Advertisement

Insights into the Unidentified Microbiome: Current Approaches and Implications

  • Ratna Prabha
  • Dhananjaya Pratap SinghEmail author
  • Vijai Kumar Gupta
Chapter

Abstract

Microorganisms play pivotal role through the functions of their communities in regulating biogeochemical cycles on the Earth since inception. During the early ages of Earth’s evolution, they helped to make the atmosphere oxygenic and suitable for all living beings. Still, they are the silent ecological workers for recycling mineral nutrients and organic compounds that facilitate soil health by improving soil structure and fertility, contribute to plant nutrition and health and maintain ecosystem functions. Evolutionary diversification and succession of microbial communities parallel to the evolution of the Earth made their inhabitation possible in all kinds of habitats including those of extreme environments too. This chapter records the methods used for the identification, characterization and functional interpretation of microbial communities in light of the most advanced developments in instrumentation, methods, protocols and techniques.

Keywords

Microbiome Evolution Microbial communities Omics approaches Genomics Molecular identification 

Notes

Acknowledgement

RP is thankful to DST for financial support under DST-Women Scientist Scheme-B (KIRAN Program) (Grant No. DST/WOS-B/2017/67-AAS).

References

  1. Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163:173–181PubMedCrossRefGoogle Scholar
  2. Alain K, Querellou J (2009) Cultivating the uncultured: limits, advances and future challenges. Extremophiles 13:583–594PubMedCrossRefPubMedCentralGoogle Scholar
  3. Alves MH, Campos-Takaki GM, Porto ALF, Milanez AI (2002) Screening of Mucor spp. for the production of amylase, lipase, polygalacturonase and protease. Braz J Microbiol 33:325–330Google Scholar
  4. Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59(1):143–169PubMedPubMedCentralGoogle Scholar
  5. Andersson DI, Jerlström-Hultqvist J, Näsvall J (2015) Evolution of new functions de novo and from preexisting genes. Cold Spring Harb Perspect Biol 7(6):a017996.  https://doi.org/10.1101/cshperspect.a017996CrossRefPubMedPubMedCentralGoogle Scholar
  6. Angel R, Conrad R, Dvorsky M, Kopecky M, Kotilínek M, Hiiesalu I, Schweingruber F, Doležal J (2016) The root-associated microbial community of the world’s highest growing vascular plants. Microb Ecol 72:394–406PubMedPubMedCentralCrossRefGoogle Scholar
  7. Anguilar P, Acosta E, Dorador C, Sommaruga R (2016) Large differences in bacterial community composition among three nearby extreme waterbodies of the high Andean plateau. Front Microbiol.  https://doi.org/10.3389/fmicb.2016.00976
  8. Antony R, Sanyal A, Kapse N, Dhakephalkar PK, Thamban M, Nair S (2016) Microbial communities associated with Antarctic snow pack and their biogeochemical implications. Microbiol Res 192:192–202.  https://doi.org/10.1016/j.micres.2016.07.004CrossRefPubMedPubMedCentralGoogle Scholar
  9. Badri DV, Weir TL, Van Der Lelie D, Vivanco JM (2009) Rhizosphere chemical dialogues: plant–microbe interactions. Curr Opin Biotechnol 20:642–650PubMedCrossRefPubMedCentralGoogle Scholar
  10. Banoweltz GM, Whittaker GW, Dierksen KP, Azevedo MD, Kennedy AC, Griffith SM, Steiner JJ (2006) Fatty acid methyl ester analysis to identify source of soil in surface water. J Environ Qual 3:133–140CrossRefGoogle Scholar
  11. Bardgett RD, van der Putten WH (2014) Belowground biodiversity and ecosystem functioning. Nature 515:505–511CrossRefGoogle Scholar
  12. Beasley JC, Olson ZH, Devault TL (2012) Carrion cycling in food webs: comparisons among terrestrial and marine ecosystems. Oikos 121:1021–1026.  https://doi.org/10.1111/j.1600-0706.2012.20353.xCrossRefGoogle Scholar
  13. Bell T et al (2005) The contribution of species richness and composition to bacterial services. Nature 436:1157–1160CrossRefGoogle Scholar
  14. Bell TH, Stefani FOP, Abram C, Champagne J, Yergeau E, Hijri M, St-Arnaud M (2016) A diverse soil microbiome degrades more crude oil than specialized bacterial assemblages obtained in culture. Appl Environ Microbiol 82:5530–5541.  https://doi.org/10.1128/AEM.01327-16CrossRefPubMedPubMedCentralGoogle Scholar
  15. Benson CA, Bizzoco RW, Lipson DA, Kelley ST (2011) Microbial diversity in nonsulfur, sulfur and iron geothermal steam vents. FEMS Microbiol Ecol 76:74–88CrossRefGoogle Scholar
  16. Bizzoco RLW, Kelley ST (2013) Microbial diversity in acidic high-temperature steam vents. In: Polyextremophiles. pp 315–332.  https://doi.org/10.1007/978-94-007-6488-0_13Google Scholar
  17. Bodelier PLE (2011) Toward understanding, managing, and protecting microbial ecosystems. Front Microbiol 2:80PubMedPubMedCentralCrossRefGoogle Scholar
  18. Boettger EC (1989) Rapid determination of bacterial ribosomal RNA sequences by direct sequencing of enzymatically amplified DNA. FEMS Microbiol Lett 65:171–176CrossRefGoogle Scholar
  19. Bonfante P, Anca IA (2009) Plants, mycorrhizal fungi, and bacteria: a network of interactions. Annu Rev Microbiol 63:363–383PubMedCrossRefGoogle Scholar
  20. Boon E, Meehan CJ, Whidden C, Wong DH-J, Langille MGI, Beiko RG (2014) Interactions in the microbiome: communities of organisms and communities of genes. FEMS Microbiol Rev 38(1):90–118.  https://doi.org/10.1111/1574-6976.12035CrossRefGoogle Scholar
  21. Bordbar A, Monk JM, King ZA, Palsson BO (2014) Constraint-based models predict metabolic and associated cellular functions. Nat Rev Genet 15:107–120PubMedCrossRefPubMedCentralGoogle Scholar
  22. Briones AM, Okabe S, Umemiya Y, Ramsing NB, Reichardt W, Okuyama H (2002) Influence of different cultivars on populations of ammonia-oxidizing bacteria in the root environment of rice. Appl Environ Microbiol 68:3067–3075PubMedCentralCrossRefGoogle Scholar
  23. Bruns A, Nübel U, Cypionka H, Overmann J (2003) Effect of signal compounds and incubation conditions on the culturability of freshwater bacterioplankton. J Appl Environ Microbiol 69:1980–1989CrossRefGoogle Scholar
  24. Burkepile DE et al (2006) Chemically mediated competition between microbes and animals: microbes as consumers in food webs. Ecology 87:2821–2831PubMedCrossRefPubMedCentralGoogle Scholar
  25. Bustin SA, Benes V, Nolan T, Pfaffl MW (2005) Quantitative real-time RT-PCR – a perspective. J Mol Endocrinol 34:597–601CrossRefPubMedGoogle Scholar
  26. Cantarelli VC, Inamine E, Brodt TCZ, Secchi C, de Souza PF, Amaro MC, Batalha AA, Ligiero SD (2003) Quality control for microbiological culture media. Is it enough to follow the NCCLS M22-A2 procedures? Braz J Microbiol 34(Suppl.1):8–10. ISSN 1517-8382CrossRefGoogle Scholar
