Advertisement

Microbial Bio-production of Proteins and Valuable Metabolites

  • Abiya Johnson
  • Prajkata Deshmukh
  • Shubhangi KaushikEmail author
  • Vimal Sharma
Chapter

Abstract

Microbes are widely utilized as workhorses for production of numerous valuable metabolites with utility in different sectors including food, energy, environment, agriculture, health, and disease management. Microbes are capable of synthesizing spectrum of structurally divergent compounds, which are even difficult to be prepared by chemical synthesis. Microbes synthesize many metabolites of interest naturally as an intermediate/product of their metabolic pathways, or another approach is redesigning/creating biosynthetic pathways in microbes for production of non-native target metabolite from simple and cheap substrates not only at laboratory scale but also at the industrial scale. Advancements in genetic engineering, genome sequencing, transcriptomics, proteomics, and computational approaches have revolutionized the identification of novel bioactive molecules of microbial origin and redesigning of microbial biosynthetic pathways. The present book chapter focuses primarily on microbial products including enzymes, proteins, chemicals, and secondary metabolites as well as their production strategies, their application in various fields, and development of engineered microbes as production factories.

Keywords

Microbial communities Transcriptomics Genomics Proteomics Bioactive molecules 

Notes

Acknowledgement

SK is thankful to the Department of Biotechnology (DBT) (BT/P19588/BIC/101/425/2016) for their financial assistance and National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, for providing the necessary support.

References

  1. Abou-Zeid A, Fouad M, Yassein M (1978) Microbiological production of acetone-butanol by Clostridium acetobutylicum. Zentralbl Bakteriol Parasitenkunde Infektionskr Hyg Zweite Naturwiss Abt Mikrobiol Landwirtsch Technol Umweltschutzes 133:125–134CrossRefGoogle Scholar
  2. Adrio JL, Demain AL (2014) Microbial enzymes: tools for biotechnological processes. Biomol Ther 4:117–139Google Scholar
  3. Ageitos J, Sánchez-Pérez A, Calo-Mata P, Villa T (2017) Antimicrobial peptides (AMPs): ancient compounds that represent novel weapons in the fight against bacteria. Biochem Pharmacol 133:117–138CrossRefGoogle Scholar
  4. Agnandji ST et al (2017) Safety and immunogenicity of rVSVΔG-ZEBOV-GP Ebola vaccine in adults and children in Lambaréné, Gabon: a phase I randomised trial. PLoS Med 14:e1002402PubMedPubMedCentralCrossRefGoogle Scholar
  5. Aharonowitz Y (1980) Nitrogen metabolite regulation of antibiotic biosynthesis. Ann Rev Microbiol 34:209–233CrossRefGoogle Scholar
  6. Ahmad M, Hirz M, Pichler H, Schwab H (2014) Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production. Appl Microbiol Biotechnol 98:5301–5317PubMedPubMedCentralCrossRefGoogle Scholar
  7. Akash MSH, Rehman K, Tariq M, Chen S (2015) Development of therapeutic proteins: advances and challenges. Turk J Biol 39:343–358CrossRefGoogle Scholar
  8. Anbu P, Gopinath SC, Chaulagain BP, Tang T-H, Citartan M (2015) Microbial enzymes and their applications in industries and medicine. Biomed Res Int 2015:816419PubMedPubMedCentralCrossRefGoogle Scholar
  9. Andrade MR, Costa JA (2007) Mixotrophic cultivation of microalga Spirulina platensis using molasses as organic substrate. Aquaculture 264:130–134CrossRefGoogle Scholar
  10. Aravindan R, Anbumathi P, Viruthagiri T (2007) Lipase applications in food industry. Indian J Biotechnol 6:141–158Google Scholar
  11. Archer DB (2000) Filamentous fungi as microbial cell factories for food use. Curr Opin Biotechnol 11:478–483PubMedCrossRefGoogle Scholar
  12. Aronson SM (2012) A proliferation of pro-words Rhode island. Med J 95:371Google Scholar
  13. Aruna K, Shah J, Birmole R (2014) Production and partial characterization of alkaline protease from Bacillus tequilensis strains CSGAB0139 isolated from spoilt cottage cheese. Int J Appl Biol Pharm 5:201–221Google Scholar
  14. Bachran C, Leppla SH (2016) Tumor targeting and drug delivery by anthrax toxin. Toxins 8:197PubMedCentralCrossRefPubMedGoogle Scholar
  15. Baldauf KJ, Royal JM, Hamorsky KT, Matoba N (2015) Cholera toxin B: one subunit with many pharmaceutical applications. Toxins 7:974–996PubMedPubMedCentralCrossRefGoogle Scholar
  16. Banerjee A, Chisti Y, Banerjee U (2004) Streptokinase—a clinically useful thrombolytic agent. Biotechnol Adv 22:287–307PubMedCrossRefGoogle Scholar
  17. Bate C, Salmona M, Diomede L, Williams A (2004) Squalestatin cures prion-infected neurons and protects against prion neurotoxicity. J Biol Chem 279:14983–14990PubMedCrossRefGoogle Scholar
  18. Bechinger B (1997) Structure and functions of channel-forming peptides: magainins, cecropins, melittin and alamethicin. J Membr Biol 156:197–211PubMedCrossRefGoogle Scholar
  19. Beekwilder J, Wolswinkel R, Jonker H, Hall R, de Vos CR, Bovy A (2006) Production of resveratrol in recombinant microorganisms. Appl Environ Microbiol 72:5670–5672PubMedPubMedCentralCrossRefGoogle Scholar
  20. Bennett WM, Singer I, Golper T, Feig P, Coggins CJ (1977) Guidelines for drug therapy in renal failure. Ann Intern Med 86:754–783PubMedCrossRefGoogle Scholar
  21. Bentley R (1999) Secondary metabolite biosynthesis: the first century. Crit Rev Biotechnol 19:1–40PubMedCrossRefGoogle Scholar
