Advertisement

Plant Growth-Promoting Rhizobacteria (PGPR) and Fungi (PGPF): Potential Biological Control Agents of Diseases and Pests

  • Pankaj Prakash Verma
  • Rahul Mahadev Shelake
  • Suvendu Das
  • Parul Sharma
  • Jae-Yean Kim
Chapter

Abstract

Biological control agents (BCAs) are gaining more attention as alternatives to the chemical pesticides for management of pests and diseases in agricultures. It offers an ecofriendly way for plant health management (PHM), and it also helps to reduce the excessive use of toxic chemicals or pesticides. The BCAs considered as the most promising technology for sustainable agriculture. Various beneficial BCAs have been known for PHM but need effective adoption together with standardization of bioformulations for field applications. The mechanisms of BCAs in PHM mainly include direct (parasitism, hyperparasitism, commensalism), indirect (competition, systemic acquired or induced systemic resistance), or mixed antagonistic modes (production of antibiotics, siderophores, lytic enzyme, and volatile organic substances). Apart from their role in plant growth promotion, plant growth-promoting rhizobacteria (PGPR) and fungi (PGPF) also act as BCAs that function through either of the mechanisms. The PGPR/PGPF possesses many traits that serve them as potential BCAs, and therefore possess great promise for successful application in sustainable agriculture. In this chapter, different approaches for BCAs applications and their mechanism in PHM especially for disease and pest (DP) management are discussed. Also, the relationship between the PGPR/PGPF diversity and their application in biological control is discussed. Furthermore, we have summarized the global-Indian scenario of current research including state-of-the-art technological advances in PGPR/PGPF-mediated DP management.

Keywords

Biological control agents Plant diseases Plant health management Plant growth-promoting rhizobacteria Rhizosphere Sustainable agriculture 

Notes

Acknowledgments

Authors gratefully acknowledge financial support from the National Research Foundation of Korea, Republic of Korea (Grant #2017R1A4A1015515).