  27. Caracciolo AB, Bottoni P, Grenni P (2010) Fluorescence in situ hybridization in soil and water ecosystems: a useful method for studying the effect of xenobiotics on bacterial community structure. Toxicol Environ Chem 92:567–579CrossRefGoogle Scholar
  28. Casamayor EO, Schäfer H, Bañeras L, Pedrós-Alió C, Muyzer G (2000) Identification of and spatio-temporal differences between microbial assemblages from two neighboring sulfurous lakes: a comparison of microscopy and denaturing gradient gel electrophoresis. Appl Environ Microbiol 66:499–508PubMedCentralCrossRefGoogle Scholar
  29. Chibucos MC, Tyler BM (2009) Common themes in nutrient acquisition by plant symbiotic microbes, described by the Gene Ontology. BMC Microbiol 9(Suppl 1):S6.  https://doi.org/10.1186/1471-2180-9-S1-S6CrossRefPubMedPubMedCentralGoogle Scholar
  30. Cho J-C, Tiedje JM (2001) Bacterial species determination from DNA–DNA hybridization by using genome fragments and DNA microarrays. Appl Environ Microbiol 67:3677–3682PubMedCentralCrossRefGoogle Scholar
  31. Clark CA, Chen C, Ward-Rainey N, Pettis GS (1998) Diversity within Streptomyces ipomoeae based on inhibitory interactions, rep-PCR, and plasmid profiles. Phytopathology 88(11):1179–1186.  https://doi.org/10.1094/PHYTO.1998.88.11.1179CrossRefPubMedPubMedCentralGoogle Scholar
  32. Cline LC, Zak DR (2015) Soil microbial communities are shaped by plant-driven changes in resource availability during secondary succession. Ecology 96:3374–3385PubMedCrossRefPubMedCentralGoogle Scholar
  33. Cook AE, Meyers PR (2003) Rapid identification of filamentous actinomycetes to the genus level using genus-specific 16S rRNA gene restriction fragment patterns. Int J Syst Evol Microbiol 53:1907PubMedCrossRefPubMedCentralGoogle Scholar
  34. Cook D, Gardner DR, Pfister JA, Grum D (2004) Biosynthesis of natural products in plants by fungal endophytes with an emphasis on Swainsonine. In: Jetter R (ed) Phytochemicals – biosynthesis, functions and applications, Recent advances in phytochemistry. Springer, Switzerland, pp 23–34Google Scholar
  35. Dadheech PK, Glöckner G, Casper P, Kotut K, Mazzoni CJ, Mbedi S, Krienitz L (2013) Cyanobacterial diversity in the hot spring, pelagic and benthic habitats of a tropical soda lake. FEMS Microbiol Ecol 85:389–401PubMedCrossRefPubMedCentralGoogle Scholar
  36. Das S, Lyla PS, Khan SA (2006) Marine microbial diversity and ecology: importance and future perspectivesGoogle Scholar
  37. De Bruijn FJ (1992) Use of repetitive (repetitive extragenic palindromic and enterobacterial repetitive intergenic consensus) sequences and the polymerase chain reaction to fingerprint the genomes of Rhizobium meliloti isolates and other soil bacteria. Appl Environ Microbiol 58:2180–2187PubMedPubMedCentralGoogle Scholar
  38. de Carvalho CCCR, Caramujo M-J (2014) Fatty acids as a tool to understand microbial diversity and their role in food webs of Mediterranean temporary ponds. Molecules 19:5570–5598PubMedPubMedCentralCrossRefGoogle Scholar
  39. De Maayer P, Anderson D, Cary C, Cowan DA (2014) Some like it cold: understanding the survival strategies of psychrophiles. EMBO Rep 15:508–517.  https://doi.org/10.1002/embr.201338170CrossRefPubMedPubMedCentralGoogle Scholar
  40. de Souza AJ, de Andrade PAM, Pereira AP d A, Andreote FD, Tornisielo VL, Regitano JB (2017) The depleted mineralization of the fungicide chlorothalonil derived from loss in soil microbial diversity. Sci Rep 7:14646.  https://doi.org/10.1038/s41598-017-14803-0CrossRefPubMedCentralGoogle Scholar
  41. de Wit R, Bouvier T (2006) ‘Everything is everywhere, but, the environment selects’; what did Baas Becking and Beijerinck really say? Environ Microbiol 8:755–758CrossRefGoogle Scholar
  42. Delgado-Baquerizo M, Maestre FT, Reich PB, Jeffries TC, Gaitan JC, Encinar D, Berdugo M, Campbell CD, Singh BK (2016) Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat Commun 7:10541.  https://doi.org/10.1038/ncomms10541CrossRefGoogle Scholar
  43. DeLong EF (2005) Microbial community genomics in the ocean. Nat Rev Microbiol 3:459–469PubMedCrossRefPubMedCentralGoogle Scholar
  44. Derry AM, Staddon WJ, Kevan PG, Trevors JT (1999) Functional diversity and community structure of micro-organisms in three arctic soils as determined by sole-carbon-source-utilization. Biodivers Conserv 8:205–221CrossRefGoogle Scholar
  45. DeSantis TZ, Brodie EL, Moberg JP, Zubieta IX, Piceno YM, Andersen GL (2007) High-density universal 16S rRNA microarray analysis reveals broader diversity than typical clone library when sampling the environment. Microb Ecol 53:371–383PubMedCrossRefPubMedCentralGoogle Scholar
  46. Díez B, Pedrós-Alio C, Marsh TL, Massana R (2001) Application of denaturing gradient gel electrophoresis (DGGE) to study the diversity of marine picoeukaryotic assemblages and comparison of DGGE with other molecular techniques. Appl Environ Microbiol 67(7):2942PubMedPubMedCentralCrossRefGoogle Scholar
  47. Dimitriu PA, Pinkart HC, Peyton BM, Mormile MR (2008) Spatial and temporal patterns in the microbial diversity of a meromictic soda lake in Washington State. Appl Environ Microbiol 74(15):4877–4888.  https://doi.org/10.1128/AEM.00455-08CrossRefPubMedPubMedCentralGoogle Scholar
  48. Dix NJ, Webster J (1995) Fungal ecology. Chapman & Hall, LondonCrossRefGoogle Scholar
  49. Dunbar J, Barns SM, Ticknor LO, Kuske CR (2002) Empirical and theoretical bacterial diversity in four Arizona soils. Appl Environ Microbiol 68:3035–3045PubMedPubMedCentralCrossRefGoogle Scholar
  50. Ehrhardt CJ, Chu V, Brown TC, Simmons TL, Swan BK, Bannan J, Robertson JM (2010) Use of fatty acid methyl ester profiles for discrimination of Bacillus cereus T-strain spores grown on different media. Appl Environ Microbiol 76:1902–1912.  https://doi.org/10.1128/AEM.02443-09CrossRefPubMedPubMedCentralGoogle Scholar
  51. Ehrhardt CJ, Murphy DL, Robertson JM, Bannan JD (2015) Fatty acid profiles for differentiating growth medium formulations used to culture Bacillus cereus T-strain spores. J Forensic Sci 60(4):1022–1029.  https://doi.org/10.1111/1556-4029.12771. Epub 2015 Apr 9CrossRefPubMedPubMedCentralGoogle Scholar
  52. Elena SF, Lenski RE (2003) Microbial genetics: evolution experiments with microorganisms: the dynamics and genetic bases of adaptation. Nat Rev Genet 4:457–469.  https://doi.org/10.1038/nrg1088CrossRefPubMedPubMedCentralGoogle Scholar
  53. Ellis RJ, Morgan P, Weightman AJ, Fry JC (2003) Cultivation-dependent and -independent approaches for determining bacterial diversity in heavy-metal-contaminated soil. Appl Environ Microbiol 69:3223–3230.  https://doi.org/10.1128/AEM.69.6.3223-3230CrossRefPubMedPubMedCentralGoogle Scholar