  22. Bentley SD et al (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141CrossRefGoogle Scholar
  23. Bérdy J (2005) Bioactive microbial metabolites. J Antibiot 58:1PubMedCrossRefGoogle Scholar
  24. Berg JM, Tymoczko JL, Stryer L (2002) Protein structure and function. In: Biochemistry, 5th edn. W. H. Freeman & Co Ltd, New YorkGoogle Scholar
  25. Bibb MJ (2005) Regulation of secondary metabolism in streptomycetes. Curr Opin Microbiol 8:208–215PubMedCrossRefGoogle Scholar
  26. Biebl H, Menzel K, Zeng AP, Deckwer WD (1999) Microbial production of 1, 3-propanediol. Appl Microbiol Biotechnol 52:289–297PubMedCrossRefGoogle Scholar
  27. Bill RM (2015) Recombinant protein subunit vaccine synthesis in microbes: a role for yeast? J Pharm Pharmacol 67:319–328PubMedCrossRefGoogle Scholar
  28. Blin K, Medema MH, Kazempour D, Fischbach MA, Breitling R, Takano E, Weber T (2013) antiSMASH 2.0—a versatile platform for genome mining of secondary metabolite producers. Nucleic Acids Res 41:W204–W212PubMedPubMedCentralCrossRefGoogle Scholar
  29. Blomberg R et al (2013) Precision is essential for efficient catalysis in an evolved Kemp eliminase. Nature 503:418PubMedCrossRefGoogle Scholar
  30. Bornscheuer U, Huisman G, Kazlauskas R, Lutz S, Moore J, Robins K (2012) Engineering the third wave of biocatalysis. Nature 485:185PubMedCrossRefGoogle Scholar
  31. Bouras N, Holtz MD, Aboukhaddour R, Strelkov SE (2016) Influence of nitrogen sources on growth and mycotoxin production by isolates of Pyrenophora tritici-repentis from wheat. Crop J 4:119–128CrossRefGoogle Scholar
  32. Brezovsky J et al (2016) Engineering a de novo transport tunnel. ACS Catal 6:7597–7610CrossRefGoogle Scholar
  33. Brückner B (1992) Regulation of gibberellin formation by the fungus Gibberella fujikuroi. In: Secondary metabolites: their function and evolution. Wiley, Chichester, pp 129–143Google Scholar
  34. Bu’Lock J (1961) Intermediary metabolism and antibiotic synthesis. In: Advances in applied microbiology, vol 3. Elsevier, pp 293–342Google Scholar
  35. Burroughs JR, Anderson RL (2015) Cosmetic botulinum toxin applications: general considerations and dosing. In: Pearls and pitfalls in cosmetic oculoplastic surgery. Springer, New York, pp 393–394Google Scholar
  36. Castanie-Cornet M-P, Penfound TA, Smith D, Elliott JF, Foster JW (1999) Control of acid resistance in Escherichia coli. J Bacteriol 181:3525–3535PubMedPubMedCentralGoogle Scholar
  37. Cech TR, Bass BL (1986) Biological catalysis by RNA. Annu Rev Biochem 55:599–629PubMedCrossRefGoogle Scholar
  38. Chae S, Hwang E, Shin H-S (2006) Single cell protein production of Euglena gracilis and carbon dioxide fixation in an innovative photo-bioreactor. Bioresour Technol 97:322–329PubMedCrossRefGoogle Scholar
  39. Chae TU, Choi SY, Kim JW, Ko Y-S, Lee SY (2017) Recent advances in systems metabolic engineering tools and strategies. Curr Opin Biotechnol 47:67–82CrossRefGoogle Scholar
  40. Challis GL (2008) Mining microbial genomes for new natural products and biosynthetic pathways. Microbiology 154:1555–1569PubMedCrossRefGoogle Scholar
  41. Chandola TR et al (2017) ROTAVAC® does not interfere with the immune response to childhood vaccines in Indian infants: a randomized placebo controlled trial. Heliyon 3:e00302PubMedPubMedCentralCrossRefGoogle Scholar
  42. Chang C, Stewart RC (1998) The two-component system: regulation of diverse signaling pathways in prokaryotes and eukaryotes. Plant Physiol 117:723–731PubMedPubMedCentralCrossRefGoogle Scholar
  43. Chemier JA, Fowler ZL, Koffas MA, Leonard E (2009) Trends in microbial synthesis of natural products and biofuels. Adv Enzymol Relat Area Mol Biol 76:151Google Scholar
  44. Chen G-Q (2012) New challenges and opportunities for industrial biotechnology. Microb Cell Factories 11:111CrossRefGoogle Scholar
  45. Chen K, Arnold FH (1993) Tuning the activity of an enzyme for unusual environments: sequential random mutagenesis of subtilisin E for catalysis in dimethylformamide. Proc Natl Acad Sci 90:5618–5622PubMedCrossRefGoogle Scholar
  46. Chen MM, Snow CD, Vizcarra CL, Mayo SL, Arnold FH (2012) Comparison of random mutagenesis and semi-rational designed libraries for improved cytochrome P450 BM3-catalyzed hydroxylation of small alkanes. Protein Eng Des Sel 25:171–178PubMedCrossRefGoogle Scholar
  47. Cheng YR, Huang J, Qiang H, LIN WL, Demain AL (2001) Mutagenesis of the rapamycin producer Streptomyces hygroscopicus FC904. J Antibiot 54:967–972PubMedCrossRefGoogle Scholar
  48. Chiang Y-M, Lee K-H, Sanchez JF, Keller NP, Wang CC (2009) Unlocking fungal cryptic natural products. Nat Prod Commun 4:1505PubMedPubMedCentralGoogle Scholar
  49. Choudhary R, Jana A, Jha M (2004) Enzyme technology applications in leather processing. Indian J Chem Technol 11:659–671Google Scholar
  50. Čurdová E, Jechová V, Zima J, Vaněk Z (1989) The effect of inorganic phosphate on the production of avermectin in Streptomyces avermitilis. J Basic Microbiol 29:341–346PubMedCrossRefGoogle Scholar
  51. Cutler HG (1995) Microbial natural products that affect plants, phytopathogens, and certain other microorganisms. Crit Rev Plant Sci 14:413–444CrossRefGoogle Scholar
  52. Daglia M (2012) Polyphenols as antimicrobial agents. Curr Opin Biotechnol 23:174–181PubMedCrossRefGoogle Scholar
  53. Damborsky J, Chaloupkova R, Pavlova M, Chovancova E, Brezovsky J (2010) Structure–function relationships and engineering of haloalkane dehalogenases. In: Handbook of hydrocarbon and lipid microbiology. Springer, Berlin/Heidelberg, pp 1081–1098CrossRefGoogle Scholar
