, Nikolaeva I, Martos V, Vassilev N (2010) Multifunctional properties of phosphate-solubilizing microorganisms grown on agro-industrial wastes in fermentation and soil conditions. Appl Microbiol Biotechnol 85:1287–1299PubMedCrossRefPubMedCentralGoogle Scholar
  275. Vats P, Banerjee UC (2004) Production studies and catalytic properties of phytases (myoinositolhexakisphosphate phosphohydrolase): an overview. Enzyme Micob Technol 35:3–4CrossRefGoogle Scholar
  276. Vejan PA, Khadiran RN, Salmah I, Amru NB (2016) Role of plant growth promoting Rhizobacteria in agricultural sustainability-a review. Molecules 21:573.  https://doi.org/10.3390/molecules21050573CrossRefPubMedPubMedCentralGoogle Scholar
  277. Vengavasi K, Pandey R (2018) Root exudation potential in contrasting soybean genotypes in response to low soil phosphorus availability is determined by photo-biochemical processes. Plant Physiol Biochem 124:1–9PubMedCrossRefPubMedCentralGoogle Scholar
  278. Vengavasi K, Kumar A, Pandey R (2016) Transcript abundance, enzyme activity and metabolite concentration regulates differential carboxylate efflux in soybean under low phosphorus stress. Indian J Plant Physiol 21:179–188.  https://doi.org/10.1007/s40502-016-0219-2CrossRefGoogle Scholar
  279. Vengavasi K, Pandey R, Abraham G, Yadav RK (2017) Comparative analysis of soybean root proteome reveals molecular basis of differential carboxylate efflux under low phosphorus stress. Genes 8:341.  https://doi.org/10.3390/genes8120341CrossRefPubMedCentralGoogle Scholar
  280. Vessey JK, Pawlowski K, Bergman B (2005) N2-fixing symbiosis: legumes, actinorhizal plants, and cycads. Plant Soil 274:51–78CrossRefGoogle Scholar
  281. Vimal SR, Singh JS, Arora NK, Singh S (2017) Soil-plant-microbe interactions in stressed agriculture management: a review. Pedosphere 27:177–192CrossRefGoogle Scholar
  282. Vohra A, Satyanarayama T (2002) Purification characterization of a thermo stable and acid – stable phytase from Pichia anomala. World J Microbiol Biotechnol 18:687–691CrossRefGoogle Scholar
  283. Vohra A, Satyanarayana T (2003) Phytases: microbial sources, production, purification, and potential biotechnological applications. Crit Rev Biotechnol 23:29–60PubMedCrossRefPubMedCentralGoogle Scholar
  284. Volfová O, Dvoráková J, Hanzlíková A, Jandera A (1994) Phytase from Aspergillus niger. Folia Microbiol 39:481–484CrossRefGoogle Scholar
  285. Wagner MR, Lundberg DS, del Rio TG, Tringe SG, Dangl JL, Mitchell-Olds T (2016) Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nat Commun 7:12–51.  https://doi.org/10.1038/ncomms12151CrossRefGoogle Scholar
  286. Walker TS, Bais HP, Grotewold E, Vivanco JM (2003) Root exudation and rhizosphere biology. Plant Physiol 132:44–51PubMedPubMedCentralCrossRefGoogle Scholar
  287. Wang Q, Xiong D, Zhao P, Yu X, Tu B, Wang G (2011) Effect of applying an arsenic-resistant and plant growth-promoting rhizobacterium to enhance soil arsenic phytoremediation by Populus deltoides LH05-17. J Appl Microbiol 111:1065–1074PubMedCrossRefPubMedCentralGoogle Scholar
  288. Wang X, Mavrodi DV, Ke L, Mavrodi OV, Yang M, Thomashow LS, Zheng N, Weller DM, Zhang J (2015a) Biocontrol and plant growth-promoting activity of rhizobacteria from Chinese fields with contaminated soils. Microb Biotechnol 8:404–418PubMedCrossRefGoogle Scholar