References

  1. Abdallah DB, Frikha-Gargouri O, Tounsi S (2018) Rizhospheric competence, plant growth promotion and biocontrol efficacy of Bacillus amyloliquefaciens subsp. plantarum strain 32a. Biol Control.  https://doi.org/10.1016/j.biocontrol.2018.01.013CrossRefGoogle Scholar
  2. Adam M, Heuer H, Hallmann J (2014) Bacterial antagonists of fungal pathogens also control root-knot nematodes by induced systemic resistance of tomato plants. PLoS One 9(2):e90402PubMedPubMedCentralCrossRefGoogle Scholar
  3. Adhilakshmi M, Latha P, Paranidharan V et al (2014) Biological control of stem rot of groundnut (Arachis hypogaea L.) caused by Sclerotium rolfsii Sacc. with actinomycetes. Arch Phytopathol Plant Protect 47(3):298–311CrossRefGoogle Scholar
  4. Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ-Sci 26(1):1–20CrossRefGoogle Scholar
  5. Akhtar MS, Panwar J (2013) Efficacy of root-associated fungi and PGPR on the growth of Pisum sativum (cv. Arkil) and reproduction of the root-knot nematode Meloidogyne incognita. J Basic Microbiol 53(4):318–326CrossRefGoogle Scholar
  6. Alabouvette C, Olivain C, Migheli Q et al (2009) Microbiological control of soil-borne phytopathogenic fungi with special emphasis on wilt-inducing Fusarium oxysporum. New Phytol 184(3):529–544PubMedCrossRefPubMedCentralGoogle Scholar
  7. Amira MB, Lopez D, Mohamed AT et al (2017) Beneficial effect of Trichoderma harzianum strain Ths97 in biocontrolling Fusarium solani causal agent of root rot disease in olive trees. Biol Control 110:70–78CrossRefGoogle Scholar
  8. Andrews SC, Robinson AK, Rodríguez-Quiñones F (2003) Bacterial iron homeostasis. FEMS Microbiol Rev 27(2–3):215–237PubMedCrossRefPubMedCentralGoogle Scholar
  9. Arseneault T, Pieterse CM, Gérin-Ouellet M et al (2014) Long-term induction of defense gene expression in potato by Pseudomonas sp. LBUM223 and Streptomyces scabies. Phytopathology 104(9):926–932PubMedCrossRefPubMedCentralGoogle Scholar
  10. Audrain B, Farag MA, Ryu CM et al (2015) Role of bacterial volatile compounds in bacterial biology. FEMS Microbiol Rev 39(2):222–233PubMedCrossRefPubMedCentralGoogle Scholar
  11. Awla HK, Kadir J, Othman R et al (2017) Plant growth-promoting abilities and biocontrol efficacy of Streptomyces sp. UPMRS4 against Pyricularia oryzae. Biol Control 112:55–63CrossRefGoogle Scholar
  12. Bamisile B, Dash CK, Akutse KS et al (2018) Fungal endophytes: beyond herbivore management. Front Microbiol 9:544PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bano A, Muqarab R (2017) Plant defence induced by PGPR against Spodoptera litura in tomato (Solanum lycopersicum L.). Plant Biol 19(3):406–412PubMedCrossRefPubMedCentralGoogle Scholar
  14. Bensidhoum L, Nabti E, Tabli N et al (2016) Heavy metal tolerant Pseudomonas protegens isolates from agricultural well water in northeastern Algeria with plant growth promoting, insecticidal and antifungal activities. Eur J Soil Biol 75:38–46CrossRefGoogle Scholar
  15. Berg G (2009) Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84(1):11–18CrossRefGoogle Scholar
  16. Bhardwaj D, Ansari MW, Sahoo RK et al (2014) Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb Cell Factories 13(66):1–10Google Scholar
  17. Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28(4):1327–1350CrossRefGoogle Scholar
  18. Borah B, Ahmed R, Hussain M et al (2018) Suppression of root-knot disease in Pogostemon cablin caused by Meloidogyne incognita in a rhizobacteria mediated activation of phenylpropanoid pathway. Biol Control 119:43–50CrossRefGoogle Scholar
  19. Braun-kiewnick A, Lehmann A, Rezzonico F (2012) Development of species-, strain- and antibiotic biosynthesis-specific quantitative PCR assays for Pantoea agglomerans as tools for biocontrol monitoring. J Microbiol Methods 90(3):315–320PubMedCrossRefPubMedCentralGoogle Scholar