  54. Davati N, Habibi Najafi MB (2013) Overproduction strategies for microbial secondary metabolites: a review. Int J Life Sci Pharma Res 3:23–27Google Scholar
  55. Davies J (2011) How to discover new antibiotics: harvesting the parvome. Curr Opin Chem Biol 15:5–10CrossRefGoogle Scholar
  56. Del Tordello E, Rappuoli R, Delany I (2017) Reverse vaccinology: exploiting genomes for vaccine design. In: Human vaccines. Elsevier, pp 65–86Google Scholar
  57. Demain AL (1998) Microbial natural products: alive and well in 1998. Nat Biotechnol 16:3PubMedCrossRefGoogle Scholar
  58. Demain AL, Adrio JL (2008) Contributions of microorganisms to industrial biology. Mol Biotechnol 38:41PubMedCrossRefGoogle Scholar
  59. Demain AL, Vaishnav P (2009) Production of recombinant proteins by microbes and higher organisms. Biotechnol Adv 27:297–306CrossRefGoogle Scholar
  60. Dhakal R, Bajpai VK, Baek K-H (2012) Production of GABA (γ-aminobutyric acid) by microorganisms: a review. Braz J Microbiol 43:1230–1241PubMedPubMedCentralCrossRefGoogle Scholar
  61. Dien BS, Nichols NN, O’bryan PJ, Bothast RJ (2000) Development of new ethanologenic Escherichia coli strains for fermentation of lignocellulosic biomass. Appl Biochem Biotechnol 84:181–196PubMedCrossRefGoogle Scholar
  62. Dormitzer PR, Ulmer JB, Rappuoli R (2008) Structure-based antigen design: a strategy for next generation vaccines. Trends Biotechnol 26:659–667PubMedCrossRefGoogle Scholar
  63. Dormitzer PR, Grandi G, Rappuoli R (2012) Structural vaccinology starts to deliver. Nat Rev Microbiol 10:807PubMedCrossRefGoogle Scholar
  64. Doshi R, Shelke V (2001) Enzymes in textile industry-an environment-friendly approach. Indian J Fibre Text Res 26:202–205Google Scholar
  65. Du J, Shao Z, Zhao H (2011) Engineering microbial factories for synthesis of value-added products. J Ind Microbiol Biotechnol 38:873–890PubMedPubMedCentralCrossRefGoogle Scholar
  66. Dubos RJ (1939) Studies on a bactericidal agent extracted from a soil bacillus: I. Preparation of the agent. Its activity in vitro. J Exp Med 70:1PubMedCentralCrossRefPubMedGoogle Scholar
  67. Dubos RJ, Cattaneo C (1939) Studies on a bactericidal agent extracted from a soil bacillus: III. Preparation and activity of a protein-free fraction. J Exp Med 70:249–256PubMedPubMedCentralCrossRefGoogle Scholar
  68. Esnault C et al (2017) Strong antibiotic production is correlated with highly active oxidative metabolism in Streptomyces coelicolor M145. Sci Rep 7:200PubMedPubMedCentralCrossRefGoogle Scholar
  69. Essig A et al (2014) Copsin, a novel peptide-based fungal antibiotic interfering with the peptidoglycan synthesis. J Biol Chem 289:34953–34964. M114. 599878PubMedPubMedCentralCrossRefGoogle Scholar
  70. Fabbri A, Travaglione S, Falzano L, Fiorentini C (2008) Bacterial protein toxins: current and potential clinical use. Curr Med Chem 15:1116–1125PubMedCrossRefGoogle Scholar
  71. Fernandes P, Carvalho F (2017) Microbial enzymes for the food industry. In: Biotechnology of microbial enzymes. Elsevier, Amsterdam, pp 513–544CrossRefGoogle Scholar
  72. Ferrer-Miralles N, Domingo-Espín J, Corchero JL, Vázquez E, Villaverde A (2009) Microbial factories for recombinant pharmaceuticals. Microb Cell Factories 8:17CrossRefGoogle Scholar
  73. Fleming AG (1929) Responsibilities and opportunities of the private practitioner in preventive medicine. Can Med Assoc J 20:11PubMedPubMedCentralGoogle Scholar
  74. Foerster CW, Foerster HF (1973) Glutamic acid decarboxylase in spores of Bacillus megaterium and its possible involvement in spore germination. J Bacteriol 114:1090–1098PubMedCentralPubMedGoogle Scholar
  75. Foster JA, Wulc AE, Straka D, Cahill KV, Czyz C, Tan J (2018) Cosmetic uses of botulinum toxin. In: Manual of oculoplastic surgery. Springer, New York, pp 165–172CrossRefGoogle Scholar
  76. Franzoi M, van Heuvel Y, Thomann S, Schurch N, Kallio PT, Venier P, Essig A (2017) Structural insights into the mode of action of the peptide antibiotic copsin. Biochemistry 56:4992–5001PubMedCrossRefPubMedCentralGoogle Scholar
  77. Garodia S, Naidu P, Nallanchakravarthula S (2017) QUORN: an anticipated novel protein sourceGoogle Scholar
  78. Ghazi S, Sepahy AA, Azin M, Khaje K, Khavarinejad R (2014) UV mutagenesis for the overproduction of xylanase from Bacillus mojavensis PTCC 1723 and optimization of the production condition. Iran J Basic Med Sci 17:844PubMedPubMedCentralGoogle Scholar
  79. Giombini E, Orsini M, Carrabino D, Tramontano A (2010) An automatic method for identifying surface proteins in bacteria: SLEP. BMC Bioinformatics 11:39PubMedPubMedCentralCrossRefGoogle Scholar
  80. Goeddel DV et al (1980) Human leukocyte interferon produced by E. coli is biologically active. Nature 287:411CrossRefGoogle Scholar
  81. Gonzalez JB, Fernandez F, Tomasini A (2003) Microbial secondary metabolites production and strain improvement. Indian J Biotechnol 2:322–333Google Scholar
  82. Grandi G (2010) Bacterial surface proteins and vaccines. F1000 Biol Rep 2:36PubMedPubMedCentralGoogle Scholar
  83. Guazzaroni ME, Silva-Rocha R, Ward RJ (2015) Synthetic biology approaches to improve biocatalyst identification in metagenomic library screening. Microb Biotechnol 8:52–64PubMedCrossRefGoogle Scholar