  54. Ellis DG, Bizzoco RW, Kelley ST (2008) Halophilic Archaea determined from geothermal steam vent aerosols. Environ Microbiol 10(6):1582–1590.  https://doi.org/10.1111/j.1462-2920.2008.01574.xCrossRefPubMedPubMedCentralGoogle Scholar
  55. Embree M, Liu JK, Al-Bassam MM, Zengler K (2015) Networks of energetic and metabolic interactions define dynamics in microbial communities. Proc Natl Acad Sci U S A 112:15450–15455PubMedPubMedCentralCrossRefGoogle Scholar
  56. Farag AM, Goldstein JN, Woodward DF, Samadpour M (2001) Water quality in three creeks in the backcountry of Grand Teton National Park, USA. J Freshw Ecol 16:135–143CrossRefGoogle Scholar
  57. Farber JM (1996) An introduction to the hows and whys of molecular typing. J Food Protect 59:1091–1101CrossRefGoogle Scholar
  58. Farrar K, Bryant D, Cope-Selby N (2014) Understanding and engineering beneficial plant–microbe interactions: plant growth promotion in energy crops. Plant Biotechnol J 12:1193–1206.  https://doi.org/10.1111/pbi.12279CrossRefPubMedCentralGoogle Scholar
  59. Faust K, Raes J (2012) Microbial interactions: from networks to models. Nat Rev Microbiol 10:538–550PubMedCrossRefPubMedCentralGoogle Scholar
  60. Feil EJ, Enright MC (2004) Analyses of clonality and the evolution of bacterial pathogens. Curr Opin Microbiol 7:308–313PubMedCrossRefPubMedCentralGoogle Scholar
  61. Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci U S A 103:626–631PubMedPubMedCentralCrossRefGoogle Scholar
  62. Fisher MM, Triplett EW (1999) Automated approach for ribosomal intergenic spacer analysis of microbial diversity and its application to freshwater bacterial communities. Appl Environ Microbiol 65:4630–4636PubMedPubMedCentralGoogle Scholar
  63. Foti M, Sorokin DY, Lomans B, Mussman M, Zacharova EE, Pimenov NV, Kuenen JG, Muyzer G (2007) Diversity, activity, and abundance of sulfate-reducing bacteria in saline and hypersaline soda lakes. Appl Environ Microbiol 73:2093–3000PubMedPubMedCentralCrossRefGoogle Scholar
  64. Franklin RB, Taylor DR, Mills AL (1999) Characterization of microbial communities using randomly amplified polymorphic DNA (RAPD). J Microbiol Methods 35:225–235PubMedCrossRefPubMedCentralGoogle Scholar
  65. Freilich S, Zarecki R, Eilam O, Segal ES, Henry CS, Kupiec M et al (2011) Competitive and cooperative metabolic interactions in bacterial communities. Nat Commun 2:589PubMedCrossRefPubMedCentralGoogle Scholar
  66. Garbeva P, van Veen JA, van Elsas JD (2004) Microbial diversity in soil: selection microbial populations by plant and soil type and implications for disease suppressiveness. Annu Rev Phytopathol 42:243–270PubMedPubMedCentralCrossRefGoogle Scholar
  67. Garland JL, Mills AL (1991) Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Appl Environ Microbiol 57(8):2351–2359PubMedPubMedCentralGoogle Scholar
  68. Ghazanfar S, Azim A, Ghazanfar MA, Anjum MI, Begum I (2010) Metagenomics and its application in soil microbial community studies: biotechnological prospects. J Anim Plant Sci 6(2):611–622Google Scholar
  69. Gibbons SM, Gilbert JA (2015) Microbial diversity—exploration of natural ecosystems and microbiomes. Curr Opin Genet Dev 35:66–72.  https://doi.org/10.1016/j.gde.2015.10.003CrossRefPubMedPubMedCentralGoogle Scholar
  70. Gillings M, Holley M (1997) Repetitive element PCR fingerprinting (rep-PCR) using enterobacterial repetitive intergenic consensus (ERIC) primers is not necessarily directed at ERIC elements. Lett Appl Microbiol 25(1):17–21PubMedCrossRefPubMedCentralGoogle Scholar
  71. Glaring MA, Vester JK, Lylloff JE, Abu Al-Soud W, Sørensen SJ, Stougaard P (2015) Microbial diversity in a permanently cold and alkaline environment in Greenland. PLoS One 10(4):e0124863.  https://doi.org/10.1371/journal.pone.0124863CrossRefPubMedPubMedCentralGoogle Scholar
  72. Green CT, Scow KM (2000) Analysis of phospholipid fatty acids (PLFA) to characterize microbial communities in aquifers. Hydrogeol J 8:126–141CrossRefGoogle Scholar
  73. Griffiths RI, Whiteley ADS, O’Donnell AG, Bailey MJ (2000) Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Appl Environ Microbiol 66(12):5488PubMedPubMedCentralCrossRefGoogle Scholar
  74. Gronstal A (2016) A view into the complexity of microbial communities. Nat Sci Rep. https://astrobiology.nasa.gov/news/a-view-into-the-complexity-of-microbial-communities/
  75. Gunatilaka AAL (2006) Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity, and implications of their occurrence. J Nat Prod 69:509–526.  https://doi.org/10.1021/np058128nCrossRefPubMedPubMedCentralGoogle Scholar
  76. Guttman DS, McHardy AC, Schulze-Lefert P (2014) Microbial genome-enabled insights into plant–microorganism interactions. Nat Rev Genet 15:797–813.  https://doi.org/10.1038/nrg3748CrossRefGoogle Scholar
  77. Haizhou Li H, Yang Q, Li J, Gao H, Ping Li P, Zhou H (2015) The impact of temperature on microbial diversity and AOA activity in the Tengchong Geothermal Field, China. Sci Rep 5:17056.  https://doi.org/10.1038/srep17056CrossRefPubMedPubMedCentralGoogle Scholar
  78. Hamdan LJ, Coffin RB, Sikaroodi M, Greinert J, Treude T, Gillevet PM (2013) Ocean currents shape the microbiome of Arctic marine sediments. ISME J 7(4):685–696. pmid:23190727PubMedCrossRefPubMedCentralGoogle Scholar
  79. Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79(3):293–320PubMedPubMedCentralCrossRefGoogle Scholar
  80. Hartel PG, Summer JD, Hill JL, Collins JV, Entry JA, Segars WI (2002) Geographic variability of Escherichia coli ribotypes from animals in Idaho and Georgia. J Environ Qual 31(4):1273–1278PubMedCrossRefPubMedCentralGoogle Scholar
  81. Heinken A, Thiele I (2015) Systems biology of host-microbe metabolomics. Wiley Interdiscip Rev Syst Biol Med 7:195–219PubMedPubMedCentralCrossRefGoogle Scholar
  82. Henneberger RM, Walter MR, Anitori RP (2006) Extraction of DNA from acidic, hydrothermally modified volcanic soils. Environ Chem 3(2):100–104. https://doi.org/10.1071/EN06013CrossRefGoogle Scholar
  83. Hill JE, Seipp RP, Betts M, Hawkins L, Van Kessel AG, Crosby WL, Hemmingsen SM (2002) Extensive profiling of a complex microbial community using high throughput sequencing. Appl Environ Microbiol 68(6):3055–3066PubMedPubMedCentralCrossRefGoogle Scholar
  84. Hodgson S, Cates C, Hodgson J, Morley NJ, Sutton BC, Gange AC (2014) Vertical transmission of fungal endophytes is widespread in forbs. Ecol Evol 4:1199–1208.  https://doi.org/10.1002/ece3.953CrossRefPubMedPubMedCentralGoogle Scholar
  85. Houpikian P, Raoult D (2001) 16S/23S rRNA intergenic spacer regions for phylogenetic analysis, identification, and subtyping of Bartonella species. J Clin Microbiol 39(8):2768–2778PubMedPubMedCentralCrossRefGoogle Scholar
  86. Hugenholtz P (2002) Exploring prokaryotic diversity in the genomic era. Genome Biol 3:Reviews 0003CrossRefGoogle Scholar