  20. Brock AK, Berger B, Schreiner M et al (2018) Plant growth-promoting bacteria Kosakonia radicincitans mediate anti-herbivore defense in Arabidopsis thaliana. Planta:1–10Google Scholar
  21. Burketova L, Trda L, Ott PG et al (2015) Bio-based resistance inducers for sustainable plant protection against pathogens. Biotechnol Adv 33(6):994–1004PubMedCrossRefPubMedCentralGoogle Scholar
  22. Cai XC, Liu CH, Wang BT et al (2017) Genomic and metabolic traits endow Bacillus velezensis CC09 with a potential biocontrol agent in control of wheat powdery mildew disease. Microbiol Res 196:89–94PubMedCrossRefPubMedCentralGoogle Scholar
  23. Chen D, Liu X, Li C et al (2014) Isolation of Bacillus amyloliquefaciens S20 and its application in control of eggplant bacterial wilt. J Environ Manag 137:120–127CrossRefGoogle Scholar
  24. Chen YY, Chen PC, Tsay TT (2016) The biocontrol efficacy and antibiotic activity of Streptomyces plicatus on the oomycete Phytophthora capsici. Biol Control 98:34–42CrossRefGoogle Scholar
  25. Chen Y, Zhou D, Qi D et al (2018) Growth promotion and disease suppression ability of a Streptomyces sp. CB-75 from banana rhizosphere soil. Front Microbiol 8:2704PubMedPubMedCentralCrossRefGoogle Scholar
  26. Chennappa G, Sreenivasa MY, Nagaraja H (2018) Azotobacter salinestris: a novel pesticide-degrading and prominent biocontrol PGPR bacteria. In: Panpatte D, Jhala Y, Shelat H et al (eds) Microorganisms for green revolution. Microorganisms for sustainability, vol 7. Springer, Singapore, pp 23–43CrossRefGoogle Scholar
  27. Chinheya CC, Yobo KS, Laing MD (2017) Biological control of the rootknot nematode, Meloidogyne javanica (Chitwood) using Bacillus isolates, on soybean. Biol Control 109:37–41CrossRefGoogle Scholar
  28. Colagiero M, Rosso LC, Ciancio A (2018) Diversity and biocontrol potential of bacterial consortia associated to root-knot nematodes. Biol Control 120:11–16CrossRefGoogle Scholar
  29. Cordero P, Príncipe A, Jofré E et al (2014) Inhibition of the phytopathogenic fungus Fusarium proliferatum by volatile compounds produced by Pseudomonas. Arch Microbiol 196(11):803–809PubMedCrossRefPubMedCentralGoogle Scholar
  30. Crowley DE (2006) Microbial siderophores in the plant rhizosphere. In: Barton LL, Abadía J (eds) Iron nutrition in plants and rhizospheric microorganisms. Springer, Dordrecht, pp 169–198CrossRefGoogle Scholar
  31. Damalas CA, Koutroubas SD (2018) Current status and recent developments in biopesticide use. Agriculture 8:1–6Google Scholar
  32. Dara SK, Dara SS, Dara SS (2017) Impact of entomopathogenic fungi on the growth, development, and health of cabbage growing under water stress. Am J Plant Sci 8(06):1224CrossRefGoogle Scholar
  33. Das K, Prasanna R, Saxena AK (2017) Rhizobia: a potential biocontrol agent for soilborne fungal pathogens. Folia Microbiol 62(5):425–435CrossRefGoogle Scholar
  34. de Lima FB, Félix C, Osório N et al (2017) Trichoderma harzianum T1A constitutively secretes proteins involved in the biological control of Guignardia citricarpa. Biol Control 106:99–109CrossRefGoogle Scholar
  35. DeBach P, Hagen KS (1964) Manipulation of entomophagous species. In: DeBach P (ed) Biological control of insect pests and weeds. Chapman and Hall, London, pp 429–458Google Scholar
  36. Denef K, Bubenheim H, Lenhart K et al (2007) Community shifts and carbon translocation within metabolically-active rhizosphere microorganisms in grasslands under elevated CO2. Biogeosciences 4(5):769–779CrossRefGoogle Scholar
  37. Deshmukh S, Hückelhoven R, Schäfer P et al (2006) The root endophytic fungus Piriformospora indica requires host cell death for proliferation during mutualistic symbiosis with barley. PNAS 103(49):18450–18457PubMedCrossRefPubMedCentralGoogle Scholar