  84. Gurung N, Ray S, Bose S, Rai V (2013) A broader view: microbial enzymes and their relevance in industries, medicine, and beyond. Biomed Res Int 2013:329121PubMedPubMedCentralCrossRefGoogle Scholar
  85. Hara KY, Araki M, Okai N, Wakai S, Hasunuma T, Kondo A (2014) Development of bio-based fine chemical production through synthetic bioengineering. Microb Cell Factories 13:173CrossRefGoogle Scholar
  86. Hasan F, Shah AA, Javed S, Hameed A (2010) Enzymes used in detergents: lipases. Afr J Biotechnol 9:4836–4844Google Scholar
  87. Haugh M, Gresset-Bourgeois V, Macabeo B, Woods A, Samson SI (2017) A trivalent, inactivated influenza vaccine (Vaxigrip®): summary of almost 50 years of experience and more than 1.8 billion doses distributed in over 120 countries. Expert Rev Vaccines 16:545–564PubMedCrossRefGoogle Scholar
  88. Headon D, Walsh G (1994) The industrial production of enzymes. Biotechnol Adv 12:635–646PubMedCrossRefGoogle Scholar
  89. Hermann B, Blok K, Patel MK (2007) Producing bio-based bulk chemicals using industrial biotechnology saves energy and combats climate change. Environ Sci Technol 41:7915–7921PubMedCrossRefGoogle Scholar
  90. Hodgson J (1994) Bulk amino–acid fermentation: technology and commodity trading. Nat Biotechnol 12:152CrossRefGoogle Scholar
  91. Hou J, Tyo KE, Liu Z, Petranovic D, Nielsen J (2012) Metabolic engineering of recombinant protein secretion by Saccharomyces cerevisiae. FEMS Yeast Res 12:491–510PubMedCrossRefGoogle Scholar
  92. Ivers LC et al (2015) Immunogenicity of the bivalent oral cholera vaccine Shanchol in Haitian adults with HIV infection. J Infect Dis 212:779–783PubMedPubMedCentralCrossRefGoogle Scholar
  93. Jaganmohan P, Daas BP, Prasad S (2013) Production of single cell protein (SCP) with Aspergillus terreus using solid state fermentation. Eur J Biol Sci 5:38–43Google Scholar
  94. Jullesson D, David F, Pfleger B, Nielsen J (2015) Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals. Biotechnol Adv 33:1395–1402PubMedCrossRefGoogle Scholar
  95. Kataoka M, Sasaki M, Hidalgo A-RG, Nakano M, Shimizu S (2001) Glycolic acid production using ethylene glycol-oxidizing microorganisms. Biosci Biotechnol Biochem 65:2265–2270PubMedCrossRefGoogle Scholar
  96. Kaushik S et al (2018) Impact of the access tunnel engineering on catalysis is strictly ligand-specific. FEBS J 285:1456–1476CrossRefGoogle Scholar
  97. Keasling JD (2010) Manufacturing molecules through metabolic engineering. Science 330:1355–1358PubMedCrossRefGoogle Scholar
  98. Keating GM (2016) Shingles (herpes zoster) vaccine (zostavax®): a review in the prevention of herpes zoster and postherpetic neuralgia. BioDrugs 30:243–254PubMedCrossRefGoogle Scholar
  99. Kennedy SB et al (2017) Phase 2 placebo-controlled trial of two vaccines to prevent Ebola in Liberia. N Engl J Med 377:1438–1447PubMedPubMedCentralCrossRefGoogle Scholar
  100. Khan AI, Islam MT, Qadri F (2017) Safety of oral cholera vaccines during pregnancy in developing countries. Hum Vaccin Immunother 13:2245–2246PubMedPubMedCentralCrossRefGoogle Scholar
  101. Khetan A, Malmberg LH, Kyung YS, Sherman DH, Hu WS (1999) Precursor and cofactor as a check valve for cephamycin biosynthesis in Streptomyces clavuligerus. Biotechnol Prog 15:1020–1027PubMedCrossRefGoogle Scholar
  102. Kieliszek M, Misiewicz A (2014) Microbial transglutaminase and its application in the food industry. A review. Folia Microbiol 59:241–250CrossRefGoogle Scholar
  103. Kim H, Yoo SJ, Kang HA (2015) Yeast synthetic biology for the production of recombinant therapeutic proteins. FEMS Yeast Res 15:1–16PubMedCrossRefGoogle Scholar
  104. Korkalainen M et al (2017) Synergistic proinflammatory interactions of microbial toxins and structural components characteristic to moisture-damaged buildings. Indoor Air 27:13–23CrossRefGoogle Scholar
  105. Kumar D, Savitri TN, Verma R, Bhalla T (2008) Microbial proteases and application as laundry detergent additive. Res J Microbiol 3:661–672CrossRefGoogle Scholar
  106. Kwong KW, Sivakumar T, Wong W (2016) Intein mediated hyper-production of authentic human basic fibroblast growth factor in Escherichia coli. Sci Rep 6:33948PubMedPubMedCentralCrossRefGoogle Scholar
  107. Labrou NE (2010) Random mutagenesis methods for in vitro directed enzyme evolution. Curr Protein Pept Sci 11:91–100PubMedCrossRefGoogle Scholar
  108. Lacadena J et al (2007) Fungal ribotoxins: molecular dissection of a family of natural killers. FEMS Microbiol Rev 31:212–237PubMedCrossRefGoogle Scholar
  109. Lautru S, Deeth RJ, Bailey LM, Challis GL (2005) Discovery of a new peptide natural product by Streptomyces coelicolor genome mining. Nat Chem Biol 1:265–269PubMedCrossRefGoogle Scholar
  110. Lee J-S, Shin K-S, Pan J-G, Kim C-J (2000) Surface-displayed viral antigens on Salmonella carrier vaccine. Nat Biotechnol 18:645CrossRefGoogle Scholar
  111. Lee SY, Choi JH, Xu Z (2003) Microbial cell-surface display. Trends Biotechnol 21:45–52PubMedCrossRefGoogle Scholar
  112. Levin MJ, Buchwald UK, Gardner J, Martin J, Stek JE, Brown E, Popmihajlov Z (2018) Immunogenicity and safety of zoster vaccine live administered with quadrivalent influenza virus vaccine. Vaccine 36:179–185CrossRefGoogle Scholar
  113. Lewis K, Epstein S, D’Onofrio A, Ling LL (2010) Uncultured microorganisms as a source of secondary metabolites. J Antibiot 63:468PubMedCrossRefGoogle Scholar