  87. Hughes JB, Hellmann JJ, Ricketts TH, Bohannan BJM (2001) Counting the uncountable: statistical approaches to estimating microbial diversity. Appl Environ Microbiol 67(10):4399–4406PubMedPubMedCentralCrossRefGoogle Scholar
  88. Hulton CSJ, Higgins CF, Sharp PM (1991) ERIC sequences: a novel family of repetitive elements in the genomes of Escherichia coli, Salmonella typhimurium and other enterobacteria. Mol Microbiol 5:825–834PubMedCrossRefPubMedCentralGoogle Scholar
  89. Hussein EI, Jacob JH, Shakhatreh MAK, Al-razaq MAA, Juhmani AS-F, Cornelison CT (2017) Exploring the microbial diversity in Jordanian hot springs by comparative metagenomic analysis. MicrobiologyOpen 6:e00521.  https://doi.org/10.1002/mbo3.521CrossRefPubMedCentralGoogle Scholar
  90. Ikeda H, Ishikawa J, Hanamoto A, Shinose M, Kikuchi H, Shiba T, Sakaki Y, Hattori M, Omura S (2003) Complete genome sequence and comparative analysis of the industrial micro-organism Streptomyces avermitilis. Nat Biotechnol 21:526–531PubMedCrossRefPubMedCentralGoogle Scholar
  91. Imchen M, Kumavath R, Barh D, Azevedo V, Ghosh P, Viana M, Wattam AR (2017) Searching for signatures across microbial communities: metagenomic analysis of soil samples from mangrove and other ecosystems. Sci Rep 7:8859.  https://doi.org/10.1038/s41598-017-09254-6CrossRefPubMedPubMedCentralGoogle Scholar
  92. Janssen P (2008) New cultivation strategies for terrestrial microorganisms. In: Zengler K (ed) Accessing uncultivated microorganisms. ASM Press, Washington, DC, pp 173–192.  https://doi.org/10.1128/9781555815509.ch10CrossRefGoogle Scholar
  93. Jansson JK, Baker ES (2016) A multi-omic future for microbiome studies. Nat Microbiol 1:16049PubMedCrossRefPubMedCentralGoogle Scholar
  94. Jett BD, Hatter KL, Huycke MM, Gilmore MS (1997) Simplified agar plate method for quantifying viable bacteria. BioTechniques 23:648–650CrossRefGoogle Scholar
  95. Joint I, Mühling M, Querellou J (2010) Culturing marine bacteria – an essential prerequisite for biodiscovery. Microb Biotechnol 3(5):564–575.  https://doi.org/10.1111/j.1751-7915.2010.00188.xCrossRefPubMedCentralGoogle Scholar
  96. Judd AK, Schneider M, Sadowsky MJ, de Bruijn FJ (1993) Use of repetitive sequences and the polymerase chain reaction technique to classify genetically related Bradyrhizobiumjaponicum serocluster 123 strains. Appl Environ Microbiol 59:1702–1708PubMedPubMedCentralGoogle Scholar
  97. Kalwasińska A, Felföldi T, Szabó A, Deja-Sikora E, Kosobucki P, Walczak M (2017) Microbial communities associated with the anthropogenic, highly alkaline environment of a saline soda lime, Poland. Antonie Van Leeuwenhoek 110(7):945–962.  https://doi.org/10.1007/s10482-017-0866-yCrossRefPubMedPubMedCentralGoogle Scholar
  98. Keller M, Zengler K (2004) Tapping into microbial diversity. Nat Rev Microbiol 2:141–150PubMedCrossRefPubMedCentralGoogle Scholar
  99. Kelly JJ, Haggblom M, Tate RL III (1999) Changes in soil microbial communities over time resulting from one time application of zinc: a laboratory microcosm study. Soil Biol Biochem 31:1455–1465CrossRefGoogle Scholar
  100. Keshri J, Mishra A, Jha B (2013) Microbial population index and community structure in saline–alkaline soil using gene targeted metagenomics. Microbiol Res 168:165–173.  https://doi.org/10.1016/j.micres.2012.09.005CrossRefPubMedPubMedCentralGoogle Scholar
  101. Kirchman DL, Cottrell MT, Lovejoy C (2010) The structure of bacterial communities in the western Arctic Ocean as revealed by pyrosequencing of 16S rRNA genes. Environ Microbiol 12(5):1132–1143PubMedCrossRefPubMedCentralGoogle Scholar
  102. Kirka JL, Beaudettea LA, Hartb M, Moutoglisc P, Klironomosb JN, Lee H, Trevors JT (2004) Methods of studying soil microbial diversity. J Microbiol Methods 58:169–188CrossRefGoogle Scholar
  103. Köpke B, Wilms R, Engelen B, Cypionka H, Sass H (2005) Microbial diversity in coastal subsurface sediments: a cultivation approach using various electron acceptors and substrate gradients. Appl Environ Microbiol 71:7819–7830PubMedPubMedCentralCrossRefGoogle Scholar
  104. Krienitz L, Dadheech PK, Kotut K (2013) Mass developments of the cyanobacteria Anabaenopsis and Cyanospira (Nostocales) in the soda lakes of Kenya: ecological and systematic implications. Hydrobiologia 703:79–93CrossRefGoogle Scholar
  105. Ku C, Martin WF (2016) A natural barrier to lateral gene transfer from prokaryotes to eukaryotes revealed from genomes: the 70 % rule. BMC Biol 14:89.  https://doi.org/10.1186/s12915-016-0315-9CrossRefPubMedPubMedCentralGoogle Scholar
  106. Kuczynski J, Liu Z, Lozupone C, McDonald D, Fierer N, Knight R (2010) Microbial community resemblance methods differ in their ability to detect biologically relevant patterns. Nat Methods 7:813–819PubMedPubMedCentralCrossRefGoogle Scholar
  107. Kusari S, Singh S, Jayabaskaran C (2014a) Biotechnological potential of plant-associated endophytic fungi: hope versus hype. Trends Biotechnol 32:297–303.  https://doi.org/10.1016/j.tibtech.2014.03.009CrossRefPubMedPubMedCentralGoogle Scholar
  108. Kusari S, Lamsho M, Kusari P, Gottfried S, Zuhlke S, Louven K et al (2014b) Endophytes are hidden producers of maytansine in Putterlickia roots. J Nat Prod 77:2577–2584.  https://doi.org/10.1021/np500219aCrossRefPubMedPubMedCentralGoogle Scholar
  109. Lane N (2011) Energetics and genetics across the prokaryote-eukaryote divide. Biol Direct 6:35.  https://doi.org/10.1186/1745-6150-6-35CrossRefPubMedPubMedCentralGoogle Scholar
  110. Lane DJ, Pace B, Olsen GJ, Stahl DA, Sogin ML, Pace NR (1985) Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci U S A 82:6955–6959PubMedPubMedCentralCrossRefGoogle Scholar
  111. Lareen A, Burton F, Schäfer P (2016) Plant root-microbe communication in shaping root microbiomes. Plant Mol Biol 90:575–587PubMedPubMedCentralCrossRefGoogle Scholar
  112. Larsen PE, Gibbons SM, Gilbert JA (2012) Modeling microbial community structure and functional diversity across time and space. FEMS Microbiol Lett 332:91–98.  https://doi.org/10.1111/j.1574-6968.2012.02588.xCrossRefPubMedPubMedCentralGoogle Scholar
  113. Laurent F, Provost F, Boiron P (1999) Rapid identification of clinically relevant Nocardia species to genus level by 16S rRNA gene PCR. J Clin Microbiol 37:99–102PubMedPubMedCentralGoogle Scholar
  114. Lee E, Ryan UM, Monis P, McGregor GB, Bath A, Gordon C, Paparini A (2014) Polyphasic identification of cyanobacterial isolates from Australia. Water Res 59:248–261.  https://doi.org/10.1016/j.watres.2014.04.023CrossRefPubMedPubMedCentralGoogle Scholar
  115. Lehner A, Loy A, Behr T, Gaenge H, Ludwig W, Wagner M, Schleifer K-H (2005) Oligonucleotide microarray for identification of Enterococcus species. FEMS Microbiol Lett 246:133–142PubMedCrossRefPubMedCentralGoogle Scholar