  38. Desoignies N, Schramme F, Ongena M et al (2013) Systemic resistance induced by Bacillus lipopeptides in Beta vulgaris reduces infection by the rhizomania disease vector Polymyxa betae. Mol Plant Pathol 14(4):416–421PubMedCrossRefPubMedCentralGoogle Scholar
  39. Dias MP, Bastos MS, Xavier VB et al (2017) Plant growth and resistance promoted by Streptomyces sp. in tomato. Plant Physiol Biochem 118:479–493PubMedCrossRefPubMedCentralGoogle Scholar
  40. Dimkpa CO, Merten D, Svatos A et al (2009) Siderophores mediate reduced and increased uptake of cadmium by Streptomyces tendae F4 and sunflower (Helianthus annuus), respectively. J Appl Microbiol 107:1687–1696CrossRefGoogle Scholar
  41. Dinesh R, Anandaraj M, Kumar A et al (2015) Isolation, characterization, and evaluation of multi-trait plant growth promoting rhizobacteria for their growth promoting and disease suppressing effects on ginger. Microbiol Res 173:34–43PubMedCrossRefPubMedCentralGoogle Scholar
  42. Donga TK, Vega FE, Klingen I (2018) Establishment of the fungal entomopathogen Beauveria bassiana as an endophyte in sugarcane, Saccharum officinarum. Fungal Ecol 35:70–77CrossRefGoogle Scholar
  43. El Arbi A, Rochex A, Chataigné G et al (2016) The Tunisian oasis ecosystem is a source of antagonistic Bacillus sp. producing diverse antifungal lipopeptides. Res Microbiol 167(1):46–57PubMedCrossRefPubMedCentralGoogle Scholar
  44. Elena GJ, Beatriz PJ, Alejandro P et al (2011) Metarhizium anisopliae (Metschnikoff) Sorokin promotes growth and has endophytic activity in tomato plants. Adv Biol Res 5(1):22–27Google Scholar
  45. Elsharkawy MM, Shimizu M, Takahashi H et al (2013) Induction of systemic resistance against cucumber mosaic virus in Arabidopsis thaliana by Trichoderma asperellum SKT-1. Plant Pathol J 29(2):193–200PubMedPubMedCentralCrossRefGoogle Scholar
  46. El-Tarabily KA (2006) Rhizosphere-competent isolates of streptomycete and non-streptomycete actinomycetes capable of producing cell-wall degrading enzymes to control Pythium aphanidermatum damping-off disease of cucumber. Can J Bot 84:211–222CrossRefGoogle Scholar
  47. Environmental Protection Agency of the USA (2012) Regulating biopesticides. http://www.epa.gov/opp00001/biopesticides
  48. Fan H, Ru J, Zhang Y (2017) Fengycin produced by Bacillus subtilis 9407 plays a major role in the biocontrol of apple ring rot disease. Microbiol Res 199:89–97PubMedCrossRefPubMedCentralGoogle Scholar
  49. Figueiredo MDVB, Seldin L, de Araujo FF et al (2010) Plant growth promoting rhizobacteria: fundamentals and applications. In: Maheshwari DK (ed) Plant growth and health promoting bacteria. Springer, Berlin/Heidelberg, pp 21–43CrossRefGoogle Scholar
  50. Frankowski J, Lorito M, Scala F (2001) Purification and properties of two chitinolytic enzymes of Serratia plymuthica HRO-C48. Arch Microbiol 176:421–426PubMedCrossRefPubMedCentralGoogle Scholar
  51. Gautam NK, Kumar A, Singh VK (2018) Bio-pesticide: a clean approach to healthy agriculture. Int J Curr Microbiol App Sci 7(3):194–197CrossRefGoogle Scholar
  52. Gava CAT, Pinto JM (2016) Biocontrol of melon wilt caused by Fusarium oxysporum Schlect f. sp. melonis using seed treatment with Trichoderma sp. and liquid compost. Biol Control 97:13–20CrossRefGoogle Scholar
  53. Geraldine AM, Lopes FAC, Carvalho DDC et al (2013) Cell wall-degrading enzymes and parasitism of sclerotia are key factors on field biocontrol of white mold by Trichoderma sp. Biol Control 67(3):308–316CrossRefGoogle Scholar
  54. Ghorbanpour M, Omidvari M, Abbaszadeh-Dahaji P et al (2017) Mechanisms underlying the protective effects of beneficial fungi against plant diseases. Biol Control.  https://doi.org/10.1016/j.biocontrol.2017.11.006CrossRefGoogle Scholar
  55. Goswami D, Thakker JN, Dhandhukia PC (2016) Portraying mechanics of plant growth promoting rhizobacteria (PGPR): a review. Cogent Food Agric 2(1):1–19Google Scholar
