Coral Reef Microbiota and Its Role in Marine Ecosystem Sustainability

  • Soumya Nair
  • Jayanthi Abraham


Coral reefs or ‘the rainforest of the sea’ is considered to be the most assorted and diversified aquatic ecosystem on earth. The reef offers a varied array of benefits and applications. Despite the fact that the coral reefs are responsible for supporting millions of flora and fauna, they are under high risk of endangerment. The gradual rise in natural or anthropological activities has directed toward the deterioration and degeneration in the overall health of the coral reefs. This ultimately disturbs the productivity and sustainability of the reef ecology bionetwork and therefore led to an increase in the research interest, to study and understand the ecology and biology of the coral reefs and its associated flora and fauna. Much research has progressed and evolved over the decades in thorough understanding of the reef microbiome. In this context, the role of dinoflagellate has been well studied when compared to the other microorganisms associated with the corals. This is mostly due to the complexity associated with the reefs such as uncultivable organisms, lack of proper techniques, etc., to name a few, thereby making it difficult for proper scientific studies to be conducted. Coral-associated microbiomes act as catalysts and indicators of any kind of reef ecosystem instabilities. Such environmental stresses result in coral bleaching or any other coral-associated diseases. In consequence, understanding the microbiology of the coral hologenome may help in preventing further destruction of the coral reefs. The current book chapter aims to review the abundance, diversity and importance of the coral reef microbiome and its role in marine ecosystem sustainability.


Coral reef microbiome Hologenome Holobiont Marine biodiversity sustainability Microbiota Coral-associated microbiome Coral reef sustainability 


  1. Alagely A, Krediet CJ, Ritchie KB et al (2011) Signaling-mediated cross-talk modulates swarming and biofilm formation in a coral pathogen Serratia marcescens. ISME J 5:1609–1620PubMedPubMedCentralCrossRefGoogle Scholar
  2. Alderman DJ (1982) Fungal disease of aquatic animals. Microbial diseases of fish, Spec. Publ.9. R. J. Roberts (Soc. Gen. Microbiol. London), 189–1242Google Scholar
  3. Anthony KRN, Kerswell AP (2007) Coral mortality following extreme low tides and high solar radiation. Mar Biol 151:1623–1631CrossRefGoogle Scholar
  4. Antonius AA, Lipscomb D (2000) First protozoan coralkiller identified in the Indo-Pacific. Smithsonian Institution, National Museum of Natural HistoryGoogle Scholar
  5. Baker AC et al (2016) Diversity, distribution and stability of Symbiodinium in reef corals of the Eastern Tropical Pacific. In: Glynn PW (ed) Coral reefs of the Eastern Tropical Pacific. Springer, pp 405–420Google Scholar
  6. Barott KL, Rohwer FL (2012) Unseen players shape benthic competition on coral reefs. Trends Microbiol 20:621–628PubMedCrossRefPubMedCentralGoogle Scholar
  7. Barott KL, Rodriguez-Brito B, Janouškovec J, Marhaver KL, Smith JE, Keeling P et al (2011) Microbial diversity associated with four functional groups of benthic reef algae and the reef−building coral Montastraea annularis. Environ Microbiol 13:1192–1204PubMedCrossRefPubMedCentralGoogle Scholar
  8. Barott KL, Rodriguez-Mueller B, Youle M, Marhaver KL, Vermeij MJ, Smith JE et al (2012) Microbial to reef scale interactions between the reef-building coral Montastraea annularis and benthic algae. Proc Biol Sci 279:1655–1664PubMedCrossRefPubMedCentralGoogle Scholar
  9. Blackall LL et al (2015) Coral the world’s most diverse symbiotic ecosystem. Mol Ecol 24:5330–5347PubMedCrossRefPubMedCentralGoogle Scholar
  10. Casey JM et al (2014) Farming behaviour of reef fishes increases the prevalence of coral disease associated microbes and black band disease. Proc Biol Sci. 7 281(1788):20141032. Scholar