  116. Li T, Wu T-D, Mazeas L, Toffin L, Guerquin-Kern J-L, Leblon G, Bouchez T (2008) Simultaneous analysis of microbial identity and function using NanoSIMS. Environ Microbiol 10: 580–588.PubMedPubMedCentralCrossRefGoogle Scholar
  117. Li S-J, Hua Z-S, Huang L-N, Li J, Shi S-H, Chen L-X, Kuang J-L, Liu J, Hu M, Shu W-S (2014) Microbial communities evolve faster in extreme environments. Sci Rep 4:6.  https://doi.org/10.1038/srep06205CrossRefGoogle Scholar
  118. Li Y, Adams J, Yu Shi Y, Wang H, He J-S, Chu H (2017) Distinct soil microbial communities in habitats of differing soil water balance on the Tibetan Plateau. Sci Rep. Article Number 46407.  https://doi.org/10.1038/srep46407
  119. Lindow SE, Brandl MT (2003) Microbiology of the phyllosphere. Appl Environ Microbiol 69:1875–1883PubMedPubMedCentralCrossRefGoogle Scholar
  120. Lipman LJ, de Nijs A, Gaastra W. Isolation and identification of fimbriae and toxin production by Escherichia coli strains from cows with clinical mastitis. Vet Microbiol. 1995;47(1-2):1–7.PubMedCrossRefPubMedCentralGoogle Scholar
  121. Liu WL, Marsh TL, Cheng H, Forney LJ (1997) Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol 63:4516–4522PubMedPubMedCentralGoogle Scholar
  122. Louws FJ, Fulbright DW, Stephens CT, de Bruijn FJ (1994) Specific genomic fingerprints of phytopathogenic Xanthomonas and Pseudomonas pathovars and strains generated with repetitive sequences and PCR. Appl Environ Microbiol 60:2286–2295PubMedPubMedCentralGoogle Scholar
  123. Louws FJ, Schneider M, de Bruijn FJ (1997) Assessing genetic diversity of microbes using repetitive sequence-based PCR (rep-PCR). In: Toranzos G (ed) Nucleic acid amplification methods for the analysis of environmental microbes. Technomic Publishing, Lancaster, pp 63–94Google Scholar
  124. Louws FJ, Bell J, Medina-Mora CM, Smart CD, Opgenorth D et al (1998) Rep-PCR-mediated genomic fingerprinting: a rapid and effective method to identify Clavibacter michiganensis. Phytopathology 88:862–868PubMedPubMedCentralCrossRefGoogle Scholar
  125. Loy A, Lehner A, Lee N, Adamczyk J, Meier H, Ernst J, Schleifer KH, Wagner M. Oligonucleotide microarray for 16S rRNA gene-based detection of all recognized lineages of sulfate-reducing prokaryotes in the environment. Appl Environ Microbiol. 2002;68(10):5064–81.PubMedPubMedCentralCrossRefGoogle Scholar
  126. Loy A et al (2005) 16S rRNA gene-based oligonucleotide microarray for environmental monitoring of the betaproteobacterial order “Rhodocyclales”. Appl Environ Microbiol 71:1373–1386PubMedPubMedCentralCrossRefGoogle Scholar
  127. Maiden MC, Bygraves JA, Feil E, Morelli G, Russell JE, Urwin R, Zhang Q, Zhou J, Zurth K, Caugant DA, Feavers IM, Achtman M, Spratt BG (1998) Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci U S A 95(6):3140–3145PubMedCentralCrossRefGoogle Scholar
  128. Makhalanyane TP, Valverde A, Gunnigle E, Frossard A, Ramond J-B, Cowan DA (2015) Microbial ecology of hot desert edaphic systems. FEMS Microbiol Rev 39:203–221.  https://doi.org/10.1093/femsre/fuu011CrossRefPubMedPubMedCentralGoogle Scholar
  129. Manefield M, Whiteley AS, Griffiths RI, Bailey MJ (2002) RNA stable isotope probing, a novel means of linking microbial community function to phylogeny. Appl Environ Microbiol 68(11):5367–5373PubMedPubMedCentralCrossRefGoogle Scholar
  130. Marsh TL (1999) Terminal restriction fragment length polymorphism (T-RFLP): an emerging method for characterizing diversity among homologous populations of amplification products. Curr Opin Microbiol 2:323–327PubMedCrossRefPubMedCentralGoogle Scholar
  131. Mateos-Rivera A, Yde JC, Wilson B, Finster KW, Reigstad LJ, Øvreås L (2016) The effect of temperature change on the microbial diversity and community structure along the chronosequence of the sub-arctic glacier forefield of Styggedalsbreen (Norway). FEMS Microbiol Ecol 92(4):fnw038.  https://doi.org/10.1093/femsec/fiw038CrossRefPubMedPubMedCentralGoogle Scholar
  132. Meena KK, Kumar M, Kalyuzhnaya MA, Yandigeri MS, Singh DP, Saxena AK, Arora DK (2012) Epiphytic pink-pigmented methylotrophic bacteria enhance germination and seedling growth of wheat (Triticum aestivum) by producing phytohormone. Antonie Van Leeuwenhoek 101:777–786.  https://doi.org/10.1007/s10482-011-9692CrossRefPubMedPubMedCentralGoogle Scholar
  133. Meena et al (2017) Abiotic stress responses and microbe-mediated mitigation in plants: the omics strategies. Front Plant Sci.  https://doi.org/10.3389/fpls.2017.00172
  134. Metzker ML (2010) Sequencing technologies – the next generation. Nat Rev Genet 11:31–46PubMedCrossRefPubMedCentralGoogle Scholar
  135. Miki T et al (2014) Biodiversity and multifunctionality in a microbial community: a novel theoretical approach to quantify functional redundancy. Proc R Soc Lond B 281:20132498CrossRefGoogle Scholar
  136. Mobarry BK, Wagner M, Urbain V, Rittmann BE, Stahl DA (1996) Phylogenetic probes for analyzing abundance and spatial organization of nitrifying bacteria. Appl Environ Microbiol 62:2156–2162PubMedPubMedCentralGoogle Scholar
  137. Mochimaru H, Yoshioka H, Tamaki H, Nakamura K, Kaneko N, Sakata S, Imachi H, Sekiguchi Y, Uchiyama H, Kamagata Y (2007) Microbial diversity and methanogenic potential in a high temperature natural gas field in Japan. Extremophiles 11:453–461PubMedCrossRefPubMedCentralGoogle Scholar
  138. Moeseneder MM, Arrieta JM, Muyzer G, Winter C, Herndl GJ (1999) Optimization of terminal-restriction fragment length polymorphism analysis for complex marine bacterioplankton communities and comparison with denaturing gradient gel electrophoresis. Appl Environ Microbiol 65:3518–3525PubMedPubMedCentralGoogle Scholar
  139. Mohana Kumara P, Zuehlke S, Priti V, Ramesha BT, Shweta S, Ravikanth G et al (2012) Fusarium proliferatum an endophytic fungus from Dysoxylum binectariferum Hook.f, produces rohutikine, a chromane alkaloid possessing anti-cancer activity. Antonie Van Leeuwenhoek 101:323–329.  https://doi.org/10.1007/s10482-011-9638-2CrossRefPubMedGoogle Scholar
  140. Monard C, Gantner S, Bertilsson S, Hallin S, Stenlid J (2016) Habitat generalists and specialists in microbial communities across a terrestrial-freshwater gradient. Sci Rep 6:37719.  https://doi.org/10.1038/srep37719CrossRefPubMedPubMedCentralGoogle Scholar
  141. Moore BS, Hertweck C, Hopke JN, Izumikawa M, Kalaitzis JA, Nilsen G et al (2002) Plant-like biosynthetic pathways in bacteria: from benzoic acid to chalcone. J Nat Prod 65:1956–1962.  https://doi.org/10.1021/np020230mCrossRefPubMedPubMedCentralGoogle Scholar
  142. Muyzer G (1999) DGGE/TGGE a method for identifying genes from natural ecosystems. Curr Opin Microbiol 2:317–322PubMedCrossRefPubMedCentralGoogle Scholar