  114. Li T et al (2012) Efficient, chemoenzymatic process for manufacture of the boceprevir bicyclic [3.1. 0] proline intermediate based on amine oxidase-catalyzed desymmetrization. J Am Chem Soc 134:6467–6472PubMedCrossRefGoogle Scholar
  115. Li X-F et al (2018) Development of a chimeric Zika vaccine using a licensed live-attenuated flavivirus vaccine as backbone. Nat Commun 9:673PubMedPubMedCentralCrossRefGoogle Scholar
  116. Liew WH, Hassim MH, Ng DK (2014) Review of evolution, technology and sustainability assessments of biofuel production. J Clean Prod 71:11–29CrossRefGoogle Scholar
  117. Liljeqvist S, Samuelson P, Hansson M, Nguyen TN, Binz H, Ståhl S (1997) Surface display of the cholera toxin B subunit on Staphylococcus xylosus and Staphylococcus carnosus. Appl Environ Microbiol 63:2481–2488PubMedPubMedCentralGoogle Scholar
  118. Lim CG, Fowler ZL, Hueller T, Schaffer S, Koffas MA (2011) High-yield resveratrol production in engineered Escherichia coli. Appl Environ Microbiol 77:3451–3460.  https://doi.org/10.1128/AEM.02186-10CrossRefPubMedPubMedCentralGoogle Scholar
  119. Link E et al (1992) Tetanus toxin action: inhibition of neurotransmitter release linked to synaptobrevin proteolysis. Biochem Biophys Res Commun 189:1017–1023PubMedCrossRefGoogle Scholar
  120. Liu C, Zhao Y, Wang Y (2006) Artemisinin: current state and perspectives for biotechnological production of an antimalarial drug. Appl Microbiol Biotechnol 72:11–20PubMedCrossRefGoogle Scholar
  121. Liu G, Chater KF, Chandra G, Niu G, Tan H (2013) Molecular regulation of antibiotic biosynthesis in Streptomyces. Microbiol Mol Biol Rev 77:112–143PubMedPubMedCentralCrossRefGoogle Scholar
  122. Luchese RH, Harrigan W (1993) Biosynthesis of aflatoxin—the role of nutritional factors. J Appl Bacteriol 74:5–14PubMedCrossRefGoogle Scholar
  123. Lutz S (2010) Beyond directed evolution—semi-rational protein engineering and design. Curr Opin Biotechnol 21:734–743PubMedPubMedCentralCrossRefGoogle Scholar
  124. Ma Q et al (2017) Systems metabolic engineering strategies for the production of amino acids. Synth Syst Biotechnol 2:87–96PubMedPubMedCentralCrossRefGoogle Scholar
  125. Mahan KM et al (2018) Production of single cell protein from agro-waste using Rhodococcus opacus. J Ind Microbiol Biotechnol 45(9):795–801PubMedCrossRefGoogle Scholar
  126. Mane P, Tale V (2015) Overview of microbial therapeutic enzymes. Int J Curr Microbiol Appl Sci 4:17–26Google Scholar
  127. Marinelli F (2009) From microbial products to novel drugs that target a multitude of disease indications. Methods Enzymol 458:29–58PubMedCrossRefGoogle Scholar
  128. Martin VJ, Pitera DJ, Withers ST, Newman JD, Keasling JD (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol 21:796PubMedCrossRefGoogle Scholar
  129. Martínez JL, Liu L, Petranovic D, Nielsen J (2012) Pharmaceutical protein production by yeast: towards production of human blood proteins by microbial fermentation. Curr Opin Biotechnol 23:965–971PubMedCrossRefGoogle Scholar
  130. Masuyer G, Conrad J, Stenmark P (2017) The structure of the tetanus toxin reveals pH-mediated domain dynamics. EMBO Rep 18:1306–1317PubMedPubMedCentralCrossRefGoogle Scholar
  131. Mazet I, Vey A (1995) Hirsutellin A, a toxic protein produced in vitro by Hirsutella thompsonii. Microbiology 141:1343–1348PubMedCrossRefGoogle Scholar
  132. McWilliams A (2012) Microbial products: technologies, applications and global markets. BCC ResearchGoogle Scholar
  133. Mei Y-Z, Liu R-X, Wang D-P, Wang X, Dai C-C (2015) Biocatalysis and biotransformation of resveratrol in microorganisms. Biotechnol Lett 37:9–18PubMedCrossRefGoogle Scholar
  134. Milner M (2008) Nattokinase: clinical updates from doctors support its safety and efficacy. FOCUS Allergy Res Group News: LettGoogle Scholar
  135. Minami H, Kim J-S, Ikezawa N, Takemura T, Katayama T, Kumagai H, Sato F (2008) Microbial production of plant benzylisoquinoline alkaloids. Proc Natl Acad Sci 105:7393–7398PubMedCrossRefGoogle Scholar
  136. Mishra B, Reiling S, Zarena D, Wang G (2017) Host defense antimicrobial peptides as antibiotics: design and application strategies. Curr Opin Chem Biol 38:87–96PubMedPubMedCentralCrossRefGoogle Scholar
  137. Morris AP, Estes MK (2001) VIII. Pathological consequences of rotavirus infection and its enterotoxin. Am J Physiol Gastrointest Liver Physiol 281:G303–G310PubMedCrossRefGoogle Scholar
  138. Moyes DL et al (2016) Candidalysin is a fungal peptide toxin critical for mucosal infection. Nature 532:64PubMedPubMedCentralCrossRefGoogle Scholar
  139. Mrudula S, Murugammal R (2011) Production of cellulase by Aspergillus niger under submerged and solid state fermentation using coir waste as a substrate. Braz J Microbiol 42:1119–1127PubMedPubMedCentralCrossRefGoogle Scholar
  140. Nagasawa T, Nakamura T, Yamada H (1990) Production of acrylic acid and methacrylic acid using Rhodococcus rhodochrous J1 nitrilase. Appl Microbiol Biotechnol 34:322–324Google Scholar
  141. Nakamura J, Hirano S, Ito H, Wachi M (2007) Mutations of the Corynebacterium glutamicum NCgl1221 gene, encoding a mechanosensitive channel homolog, induce L-glutamic acid production. Appl Environ Microbiol 73:4491–4498PubMedPubMedCentralCrossRefGoogle Scholar
  142. Naughton LM, Romano S, O’Gara F, Dobson AD (2017) Identification of secondary metabolite gene clusters in the Pseudovibrio genus reveals encouraging biosynthetic potential toward the production of novel bioactive compounds. Front Microbiol 8:1494PubMedPubMedCentralCrossRefGoogle Scholar