  11. Chimetto LA, Brocchi M, Thompson CC, Martins RCR, Ramos HR, Thompson FL (2008) Vibrios dominate as culturable nitrogen-fixing bacteria of the Brazilian coral Mussismilia hispida. Syst Appl Microbiol 31:312–319PubMedCrossRefPubMedCentralGoogle Scholar
  12. Chu ND, Vollmer SV (2016) Caribbean corals house shared and host-specific microbial symbionts over time and space. Environ Microbiol Rep 8:493–500PubMedCrossRefPubMedCentralGoogle Scholar
  13. Cumbo V, Baird A (2013) Chromera velia: coral symbiont or parasite? Galaxea J Coral Reef Stud 15:15–16CrossRefGoogle Scholar
  14. Cumbo VR et al (2013) Chromera velia is endosymbiotic in larvae of the reef corals Acropora digitifera and A. tenuis. Protist 164:237–244PubMedCrossRefPubMedCentralGoogle Scholar
  15. De’ath G, Fabricius KE, Sweatman H, Puotinen M (2012) The 27-year decline of coral cover on the Great Barrier Reef and its causes. Proc Natl Acad Sci U S A 109:17995–17999PubMedPubMedCentralCrossRefGoogle Scholar
  16. del Campo J et al (2017) The ‘other’coral symbiont: Ostreobium diversity and distribution. ISME J 11:296–299PubMedCrossRefPubMedCentralGoogle Scholar
  17. Durve VS, Bal DV (1960) Shell disease in Crossostrea gryphoides (Schlotheim). Curr Sci 29:489–490Google Scholar
  18. Egan S, Gardiner M (2016) Microbial dysbiosis: rethinking disease in marine ecosystems. Front Microbiol 7:991PubMedPubMedCentralGoogle Scholar
  19. Estes JA, Terborgh J, Brashares JS, Power ME, Berger J, Bond WJ, Carpenter SR, Essington TE, Holt RD, Jackson JB, Marquis RJ, Oksanen L, Oksanen T, Paine RT, Pikitch EK, Ripple WJ, Sandin SA, Scheffer M, Schoener TW, Shurin JB, Sinclair AR, Soulé ME, Virtanen R, Wardle DA (2011) Trophic downgrading of planet Earth. Science 333:301–306PubMedCrossRefPubMedCentralGoogle Scholar
  20. Fine M, Loya Y (2002) Endolithic algae: an alternative source of photoassimilates during coral bleaching. Proc R Soc Lond B Biol Sci 269:1205–1210CrossRefGoogle Scholar
  21. Fine M et al (2005) Tolerance of endolithic algae to elevated temperature and light in the coral Montipora monasteriata from the southern Great Barrier Reef. J Exp Biol 208:75–81PubMedCrossRefPubMedCentralGoogle Scholar
  22. Fine M et al (2006) Phototrophic microendoliths bloom during coral ‘white syndrome. Coral Reefs 25:577–581CrossRefGoogle Scholar
  23. Gates RD, Ainsworth TD (2011) The nature and taxonomic composition of coral symbiomes as drivers of performancelimits in scleractinian corals. J Exp Mar Biol Ecol 408(1–2):94–101CrossRefGoogle Scholar
  24. Graham NA et al (2014) Coral reefs as novel ecosystems:embracing new futures. Curr Opin Environ Sustain 7:9–14CrossRefGoogle Scholar
  25. Gutiérrez-Isaza N et al (2015) Endolithic community composition of Orbicella faveolata (Scleractinia) underneath the interface between coral tissue and turf algae. Coral Reefs 34:625–630CrossRefGoogle Scholar
  26. Hallock P, Lidz BH, Cockey-Burkhard EM et al (2003) Environ Monit Assess 81:221. Scholar
  27. Hoegh-Guldberg O et al (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742PubMedPubMedCentralCrossRefGoogle Scholar
  28. Jackson JBC, Kirby MX, Berger WH, Bjorndal KA, Botsford LW et al (2001) Historical overfishing and the recent collapse of coastal ecosystems. Science 293:629–638PubMedCrossRefPubMedCentralGoogle Scholar
  29. Johnson RJ, Knap AH, Bates NR, White field JD, Kadko D, Lomas MW (2008) Coordinated change in the heat, salinity and CO 2 budgets of the mesopelagic zone at the Bermuda time-series sites. Abstract ASLO/AGU Ocean Sciences meeting, Orlando, March 2008Google Scholar
  30. Knowlton N, Jackson JBC (2001) The ecology of coral reefs. In: Bertness MD, Gaines SD, Hay ME (eds) Marine community ecology. Sinaur Associates Incorporated, Sunderland, pp 395–422Google Scholar
  31. Knowlton N, Rohwer F (2003) Multispecies microbial mutualisms on coral reefs: the host as a habitat. Am Nat 162:S51–S62PubMedCrossRefPubMedCentralGoogle Scholar