  143. Muyzer G, Brinkhoff T, Nübel U, Santegoeds C, Schäfer H, Wawer C (1997) Denaturing gradient gel electrophoresis (DGGE) in microbial ecology. In: Akkermans ADL, van Elsas JD, de Bruijn FJ (eds) Molecular microbial ecology manual, vol 3.4.4. Kluwer Academic Publishers, Dordrecht, pp 1–27Google Scholar
  144. Nazina TN, Shestakova NM, Semenova EM, Korshunova AV, Kostrukova NK, Tourova TP, Min L, Feng Q, Poltaraus AB (2017) Diversity of metabolically active bacteria in water-flooded high-temperature heavy oil reservoir. Front Microbiol.  https://doi.org/10.3389/fmicb.2017.00707
  145. Newbury SF, Smith NH, Robinson EC, Hiles ID, Higgins CF (1987) Stabilization of translationally active mRNA by prokaryotic REP sequences. Cell 48:297–310PubMedCrossRefGoogle Scholar
  146. Newman DJ, Cragg GM (2015) Endophytic and epiphytic microbes as “sources” of bioactive agents. Front Chem.  https://doi.org/10.3389/fchem.2015.00034
  147. O’Callaghan M (2016) Microbial inoculation of seed for improved crop performance: issues and opportunities. Appl Microbiol Biotechnol 100:5729–5746PubMedPubMedCentralCrossRefGoogle Scholar
  148. Olff H, Alonso D, Berg MP, Eriksson BK, Loreau M, Piersma T, Rooney N (2009) Parallel ecological networks in ecosystems. Philos Trans R Soc Lond Ser B Biol Sci 364:1755–1779.  https://doi.org/10.1098/rstb.2008.0222CrossRefGoogle Scholar
  149. Pace NR (1997) A molecular view of microbial diversity and the biosphere. Science 276:734–740PubMedCrossRefGoogle Scholar
  150. Partida-Martinez LP, Hertweck C (2005) Pathogenic fungus harbours endosymbiotic bacteria for toxin production. Nature 437:884–888.  https://doi.org/10.1038/nature03997CrossRefPubMedGoogle Scholar
  151. Perez-Garcia O, Lear G, Singhal N (2016) Metabolic network modeling of microbial interactions in natural and engineered environmental systems. Front Microbiol 7:673–703PubMedPubMedCentralGoogle Scholar
  152. Pernthaler A, Preston CM, Pernthaler J, DeLong EF, Amann R (2002) A comparison of fluorescently labeled oligonucleotide and polynucleotide probes for the detection of pelagic marine bacteria and archaea. Appl Environ Microbiol 68:661–667PubMedPubMedCentralCrossRefGoogle Scholar
  153. Peter H et al (2011) Function-specific response to depletion of microbial diversity. ISME J 5:351–361PubMedCrossRefGoogle Scholar
  154. Philippot L et al (2013) Loss in microbial diversity affects nitrogen cycling in soil. ISME J 7:1609–1619PubMedPubMedCentralCrossRefGoogle Scholar
  155. Popa O, Dagan T (2011) Trends and barriers to lateral gene transfer in prokaryotes. Curr Opin Microbiol 14:615–623.  https://doi.org/10.1016/j.mib.2011.07.027CrossRefPubMedGoogle Scholar
  156. Potshangbam M, Devi SI, Sahoo D, Strobel GA (2017) Functional characterization of Endophytic fungal community associated with Oryza sativa L. and Zea mays L. Front Microbiol 8Google Scholar
  157. Prakash O, Verma M, Sharma P, Kumar M, Kumari K, Singh A, Kumari H, Jit S, Gupta SK, Khanna M, Lal R (2007) Polyphasic approach of bacterial classification—an overview of recent advances. Indian J Microbiol 47(2):98–108.  https://doi.org/10.1007/s12088-007-0022-xCrossRefPubMedPubMedCentralGoogle Scholar
  158. Proal AD, Lindseth IA, Marshall TG (2017) Microbe-microbe and host-microbe interactions drive microbiome dysbiosis and inflammatory processes. Discov Med 23(124):51–60PubMedPubMedCentralGoogle Scholar
  159. Prosser JI (2015) Dispersing misconceptions and identifying opportunities for the use of ‘omics’ in soil microbial ecology. Nat Rev Microbiol 13:439–446.  https://doi.org/10.1038/nrmicro3468CrossRefPubMedPubMedCentralGoogle Scholar
  160. Rademaker JLW, de Bruijn FJ (1997) Characterization and classification of microbes by rep-PCR genomic finger-printing and computer assisted pattern analysis. In: Caetano-Anolles G, Gresshoff PM (eds) DNA markers: protocols, applications and overviews. Wiley, New York, pp 151–171Google Scholar
  161. Rademaker JLW, Louws FJ, Versalovic J, De Bruijn FJ (1998) Characterization of the diversity of ecologically important microbes by rep-PCR genomic fingerprinting. In: Molecular microbial ecology manual, supplement. Kluwer Academic Publishers, Dordrecht, pp 1–16Google Scholar
  162. Ranjard L et al (2001) Characterization of bacterial and fungal soil communities by automated ribosomal intergenic spacer analysis fingerprints: biological and methodological variability. Appl Environ Microbiol 67:4479–4487PubMedPubMedCentralCrossRefGoogle Scholar
  163. Rastogi G, Sani RK (2011) Molecular techniques to assess microbial community structure, function, and dynamics in the environment. In: Ahmad I et al (eds) Microbes and microbial technology: agricultural and environmental applications. Springer, New York, pp 29–58CrossRefGoogle Scholar
  164. Ravin NV, Mardanova AV, Skryabin KG (2015) Metagenomics as a tool for the investigation of uncultured microorganisms. Genetika 51:519–528PubMedPubMedCentralGoogle Scholar
  165. Reysenbach A-L, Giver LJ, Wickham GS, Pace NR (1992) Differential amplification of rRNA genes by polymerase chain reaction. Appl Environ Microbiol 58:3417–3418PubMedPubMedCentralGoogle Scholar
  166. Riemann L, Steward GF, Fandino LB, Campbell L, Landry MR, Azam F (1999) Bacterial community composition during two consecutive NE Monsoon periods in the Arabian Sea studied by denaturing gradient gel electrophoresis (DGGE) of rRNA genes. Deep-Sea Res 46:1791–1811Google Scholar
  167. Röling WF, Ferrer M, Golyshin PN (2010) Systems approaches to microbial communities and their functioning. Curr Opin Biotechnol 21:532–538PubMedCrossRefPubMedCentralGoogle Scholar
  168. Roselló-Mora R, Amann R (2001) The species concept for prokaryotes. FEMS Microbiol Rev 25:39–67CrossRefGoogle Scholar
  169. Roszak DB, Colwell RR (1987) Survival strategies of bacteria in the natural environment. Microbiol Rev 51:365–379PubMedPubMedCentralGoogle Scholar
  170. Salazar N, de los Reyes-Gavilan CG (2016) Editorial: insights into microbe–microbe interactions in human microbial ecosystems: strategies to be competitive. Front Microbiol.  https://doi.org/10.3389/fmicb.2016.01508
  171. Samadpour M (2002) Microbial source tracking: principles and practice. In: Microbiological source tracking workshop-abstracts. February 5, 2002. Irvine, CA. NWRI Abstract Report NWRI-02-01. National Water Research Institute, Fountain Valley, pp 5–10Google Scholar
  172. Sanders ER (2012) Aseptic laboratory techniques: plating methods. J Vis Exp 63:3064Google Scholar
  173. Sathya A, Vijayabharathi R, Gopalakrishnan S (2016) Soil microbes: the invisible managers of soil fertility. In: Microbial inoculants in sustainable agricultural productivity. Springer, New York, pp 1–16Google Scholar