  143. Nayeem M, Chauhan K, Khan S, Rattu G, Dhaka RK, Sidduqui H (2017) Optimization of low-cost substrate for the production of single cell protein using Kluyveromyces marxianus. Pharma Innov J 6:22–25CrossRefGoogle Scholar
  144. Nelson DL, Lehninger AL, Cox MM (2008) Lehninger principles of biochemistry. MacmillanGoogle Scholar
  145. Nevalainen H, Peterson R (2014) Making recombinant proteins in filamentous fungi-are we expecting too much? Front Microbiol 5:75PubMedPubMedCentralGoogle Scholar
  146. Newman DJ (2016) Predominately uncultured microbes as sources of bioactive agents. Front Microbiol 7:1832PubMedPubMedCentralCrossRefGoogle Scholar
  147. Newman JD et al (2006) High-level production of amorpha-4, 11-diene in a two-phase partitioning bioreactor of metabolically engineered Escherichia coli. Biotechnol Bioeng 95:684–691PubMedCrossRefGoogle Scholar
  148. Nielsen J (1998) The role of metabolic engineering in the production of secondary metabolites. Curr Opin Microbiol 1:330–336PubMedCrossRefGoogle Scholar
  149. Nigam PS (2013) Microbial enzymes with special characteristics for biotechnological applications. Biomol Ther 3:597–611Google Scholar
  150. Nijkamp K, Westerhof RM, Ballerstedt H, De Bont JA, Wery J (2007) Optimization of the solvent-tolerant Pseudomonas putida S12 as host for the production of p-coumarate from glucose. Appl Microbiol Biotechnol 74:617–624PubMedCrossRefGoogle Scholar
  151. Noda S et al (2011) Cinnamic acid production using Streptomyces lividans expressing phenylalanine ammonia lyase. J Ind Microbiol Biotechnol 38:643–648PubMedCrossRefGoogle Scholar
  152. Okai N, Takahashi C, Hatada K, Ogino C, Kondo A (2014) Disruption of pknG enhances production of gamma-aminobutyric acid by Corynebacterium glutamicum expressing glutamate decarboxylase. AMB Express 4:20PubMedPubMedCentralCrossRefGoogle Scholar
  153. Olombrada M, Martínez-del-Pozo Á, Medina P, Budia F, Gavilanes JG, García-Ortega L (2014) Fungal ribotoxins: natural protein-based weapons against insects. Toxicon 83:69–74PubMedCrossRefGoogle Scholar
  154. Olson KC et al (1981) Purified human growth hormone from E. coli is biologically active. Nature 293:408PubMedCrossRefGoogle Scholar
  155. Olson DM et al (2011) A qualitative assessment of practices associated with shorter door-to-needle time for thrombolytic therapy in acute ischemic stroke. J Neurosci Nurs 43:329–336PubMedCrossRefGoogle Scholar
  156. Orth JD, Thiele I, Palsson BØ (2010) What is flux balance analysis? Nat Biotechnol 28:245PubMedPubMedCentralCrossRefGoogle Scholar
  157. Ostlie DJ et al (2012) Topical silver sulfadiazine vs collagenase ointment for the treatment of partial thickness burns in children: a prospective randomized trial. J Pediatr Surg 47:1204–1207CrossRefGoogle Scholar
  158. Overton TW (2014) Recombinant protein production in bacterial hosts. Drug Discov Today 19:590–601CrossRefGoogle Scholar
  159. Paddon CJ, Keasling JD (2014) Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development. Nat Rev Microbiol 12:355CrossRefGoogle Scholar
  160. Paddon CJ et al (2013) High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496:528CrossRefGoogle Scholar
  161. Pasricha S, Pearson J (2016) Lifting the veil on fungal toxins. Nature Publishing GroupGoogle Scholar
  162. Patel RN (2008) Synthesis of chiral pharmaceutical intermediates by biocatalysis. Coord Chem Rev 252:659–701CrossRefGoogle Scholar
  163. Prado-Rubio OA, Jørgensen JB, Jørgensen SB (2010) Systematic model analysis for single cell protein (scp) production in a u-loop reactor. In: Computer aided chemical engineering, vol 28. Elsevier, Amsterdam, pp 319–324Google Scholar
  164. Prokop Z, Gora A, Brezovsky J, Chaloupkova R, Stepankova V, Damborsky J (2012) Engineering of protein tunnels: keyhole-lock-key model for catalysis by the enzymes with buried active sites, vol 3. Wiley-VCH, WeinheimGoogle Scholar
  165. Quesada-Moraga E, Alain V (2004) Bassiacridin, a protein toxic for locusts secreted by the entomopathogenic fungus Beauveria bassiana. Mycol Res 108:441–452PubMedCrossRefGoogle Scholar
  166. Rao MB, Varma A, Deshmukh SS (2010) Production of single cell protein, essential amino acids, and xylanase by Penicillium janthinellum. BioResources 5:2470–2477Google Scholar
  167. Raspor P, Goranovič D (2008) Biotechnological applications of acetic acid bacteria. Crit Rev Biotechnol 28:101–124PubMedCrossRefGoogle Scholar
  168. Rathod PK, McErlean T, Lee P-C (1997) Variations in frequencies of drug resistance in Plasmodium falciparum. Proc Natl Acad Sci 94:9389–9393PubMedCrossRefGoogle Scholar
  169. Ray G, Noori MT, Ghangrekar M (2017) Novel application of peptaibiotics derived from Trichoderma sp. for methanogenic suppression and enhanced power generation in microbial fuel cells. RSC Adv 7:10707–10717CrossRefGoogle Scholar
  170. Reed JL, Senger RS, Antoniewicz MR, Young JD (2011) Computational approaches in metabolic engineering. J Biomed Res 2010Google Scholar
  171. Renge V, Khedkar S, Nandurkar NR (2012) Enzyme synthesis by fermentation method: a review. Sci Rev Chem Comm 2:585e590Google Scholar
  172. Rodríguez-Zavala J, Ortiz-Cruz M, Mendoza-Hernández G, Moreno-Sánchez R (2010) Increased synthesis of α-tocopherol, paramylon and tyrosine by Euglena gracilis under conditions of high biomass production. J Appl Microbiol 109:2160–2172PubMedCrossRefGoogle Scholar