  32. Krediet CJ, Ritchie KB, Paul VJ, Teplitski M (2013) Coral-associated micro-organisms and their roles in promoting coral health and thwarting diseases. Proc R Soc B Lond [Biol] 280:20122328CrossRefGoogle Scholar
  33. Lesser MP, Mazel CH, Gorbunov MY, Falkowski PG (2004) Discovery of symbiotic nitrogen-fixing cyanobacteria in corals. Science 305:997–1000PubMedCrossRefPubMedCentralGoogle Scholar
  34. Lesser MP, Falcon LI, Rodriguez-Roman A, Enriquez S, Hoegh-Guldberg O, Iglesias-Prieto R (2007) Nitrogen fixation by symbiotic cyanobacteria provides a source of nitrogen for the scleractinian coral Montastraea cavernosa. Mar Ecol Prog Ser 346:143–152CrossRefGoogle Scholar
  35. Lesser M et al (2013) The endosymbiotic dinoflagellates (Symbiodinium sp.) of corals are parasites and mutualists. Coral Reefs 32:603–611CrossRefGoogle Scholar
  36. Linares M et al. (2014) Novel photosynthetic alveolates and Apicomplexan relatives. In: Löffelhardt W (ed) Endosymbiosis Springer, pp 183–196Google Scholar
  37. Lough JM, Barnes DJ, McAllister FA (2002) Luminescent lines in corals from the GreatBarrier reef provide spatial and temporal records of reefs affected by land runoff. CoralReefs 21:333–343Google Scholar
  38. Madin JS, Connolly SR (2006) Ecological consequences of major hydrodynamic disturbances on coral reefs. Nature 444:477–480PubMedCrossRefPubMedCentralGoogle Scholar
  39. Marcelino VR, Verbruggen H (2016) Multi-marker metabarcoding of coral skeletons reveals a rich microbiome and diverse evolutionary origins of endolithic algae. Sci Rep 6:31508PubMedCentralCrossRefGoogle Scholar
  40. Meyer JL et al (2016) Epimicrobiota associated with the decay and recovery of Orbicella corals exhibiting dark spot syndrome. Front Microbiol 7:893PubMedPubMedCentralCrossRefGoogle Scholar
  41. Michael S, Bythell J, Nugues M (2013) Algae as reservoirs for coral pathogens. PLoS One. Scholar
  42. Miththapala S (2008) Coral reefs, Coastal Ecosystems Series, vol 1. Ecosystems and Livelihoods Group Asia, IUCN, Colombo, pp 1–36. + iiiCrossRefGoogle Scholar
  43. Montaggioni L, Braithwaite CJR (1988) Quaternary coral reef systems: history, development processes and controlling factors, developments in Marine Geology 5. January 2009 Elsevier Science, Published Date: 13th August 2009Google Scholar
  44. Moore RB et al (2008) A photosynthetic alveolate closely related to apicomplexan parasites. Nature 451:959–963PubMedCrossRefPubMedCentralGoogle Scholar
  45. Mora C et al (2016) Ecological limitations to the resilience of coral reefs. Coral Reefs 35:1271–1280CrossRefGoogle Scholar
  46. Morrison-Gardiner S (2002) Dominant fungi from Australian coral reefs. Fungal Divers 9:105–121Google Scholar
  47. Moyle, Cech JJ (1988) An introduction to Ichthyology (4th edition) fishes: introduction to IchthyologyGoogle Scholar
  48. Nelson CE, Goldberg SJ, Wegley KL, Haas AF, Smith JE, Rohwer F, Carlson CA (2013) Coral and macroalgal exudates vary in neutral sugar composition and differentially enrich reef bacterioplankton lineages. ISME J 7:962–979PubMedPubMedCentralCrossRefGoogle Scholar
  49. NEP (2001) UNEP-WCMC World Atlas of coral reefs coral reef unitGoogle Scholar
  50. NGM (September 2007) Ultra Marine: in far eastern Indonesia, the Raja Ampat islands embrace a phenomenal coral wilderness, by David Doubilet, National GeographicGoogle Scholar
  51. NOAA CoRIS (2013) Regional Portal – Florida. (August 16, 2012). Retrieved on March 3, 2013
  52. Oborník M, Lukeš J (2015) The organellar genomes of Chromera and Vitrella, the phototrophic relatives of apicomplexan parasites. Annu Rev Microbiol 69:129–144CrossRefGoogle Scholar
  53. Ohgushi T, Schmitz O, Holteds RD (2012) Trait-mediated indirect interactions: ecological and evolutionary perspectives. Cambridge University Press, New YorkCrossRefGoogle Scholar
  54. Page CA et al. (2017) Halofolliculina ciliate infections on corals (skeletal eroding disease). In: Woodley CM et al. (eds) Diseases of coral. Wiley, pp 361–375, 2016Google Scholar