  174. Schauer M, Massana R, Pedros-Alio C (2000) Spatial differences in bacterioplankton composition along the Catalan coast (NW Mediterranean) assessed by molecular fingerprinting. FEMS Microbiol Ecol 33:51–59PubMedCrossRefPubMedCentralGoogle Scholar
  175. Scherer C, Muller K-D, Rath P-M, Ansorg RAM (2003) Influence of culture conditions on the fatty acid profiles of laboratory-adapted and freshly isolated strains of Helicobacter pylori. J Clin Microbiol 41:1114–1117PubMedPubMedCentralCrossRefGoogle Scholar
  176. Schloss PD, Handelsman J (2004) Status of the microbial census. Microbiol Mol Biol Rev 68(4):686–691PubMedPubMedCentralCrossRefGoogle Scholar
  177. Schwieger F, Tebbe CC (1998) A new approach to utilize PCR-single-strand conformation polymorphism for 16S rRNA gene-based microbial community analysis. Appl Environ Microbiol 64:4870–4876PubMedPubMedCentralGoogle Scholar
  178. Sekora NS, Lawrence KS, Agudelo P, van Santen E, McInroy JA (2009) Using FAME analysis to compare, differentiate, and identify multiple nematode species. J Nematol 41:163–173PubMedCentralGoogle Scholar
  179. Sharples GJ, Lloyd RG (1990) A novel repeated DNA sequence located in the intergenic regions of bacterial chromosomes. Nucleic Acids Res 18(22):6503–6508PubMedPubMedCentralCrossRefGoogle Scholar
  180. Siciliano SD, Germida JJ (1998) Biolog analysis and fatty acid methyl ester profiles indicate that Pseudomonad inoculants that promote phytoremediation alter the root-associated microbial community of Bromus biebersteinii. Soil Biol Biochem 30:1717–1723CrossRefGoogle Scholar
  181. Simpson JM, Santo Domingo JW, Reasoner DJ (2002) Microbial source tracking: state of the science. Environ Sci Tech 36(24):5279–5288CrossRefGoogle Scholar
  182. Singh DP, Singh HB (2014) Trends in soil microbial ecology. Studium Press LLC, HoustonGoogle Scholar
  183. Sjöling S, Cowan DA (2003) High 16S rDNA bacterial diversity in glacial meltwater lake sediment, Bratina Island, Antarctica. Extremophiles 7(4):275–282PubMedCrossRefPubMedCentralGoogle Scholar
  184. Skilbeck G (2012) Drastic measures: a revised estimate of Earth’s microbes. http://theconversation.com/drastic-measures-a-revised-estimate-of-earths-microbes-9101
  185. Sloan WT, Lunn M, Woodcock S, Head IM, Nee S, Curtis TP (2006) Quantifying the roles of immigration and chance in shaping prokaryote community structure. Environ Microbiol 8:732–740CrossRefGoogle Scholar
  186. Smith DR, Chapman MR (2017) Economical evolution: microbes reduce the synthetic cost of extracellular proteins. mBio 1(3):e00131–e00110.  https://doi.org/10.1128/mBio.00131-10CrossRefGoogle Scholar
  187. Smith CJ, Osborn AM (2009) Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology. FEMS Microbiol Ecol 67(1):6–20PubMedCrossRefPubMedCentralGoogle Scholar
  188. Smith E, Leeflang P, Wernars K (1997) Detection of shifts in microbial community structure and diversity in soil caused by copper contamination using amplified ribosomal DNA restriction analysis. FEMS Microbiol Ecol 23:249–261CrossRefGoogle Scholar
  189. Sorokin DY, Berben T, Melton ED, Overmars L, Vavourakis CD, Muyzer G (2014) Microbial diversity and biogeochemical cycling in soda lakes. Extremophiles 18:791–809PubMedCentralCrossRefGoogle Scholar
  190. Steingrube VA, Wilson RW, Brown BA, Jost KC Jr, Blacklock Z, Gibson JL, Wallace RJ Jr (1997) Rapid identification of the clinically significant species and taxa of aerobic actinomycetes, including Actinomadura, Gordona, Nocardia, Rhodococcus, Streptomyces, and Tsukamurella isolates, by DNA amplification and restriction endonuclease analysis. J Clin Microbiol 35:817–822PubMedPubMedCentralGoogle Scholar
  191. Steven B, Gallegos-Graves LV, Belnap J, Kuske CR (2013) Dryland soil microbial communities display spatial biogeographic patterns associated with soil depth and soil parent material. FEMS Microbiol Ecol 86:101–113.  https://doi.org/10.1111/1574-6941.12143CrossRefPubMedPubMedCentralGoogle Scholar
  192. Stewart EJ (2012) Growing unculturable bacteria. J Bacteriol 194:4151–4160PubMedPubMedCentralCrossRefGoogle Scholar
  193. Stolyar S, Van Dien S, Hillesland KL, Pinel N, Lie TJ, Leigh JA, Stahl DA (2007) Metabolic modeling of a mutualistic microbial community. Mol Syst Biol 3:92PubMedPubMedCentralCrossRefGoogle Scholar
  194. Štursa P, Uhlík O, Kurzawová V, Koubek J, Ionescu M, Strohalm M, Lovecká P, Macek T, Macková M (2009) Approaches for diversity analysis of cultivable and non-cultivable bacteria in real soil. Plant Soil Environ 55:389–396CrossRefGoogle Scholar
  195. Swirglmaier K, Keiz K, Engel M, Geist J, Raeder U (2015) Seasonal and spatial microbial diversity along a trophic gradient in the interconnected lakes of the Osterseen Lake District, Bavaria. Front Microbiol 6:1168Google Scholar
  196. Tabacchioni S, Chiarini L, Bevivino A, Cantale C, Dalmastri C (2000) Bias caused by using different isolation media for assessing the genetic diversity of a natural microbial population. Microb Ecol 40:169–176PubMedPubMedCentralGoogle Scholar
  197. Teeling H, Glockner FO (2012) Current opportunities and challenges in microbial metagenome analysis—a bioinformatic perspective. Brief Bioinform 13(6):728–742.  https://doi.org/10.1093/bib/bbs039CrossRefPubMedPubMedCentralGoogle Scholar
  198. Thavamani P, Malik S, Beer M, Megharaj M, Naidu R (2012) Microbial activity and diversity in long-term mixed contaminated soils with respect to polyaromatic hydrocarbons and heavy metals. J Environ Manag 99:10–17CrossRefGoogle Scholar
  199. Thies JE (2007) Soil microbial community analysis using terminal restriction fragment length polymorphisms. Soil Sci Soc Am J 71:579–591CrossRefGoogle Scholar
  200. Thies JE (2008) Molecular methods for studying microbial ecology in the soil and rhizosphere. In: Nautiyal CS, Dion P (eds) Molecular mechanisms of plant and microbe coexistence. Soil biology, vol 15. Springer-Verlag, Berlin.  https://doi.org/10.1007/978-3-540-75575-3CrossRefGoogle Scholar
  201. Torto-Alalibo T, Collmer CW, Gwinn-Giglio M, Lindeberg M, Meng S, Chibucos MC, Tseng T-T, Lomax J, Biehl B, Ireland A, Bird D, Dean RA, Glasner JD, Perna N, Setubal JC, Collmer A, Tyler BM (2010) Unifying themes in microbial associations with animal and plant hosts described using the gene ontology. Microbiol Mol Biol Rev 74:479–503.  https://doi.org/10.1128/MMBR.00017-10CrossRefPubMedPubMedCentralGoogle Scholar
  202. Tunlid A, White DC (1992) Biochemical analysis biomass, community structure, nutritional status and metabolic activity of microbial communities on soil. In: Stotzky G, Bollag JM (eds) Soil biochemistry, vol 7. Marcel Dekker, New York, pp 229–262Google Scholar