  289. Wang Y, Tang S, Jin H (2015b) Effect of glucose, root exudates and N forms in mycorrhizal symbiosis using Rhizophagus intraradices. J Soil Sci Plant Nutr 15:726–736. ISSN 0718-9516Google Scholar
  290. Warren GP, Robinson JS, Someus E (2009) Dissolution of phosphorus from animal bone char in 12 soils. Nutr Cycl Agroecosyst 84:167–178CrossRefGoogle Scholar
  291. Wemheuer F, Kaiser K, Karlovsky P, Daniel R, Vidal S, Wemheuer B (2017) Bacterial endophyte communities of three agricultural important grass species differ in their response towards management regimes. Sci Rep 7:40914.  https://doi.org/10.1038/srep40914CrossRefPubMedPubMedCentralGoogle Scholar
  292. Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511PubMedCrossRefPubMedCentralGoogle Scholar
  293. Widder S, Allen RJ, Pfeiffer T, Curtis TP, Wiuf C, Sloan WT et al (2016) Challenges in microbial ecology: building predictive understanding of community function and dynamics. ISME J 10:2557–2568.  https://doi.org/10.1038/ismej.2016.45CrossRefPubMedPubMedCentralGoogle Scholar
  294. Wu QS, Xia RX, Zou YN (2008) Improved soil structure and citrus growth after inoculation with three arbuscular mycorrhizal fungi under drought stress. Eur J Soil Biol 44:122–128CrossRefGoogle Scholar
  295. Yadav BK, Akhtar MS, Panwar J (2015) Rhizospheric plant-microbe interactions: key factors to soil fertility and plant nutrition. In: Arora N (ed) Plant microbes symbiosis: applied facets. Springer, India, pp 127–145Google Scholar
  296. Yoon SJ, Choi YJ et al (1996) Isolation and identification of phytase producing bacterium, Enterobacterium sp. 4, and enzymatic properties of phytase enzyme. Enzym Microb Technol 18:449–454CrossRefGoogle Scholar
  297. Zhang FS, Shen JB, Zhang JL, Zuo YM, Li L, Chen XP (2010) Rhizosphere processes and management for improving nutrient use efficiency and crop productivity: implications for China. In: DL Sparks (ed) Adv agron 107:1–32Google Scholar
  298. Zhang YX, Ruyter-Spira C, Bouwmeester HJ (2015) Engineering the plant rhizosphere. Curr Opin Biotechnol 32:136–142.  https://doi.org/10.1016/j.copbio.2014.12.006. WOS:000353865700022. PMID: 255551CrossRefPubMedPubMedCentralGoogle Scholar
  299. Zhao K, Penttinen P, Zhang X, Ao X, Liu M, Yu X et al (2014) Maize rhizosphere in Sichuan, China, hosts plant growth promoting Burkholderia cepacia with phosphate solubilizing and antifungal abilities. Microbiol Res 169:76–82.  https://doi.org/10.1016/j.micres.2013.07.003CrossRefPubMedPubMedCentralGoogle Scholar
  300. Zimmermann P (2003) Root-secreted phosphomonoesterases mobilizing phosphorus from the rhizosphere: a molecular physiological study in Solanum tuberosum. Ph.D. thesis, Swiss Federal Institute of Technology, ZurichGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Stefan Shilev
    • 1
    Email author
  • Hassan Azaizeh
    • 2
    • 3
  • Nikolay Vassilev
    • 4
  • Danail Georgiev
    • 5
  • Ivelina Babrikova
    • 1
  1. 1.Department of Microbiology and Environmental BiotechnologiesAgricultural University – PlovdivPlovdivBulgaria
  2. 2.Institute of Applied Research (Affiliated with University of Haifa)The Galilee SocietyShefa-AmrIsrael
  3. 3.Department of Environmental ScienceTel Hai CollegeQiryat ShemonaIsrael
  4. 4.Faculty of Sciences, Department of Chemical EngineeringUniversity of GranadaGranadaSpain
  5. 5.Faculty of Biology, Department of MicrobiologyUniversity of PlovdivPlovdivBulgaria

Personalised recommendations