  55. Palmer CV, Gates RD (2010) Skeletal eroding band in Hawaiian corals. Coral Reefs 29:469–469CrossRefGoogle Scholar
  56. Parker IM, Saunders M, Bontrager M, Weitz AP, Hendricks R, Magarey KS, Gilbert GS (2015) Phylogenetic structure and host abundance drive disease pressure in communities. Nature 520:542–544PubMedPubMedCentralCrossRefGoogle Scholar
  57. Peters EC (2015) Diseases of coral reef organisms. In: Birkeland C (ed) Coral reefs in the Anthropocene. Springer, pp 147–178Google Scholar
  58. Priess K et al (2000) Fungi in corals: black bands and density banding of Porites lutea and P. lobata skeleton. Mar Biol 136:19–27CrossRefGoogle Scholar
  59. Rädecker et al (2014) Ocean acidification rapidly reduces dinitrogen fixation associated with the hermatypic coral Seriatopora hystrix. Mar Ecol Prog Ser 511:297–302CrossRefGoogle Scholar
  60. Raghukumar C, Lande V (1988) Shell disease of rock oyster Crassostrea cucullata. Dis Aquat Org 4:77–81CrossRefGoogle Scholar
  61. Raghukumar C, Raghukumar S (1991) Fungal invasion of massive corals. PSZNI Mar Ecol 12:251–260CrossRefGoogle Scholar
  62. Raina JB, Tapiolas D, Willis BL, Bourne DG (2009) Coral-associated bacteria and their role in the biogeochemical cycling of sulfur. Appl Environ Microbiol 75:3492–3501PubMedPubMedCentralCrossRefGoogle Scholar
  63. Randall CJ et al (2016) Does dark-spot syndrome experimentally transmit among Caribbean corals? PLoS One 11:e0147493PubMedPubMedCentralCrossRefGoogle Scholar
  64. Ravindran J, Raghukumar C, Raghukumar S (2001) Fungi in Porites lutea: association with healthy and diseased corals. Dis Aquat Org 47:219–228PubMedCrossRefPubMedCentralGoogle Scholar
  65. Reshef L, Koren O, Loya Y, Zilber-Rosenberg I, Rosenberg E (2006) The coral probiotic hypothesis. Environ Microbiol 8:2068–2073PubMedCrossRefPubMedCentralGoogle Scholar
  66. Ritchie KB (2006) Regulation of microbial populations by coral surface mucus and mucus-associated bacteria. Mar Ecol Prog Ser 322:1–14CrossRefGoogle Scholar
  67. Sharp K, Ritchie Kim B (2012) Multi-partner interactions in corals in the face of climate change. Biol Bull 223:66–77PubMedCrossRefPubMedCentralGoogle Scholar
  68. Sharp KH, Distel D, Paul VJ (2012) Diversity and dynamics of bacterial communities in early life stages of the Caribbean coral Porites astreoides. ISME J 6:790–801PubMedCrossRefPubMedCentralGoogle Scholar
  69. Sheppard CRC (2003) Predicted recurrences of mass coral mortality in the Indian Ocean. Nature 425:294–297PubMedCrossRefPubMedCentralGoogle Scholar
  70. Sheppard CRC, Loughland R (2002) Coral mortality and recovery in response toincreasing temperature in the southern Arabian Gulf. Aquat Ecosyst Health Manag 5:395–402CrossRefGoogle Scholar
  71. Sheppard C, Dixon DJ, Gourlay M, Sheppard A, Payet R (2005) Coral mortality increases wave energy reaching shores protected by reef flats: examples from the Seychelles. Estuar Coast Shelf Sci 64:223–234CrossRefGoogle Scholar
  72. Smith JE, Shaw M, Edwards RA, Obura D et al (2006) Indirect effects of algae on coral: algae-mediated, microbe-induced coral mortality. Ecol Lett 9:835–−845PubMedCrossRefPubMedCentralGoogle Scholar
  73. Sneed JM, Sharp KH, Ritchie KB, Paul VJ (2014) The chemical cue tetrabromopyrrole from a biofilm bacterium induces settlement of multiple Caribbean corals. Proc R Soc B 281:20133086CrossRefGoogle Scholar
  74. Spalding M, Ravilious C, Edmund P (2001) Green. World Atlas of coral reefs. University of California, Berkeley, p 16Google Scholar
  75. Sutherland KP, Shaban S, Joyner JL, Porter JW, Lipp EK (2011) Human pathogen shown to cause disease in the threatened elkhorn coral Acropora palmata. PLoS One 6:e23468PubMedCentralCrossRefGoogle Scholar
  76. Sweet MJ, Bulling MT (2017) On the importance of the microbiome and pathobiome in coral health and disease. Front Mar Sci. Published online January 20, 2017.