  203. Ultee A, Souvatzi N, Maniadi K, Konig H (2004) Identification of the culturable and nonculturable bacterial population in ground water of a municipal water supply in Germany. J Appl Microbiol 96:560–568.  https://doi.org/10.1111/j.1365-2672.2004.02174.xCrossRefPubMedPubMedCentralGoogle Scholar
  204. Urwin R, Maiden MCJ (2003) Multi-locus sequence typing: a tool for global epidemiology. Trends Microbiol 11:479–487PubMedCrossRefPubMedCentralGoogle Scholar
  205. van der Heijden MGA et al (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310PubMedPubMedCentralCrossRefGoogle Scholar
  206. van Elsas JD et al (2012) Microbial diversity determines the invasion of soil by a bacterial pathogen. Proc Natl Acad Sci U S A 24:1159–1164CrossRefGoogle Scholar
  207. Vandamme P, Pot B, Gillis M, de Vos P, Kersters K, Swings J (1996) Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 60(2):407–438PubMedPubMedCentralGoogle Scholar
  208. Venkatachalam S, Ranjan K, Prasanna R, Ramakrishnan B, Thapa S, Kanchan A (2016) Diversity and functional traits of culturable microbiome members, including cyanobacteria in the rice phyllosphere. Plant Biol 18:627–637PubMedCrossRefPubMedCentralGoogle Scholar
  209. Versalovic J, Koeuth T, Lupski JR (1991) Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res 19:6823–6831PubMedPubMedCentralCrossRefGoogle Scholar
  210. Versalovic J, Schneider M, de Bruijn FJ, Lupski JR (1994) Genomic fingerprinting of bacteria using repetitive sequence based PCR (rep-PCR). Methods Mol Cell Biol 5:25–40Google Scholar
  211. Versalovic J, de Bruijn FJ, Lupski JR (1998) Repetitive sequence-based PCR (rep-PCR) DNA fingerprinting of bacterial genomes. In: de Bruijn FJ, Lupski JR, Weinstock GM (eds) Bacterial genomes: physical structure and analysis. Chapman & Hall, New York, pp 437–454CrossRefGoogle Scholar
  212. Von Wintzingerode F, Rainey FA, Kroppenstedt RM, Stackebrandt E (1997) Identification of environmental strains of Bacillus mycoides by fatty acid analysis and species-specific rDNA oligonucleotide probe. FEMS Microbiol Ecol 24:201–209CrossRefGoogle Scholar
  213. Vorholt JA (2012) Microbial life in the phyllosphere. Nat Rev Microbiol 10:828–840.  https://doi.org/10.1038/nrmicro2910CrossRefPubMedPubMedCentralGoogle Scholar
  214. Wagg C et al (2014) Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc Natl Acad Sci U S A 111:5266–5270PubMedPubMedCentralCrossRefGoogle Scholar
  215. Ward N, Fraser CM (2005) How genomics has affected the concept of microbiology. Curr Opin Microbiol 8(5):564–571PubMedCrossRefPubMedCentralGoogle Scholar
  216. Wardle DA et al (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633CrossRefGoogle Scholar
  217. Welch DF (1991) Applications of cellular fatty acid analysis. Clin Microbiol Rev 4(4):422–438PubMedPubMedCentralCrossRefGoogle Scholar
  218. Whipps JM, Hand P, Pink D, Bending GD (2008) Phyllosphere microbiology with special reference to diversity and plant genotype. J Appl Microbiol 105:1744–1755PubMedCrossRefPubMedCentralGoogle Scholar
  219. Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. PNAS 95(12):6578–6583PubMedCrossRefPubMedCentralGoogle Scholar
  220. Whittaker P, Fry FS, Curtis SK, Al-Khaldi SF, Mossoba MM, Yurawecz MP, Dunkel VC (2005) Use of fatty acid profiles to identify food-borne bacterial pathogens and aerobic endospore-forming bacilli. J Agric Food Chem 53:3735–3742PubMedCrossRefPubMedCentralGoogle Scholar
  221. Wilson KH, Blitchington RB, Green RC (1990) Amplification of bacterial 16S ribosomal DNA with polymerase chain reaction. J Clin Microbiol 28:1942–1946PubMedPubMedCentralGoogle Scholar
  222. Wilson WH, Turner S, Mann NH (1998) Population dynamics of phytoplankton and viruses in a phosphate limited mesocosm and their effect on DMSP and DMS production. Estuar Coast Shelf Sci 46(Suppl A):49–59CrossRefGoogle Scholar
  223. Woese CR (1987) Bacterial evolution. Microbiol Rev 51(2):221–271PubMedPubMedCentralGoogle Scholar
  224. Xu J (2006) Microbial ecology in the age of genomics and metagenomics: concepts, tools, and recent advances. Mol Ecol 15:1713–1731PubMedCrossRefPubMedCentralGoogle Scholar
  225. Yandigeri MS, Meena KK, Singh D, Malviya N, Singh DP, Solanki MK, Yadav AK, Arora DK (2012) Drought-tolerant endophytic actinobacteria promote growth of wheat (Triticum aestivum) under water stress conditions. Plant Growth Regul 68:411–420.  https://doi.org/10.1007/s10725-012-9730-2CrossRefGoogle Scholar
  226. Yang Y, Ames GF (1988) DNA gyrase binds to the family of prokaryotic repetitive extragenic palindromic sequences. Proc Natl Acad Sci U S A 85(23):8850–8854PubMedPubMedCentralCrossRefGoogle Scholar
  227. Yang Y, Yao J, Hu S, Qi Y. 2000. Effects of agricultural chemicals on DNA sequence diversity of soil microbial community: a study with RAPD marker. Microb. Ecol. 39, 72–79PubMedCrossRefPubMedCentralGoogle Scholar
  228. Zak DR, Holmes WE, White DC, Peacock AD, Tilman D (2003) Plant diversity, soil microbial communities, and ecosystem function: are there any links? Ecology 84:2042–2050.  https://doi.org/10.1890/02-0433CrossRefGoogle Scholar
  229. Zappelini C, Karimi B, Foulon J, Lacercat-Didier L, Maillard F, Valot B, Blaudez D, Cazaux D, Gilbert D, Yergeau E, Greer C, Chalot M (2015) Diversity and complexity of microbial communities from a chlor-alkali tailings dump. Soil Biol Biochem 90:101–110CrossRefGoogle Scholar
  230. Zarraonaindia I, Smith DP, Gilbert JA (2013) Beyond the genome: community-level analysis of the microbial world. Biol Philos 28(2):261–282PubMedCrossRefPubMedCentralGoogle Scholar
  231. Zeglin LH (2015) Stream microbial diversity in response to environmental changes: review and synthesis of existing research. Front Microbiol 6:454PubMedPubMedCentralCrossRefGoogle Scholar
  232. Zhou J (2003) Microarrays for bacterial detection and microbial community analysis. Curr Opin Microbiol 6:288–294PubMedCrossRefPubMedCentralGoogle Scholar
  233. Zijnge V, Welling GW, Degener JE, van Winkelhoff AJ, Abbas F, Harmsen HJ (2006) Denaturing gradient gel electrophoresis as a diagnostic tool in periodontal microbiology. J Clin Microbiol 44:3628–3633PubMedPubMedCentralCrossRefGoogle Scholar
  234. Zuñiga C, Zaramela L, Zengler K (2017) Elucidation of complexity and prediction of interactions in microbial communities. Microb Biotechnol 10:1500–1522.  https://doi.org/10.1111/1751-7915.12855CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Ratna Prabha
    • 1
  • Dhananjaya Pratap Singh
    • 1
    Email author
  • Vijai Kumar Gupta
    • 2
  1. 1.Department of Biotechnology, ICAR – NBAIMMaunath BhanjanIndia
  2. 2.Department of Chemistry and Biotechnology, School of ScienceTallinn University of TechnologyTallinnEstonia

Personalised recommendations