  173. Rosano GL, Ceccarelli EA (2014) Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol 5:172PubMedPubMedCentralGoogle Scholar
  174. Rosenberg ZM-M (2006) Current trends of β-galactosidase application in food technology. J Food Nutr Res 45:47–54Google Scholar
  175. Sadia S, Qureshi R, Khalid S, Nayyar BG, Zhang JT (2015) Role of secondary metabolites of wild marigold in suppression of Johnson grass and Sun spurge. Asian Pac J Trop Biomed 5:733–737CrossRefGoogle Scholar
  176. Sanchez S, Demain AL (2017) Useful microbial enzymes—an introduction. In: Biotechnology of microbial enzymes. Elsevier, Amsterdam, pp 1–11Google Scholar
  177. Sanchez-Garcia L, Martín L, Mangues R, Ferrer-Miralles N, Vázquez E, Villaverde A (2016) Recombinant pharmaceuticals from microbial cells: a 2015 update. Microb Cell Factories 15:33CrossRefGoogle Scholar
  178. Sanders JW, Leenhouts K, Burghoorn J, Brands JR, Venema G, Kok J (1998) A chloride-inducible acid resistance mechanism in Lactococcus lactis and its regulation. Mol Microbiol 27:299–310PubMedCrossRefGoogle Scholar
  179. Sandström AG, Wikmark Y, Engström K, Nyhlén J, Bäckvall JE (2012) Combinatorial reshaping of the Candida antarctica lipase A substrate pocket for enantioselectivity using an extremely condensed library. Proc Natl Acad Sci 109:78–83CrossRefGoogle Scholar
  180. Schmidt-Dannert C (2017) The future of biologically inspired next-generation factories for chemicals. Microb Biotechnol 10:1164–1166PubMedPubMedCentralCrossRefGoogle Scholar
  181. Schmit J, Edson CM, Brody S (1975) Changes in glucosamine and galactosamine levels during conidial germination in Neurospora crassa. J Bacteriol 122:1062–1070PubMedPubMedCentralGoogle Scholar
  182. Sette A, Rappuoli R (2010) Reverse vaccinology: developing vaccines in the era of genomics. Immunity 33:530–541PubMedPubMedCentralCrossRefGoogle Scholar
  183. Sharma N (2016) How does recent understanding of molecular mechanisms in botulinum toxin impact therapy? In: Botulinum toxin therapy manual for dystonia and spasticity. InTech open. doi: https://doi.org/10.5772/66696Google Scholar
  184. Sharma A, Chaudhuri TK (2017) Revisiting Escherichia coli as microbial factory for enhanced production of human serum albumin. Microb Cell Factories 16:173CrossRefGoogle Scholar
  185. Sharma A, Kumari N, Menghani E (2014) Bioactive secondary metabolites: an overview. Int J Sci Eng Res 5:1395–1407Google Scholar
  186. Sharma S et al (2018) Immunogenicity and safety of the first indigenously developed Indian tetravalent influenza vaccine (split virion) in healthy adults ≥18 years of age: a randomized, multicenter, phase II/III clinical trial. Hum Vaccin Immunother 14(6):1362–1369PubMedPubMedCentralCrossRefGoogle Scholar
  187. Shin JH, Kim HU, Kim DI, Lee SY (2013) Production of bulk chemicals via novel metabolic pathways in microorganisms. Biotechnol Adv 31:925–935CrossRefGoogle Scholar
  188. Siegel JB et al (2010) Computational design of an enzyme catalyst for a stereoselective bimolecular Diels-Alder reaction. Science 329:309–313PubMedPubMedCentralCrossRefGoogle Scholar
  189. Singh Saharan B, Grewal A, Kumar P (2014) Biotechnological production of polyhydroxyalkanoates: a review on trends and latest developments. Chin J Biol 2014:802984CrossRefGoogle Scholar
  190. Singh HB, Jha A, Keswani C (2016a) Intellectual property issues in biotechnology. CABI, Wallingford/BostonCrossRefGoogle Scholar
  191. Singh R, Kumar M, Mittal A, Mehta PK (2016b) Microbial enzymes: industrial progress in 21st century. 3 Biotech 6:174PubMedCentralCrossRefPubMedGoogle Scholar
  192. Stanley M (2007) Prevention strategies against the human papillomavirus: the effectiveness of vaccination. Gynecol Oncol 107:S19–S23PubMedCrossRefGoogle Scholar
  193. Starcevic A, Zucko J, Simunkovic J, Long PF, Cullum J, Hranueli D (2008) ClustScan: an integrated program package for the semi-automatic annotation of modular biosynthetic gene clusters and in silico prediction of novel chemical structures. Nucleic Acids Res 36:6882–6892PubMedPubMedCentralCrossRefGoogle Scholar
  194. Stewart G, Panchal CJ, Russell I, Sills AM (1983) Biology of ethanol-producing microorganisms. Crit Rev Biotechnol 1:161–188CrossRefGoogle Scholar
  195. Suman G, Nupur M, Anuradha S, Pradeep B (2015) Single cell protein production: a review. Int J Curr Microbiol App Sci 4(9): 251–262Google Scholar
  196. Tan JP, Md. Jahim J, Wu TY, Harun S, Kim BH, Mohammad AW (2014) Insight into biomass as a renewable carbon source for the production of succinic acid and the factors affecting the metabolic flux toward higher succinate yield. Ind Eng Chem Res 53:16123–16134CrossRefGoogle Scholar
  197. Taylor MJ, Richardson T (1979) Applications of microbial enzymes in food systems and in biotechnology. In: Advances in applied microbiology, vol 25. Elsevier, Burlington, pp 7–35Google Scholar
  198. Terpe K (2006) Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 72:211PubMedCrossRefGoogle Scholar
  199. Thies S et al (2016) Metagenomic discovery of novel enzymes and biosurfactants in a slaughterhouse biofilm microbial community. Sci Rep 6:27035PubMedPubMedCentralCrossRefGoogle Scholar
  200. Timmis KN, McGenity T, Van Der Meer JR, de Lorenzo V (2010) Handbook of hydrocarbon and lipid microbiology, vol DLII. Springer, Berlin, p 4716CrossRefGoogle Scholar
  201. Ueno H (2000) Enzymatic and structural aspects on glutamate decarboxylase. J Mol Catal B Enzym 10:67–79CrossRefGoogle Scholar