  77. Sweet M, BythelL J (2012) Ciliate and bacterial communities associated with White syndrome and Brown Band disease in reef-building corals. Environ Microbiol 14:2184–2199PubMedCentralCrossRefGoogle Scholar
  78. Sweet M, Séré MG (2016) Ciliate communities consistently associated with coral diseases. J Sea Res 113:119–131CrossRefGoogle Scholar
  79. Sweet MJ, Croquer A, Bythell JC (2011) Bacterial assemblages differ between compartments within the coral holobiont. Coral Reefs 30:39–52CrossRefGoogle Scholar
  80. Sweet M et al (2013) Characterisation of the bacterial and fungal communities associated with different lesion sizes of dark spot syndrome occurring in the coral Stephanocoenia intersepta. PLoS One 8:e62580PubMedPubMedCentralCrossRefGoogle Scholar
  81. Thompson JR et al (2014) Microbes in the coral holobiont: partners through evolution, development, and ecological interactions. Front Cell Infect Microbiol 4:176PubMedPubMedCentralGoogle Scholar
  82. Thompson JR, Rivera HE, Closek CJ, Medina M (2015) Microbes in the coral holobiont: partners through evolution, development, and ecological interactions. Front Cell Infect Microbiol 4:176PubMedPubMedCentralCrossRefGoogle Scholar
  83. Thurber Vega R, Burkepile DE, Correa AMS, Thurber AR et al (2012) Macroalgae decrease growth and alter microbial community structure of the reef-building coral, Porites astreoides. PLoS One 7:e44246CrossRefGoogle Scholar
  84. Vajed Samiei J, Dab K, Ghezellou P, Shirvani A (2013) Some Scleractinian corals (class: Anthozoa) of Larak Island, Persian Gulf. Zootaxa 3636(1):101–143. Scholar
  85. Verde A et al (2016) Tissue mortality by Caribbean ciliate infection and white band disease in three reef-building coral species. Peer J 4:e2196PubMedCrossRefPubMedCentralGoogle Scholar
  86. Vermeij M, Smith J, Smith C, Thurber RV, Sandin S (2009) Survival and settlement success of coral planulae: independent and synergistic effects of macroalgae and microbes. Oecologia 159:325–336. Scholar
  87. Veron JEN (2000) In: Stafford-Smith M (ed) Corals of the world, vol 1–3. Australian Institute of Marine Science, Townsville. 1382 pGoogle Scholar
  88. Vieira C, Engelen AH, Guentas L, Aires T, Houlbreque F, Gaubert PJ (2016) Species specificity of bacteria associated to the brown seaweeds Lobophora (Dictyotales, Phaeophyceae) and their potential for induction of rapid coral bleaching in Acropora muricata. Front Microbiol 7:316. Scholar
  89. Webster NS, Uthicke S, Botte ES, Flores F, Negri AP (2013) Ocean acidification reduces induction of coral settlement by crustose coralline algae. Glob Chang Biol 19:303–315PubMedCrossRefPubMedCentralGoogle Scholar
  90. White AT, Vogt HP (2000) Philippine coral reefs under threat: lessons learned after 25 years of community-based reef conservation. Mar Pollut Bull 40:537–550CrossRefGoogle Scholar
  91. Wilkinson C (ed) (2004) Status of coral reefs of the world: 2004. Australian Institute of Marine Science, TownsvilleGoogle Scholar
  92. Williams AD et al (2015) Age-related shifts in bacterial diversity in a reef coral. PLoS One 10:e0144902PubMedPubMedCentralCrossRefGoogle Scholar
  93. Zaneveld JR et al (2016) Overfishing and nutrient pollution interact with temperature to disrupt coral reefs down to microbial scales. Nat Commun.

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Soumya Nair
    • 1
  • Jayanthi Abraham
    • 1
  1. 1.Microbial Biotechnology LaboratorySchool of Biosciences and Technology, VITVelloreIndia

Personalised recommendations