  202. Ugbogu E, Ugbogu O (2016) A review of microbial protein production: prospects and challenges. Fuw Trends Sci Technol J 1:182–185Google Scholar
  203. Underkofler L, Barton R, Rennert S (1958) Production of microbial enzymes and their applications. Appl Microbiol 6:212PubMedPubMedCentralGoogle Scholar
  204. Vaishnav P, Demain AL (2011) Unexpected applications of secondary metabolites. Biotechnol Adv 29:223–229CrossRefGoogle Scholar
  205. Vandenbergh PA (1993) Lactic acid bacteria, their metabolic products and interference with microbial growth. FEMS Microbiol Rev 12:221–237CrossRefGoogle Scholar
  206. Vandenberghe LP, Soccol CR, Pandey A, Lebeault J-M (1999) Microbial production of citric acid. Braz Arch Biol Technol 42:263–276CrossRefGoogle Scholar
  207. Vannelli T, Qi WW, Sweigard J, Gatenby AA, Sariaslani FS (2007) Production of p-hydroxycinnamic acid from glucose in Saccharomyces cerevisiae and Escherichia coli by expression of heterologous genes from plants and fungi. Metab Eng 9:142–151PubMedCrossRefGoogle Scholar
  208. Vargas-Tah A, Gosset G (2015) Production of cinnamic and p-hydroxycinnamic acids in engineered microbes. Front Bioeng Biotechnol 3:116PubMedPubMedCentralCrossRefGoogle Scholar
  209. Verier A, Chenal A, Babon A, Ménez A, Gillet D (2006) Engineering of bacterial toxins for research and medicine. In: The comprehensive sourcebook of bacterial protein toxins, 3rd edn. Elsevier, Amsterdam/Boston, p 991–1007CrossRefGoogle Scholar
  210. Volesky B, Luong JH, Aunstrup K (1984) Microbial enzymes: production, purification, and isolation. Crit Rev Biotechnol 2:119–146CrossRefGoogle Scholar
  211. Wang G (2015) Improved methods for classification, prediction, and design of antimicrobial peptides. In: Computational peptidology. Springer, New York/Heidelberg, pp 43–66CrossRefGoogle Scholar
  212. Wang G, Huang M, Nielsen J (2017) Exploring the potential of Saccharomyces cerevisiae for biopharmaceutical protein production. Curr Opin Biotechnol 48:77–84CrossRefGoogle Scholar
  213. Weber T, Rausch C, Lopez P, Hoof I, Gaykova V, Huson D, Wohlleben W (2009) CLUSEAN: a computer-based framework for the automated analysis of bacterial secondary metabolite biosynthetic gene clusters. J Biotechnol 140:13–17PubMedCrossRefGoogle Scholar
  214. Wee Y-J, Kim J-N, Ryu H-W (2006) Biotechnological production of lactic acid and its recent applications. Food Technol Biotechnol 44:163–172Google Scholar
  215. Williams DH, Stone MJ, Hauck PR, Rahman SK (1989) Why are secondary metabolites (natural products) biosynthesized? J Nat Prod 52:1189–1208PubMedCrossRefGoogle Scholar
  216. Williamson NR, Fineran PC, Leeper FJ, Salmond GP (2006) The biosynthesis and regulation of bacterial prodiginines. Nat Rev Microbiol 4:887PubMedCrossRefGoogle Scholar
  217. de Wit PJ (2013) Microbial toxins in the green world. FEMS Microbiol Rev 37:1–2CrossRefGoogle Scholar
  218. Wu F, Cao P, Song G, Chen W, Wang Q (2018) Expanding the repertoire of aromatic chemicals by microbial production. J Chem Technol Biotechnol 93:2804–2816CrossRefGoogle Scholar
  219. Xing B, Rao J, Liu R (2008) Novel beta-lactam antibiotics derivatives: their new applications as gene reporters, antitumor prodrugs and enzyme inhibitors. Mini Rev Med Chem 8:455–471PubMedCrossRefGoogle Scholar
  220. Xu Q, Tao W-Y, Huang H, Li S (2016) Highly efficient synthesis of ethyl (S)-4-chloro-3-hydroxybutanoate by a novel carbonyl reductase from Yarrowia lipolytica and using mannitol or sorbitol as cosubstrate. Biochem Eng J 106:61–67CrossRefGoogle Scholar
  221. Yang X, Yousef AE (2018) Antimicrobial peptides produced by Brevibacillus spp.: structure, classification and bioactivity: a mini review. World J Microbiol Biotechnol 34:57PubMedCrossRefGoogle Scholar
  222. Yoo YJ, Feng Y, Kim Y-H, Yagonia CFJ (2017) Fundamentals of enzyme engineering. Springer, p X, 209Google Scholar
  223. Zahrl RJ, Peña DA, Mattanovich D, Gasser B (2017) Systems biotechnology for protein production in Pichia pastoris. FEMS Yeast Res 17:fox068CrossRefGoogle Scholar
  224. Zhao S et al (2013) Discovery of new enzymes and metabolic pathways by using structure and genome context. Nature 502:698PubMedPubMedCentralCrossRefGoogle Scholar
  225. Zheng P, Dong J-J, Sun Z-H, Ni Y, Fang L (2009) Fermentative production of succinic acid from straw hydrolysate by Actinobacillus succinogenes. Bioresour Technol 100:2425–2429PubMedCrossRefGoogle Scholar
  226. Zhu X, Siegert M, Yates MD, Logan BE (2015) Alamethicin suppresses methanogenesis and promotes acetogenesis in bioelectrochemical systems. Appl Environ Microbiol 81:3863–3868PubMedPubMedCentralCrossRefGoogle Scholar
  227. Zorko M, Jerala R (2010) Production of recombinant antimicrobial peptides in bacteria. In: Antimicrobial peptides. Springer, pp 61–76Google Scholar
  228. Zubieta MP, Contesini FJ, Rubio MV, Gonçalves AESS, Gerhardt JA, Prade RA, Damasio ARL (2018) Protein profile in Aspergillus nidulans recombinant strains overproducing heterologous enzymes. Microb Biotechnol 11:346–358PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Abiya Johnson
    • 1
  • Prajkata Deshmukh
    • 1
  • Shubhangi Kaushik
    • 1
    Email author
  • Vimal Sharma
    • 2
  1. 1.Department of BiotechnologyNational Institute of Pharmaceutical Education and Research-GuwahatiGuwahatiIndia
  2. 2.Department of BiochemistryRoyal Global UniversityGuwahatiIndia

Personalised recommendations