  56. Gotor-Vila, Teixidó N, Di Francesco A et al (2017) Antifungal effect of volatile organic compounds produced by Bacillus amyloliquefaciens CPA-8 against fruit pathogen decays of cherry. Food Microbiol 64:219–225PubMedCrossRefPubMedCentralGoogle Scholar
  57. Gozzo F, Faoro F (2013) Systemic acquired resistance (50 years after discovery): moving from the lab to the field. J Agric Food Chem 61(51):12473–12491PubMedCrossRefPubMedCentralGoogle Scholar
  58. Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol Biochem 37(3):395–412CrossRefGoogle Scholar
  59. Guo Q, Dong W, Li S et al (2014) Fengycin produced by Bacillus subtilis NCD-2 plays a major role in biocontrol of cotton seedling damping-off disease. Microbiol Res 169(7–8):533–540PubMedCrossRefPubMedCentralGoogle Scholar
  60. Halfeld-vieira BDA, Luis W, Augusto D et al (2015) Understanding the mechanism of biological control of passion fruit bacterial blight promoted by autochthonous phylloplane bacteria. Biol Control 80:40–49CrossRefGoogle Scholar
  61. Hastuti RD, Lestari Y, Suwanto A et al (2012) Endophytic Streptomyces sp. as biocontrol agents of rice bacterial leaf blight pathogen (Xanthomonas oryzae pv. oryzae). HAYATI J Biosci 19(4):155–162CrossRefGoogle Scholar
  62. Hernández-león R, Rojas-solís D, Contreras-pérez M et al (2015) Characterization of the antifungal and plant growth-promoting effects of diffusible and volatile organic compounds produced by Pseudomonas fluorescens strains. Biol Control 81:83–92CrossRefGoogle Scholar
  63. Heydari A, Pessarakli M (2010) A review on biological control of fungal plant pathogens using microbial antagonists. J Biol Sci 10:273–290CrossRefGoogle Scholar
  64. Hiltner LT (1904) Uber nevere Erfahrungen und Probleme auf dem Gebiet der Boden Bakteriologie und unter besonderer Beurchsichtigung der Grundungung und Broche. Arbeit Deut Landw Ges Berlin 98:59–78Google Scholar
  65. Hossain MM, Sultana F (2015) Genetic variation for induced and basal resistance against leaf pathogen Pseudomonas syringae pv. tomato DC3000 among Arabidopsis thaliana accessions. Springer Plus 4(1):296PubMedCrossRefPubMedCentralGoogle Scholar
  66. Huang WK, Cui JK, Liu SM et al (2016) Testing various biocontrol agents against the root-knot nematode (Meloidogyne incognita) in cucumber plants identifies a combination of Syncephalastrum racemosum and Paecilomyces lilacinus as being most effective. Biol Control 92:31–37CrossRefGoogle Scholar
  67. India Biopesticide Market Forecast 2017–2025 (2017) Pages 1–48, Report ID: 4773059Google Scholar
  68. India biopesticides market outlook to 2020- Trichoderma and Bacillus thuringiensis (bt) biopesticides to lead the future growth (2015) Products IdD- KR332Google Scholar
  69. Ingram J (2011) A food systems approach to researching food security and its interactions with global environmental change. Food Secur 3:417–431CrossRefGoogle Scholar
  70. Jaber LR, Araj SE (2017) Interactions among endophytic fungal entomopathogens (Ascomycota: Hypocreales), the green peach aphid Myzus persicae Sulzer (Homoptera: Aphididae), and the aphid endoparasitoid Aphidius colemani Viereck (Hymenoptera: Braconidae). Biol Control 116:53–61CrossRefGoogle Scholar
  71. Jaber LR, Enkerli J (2016) Effect of seed treatment duration on growth and colonization of Vicia faba by endophytic Beauveria bassiana and Metarhizium brunneum. Biol Control 103:187–195CrossRefGoogle Scholar
  72. Jaber LR, Enkerli J (2017) Fungal entomopathogens as endophytes: can they promote plant growth? Biocontrol Sci Tech 27:28–41CrossRefGoogle Scholar
  73. Jain R, Pandey A (2016) A phenazine-1-carboxylic acid producing polyextremophilic Pseudomonas chlororaphis (MCC2693) strain, isolated from mountain ecosystem, possesses biocontrol and plant growth promotion abilities. Microbiol Res 190:63–71PubMedCrossRefPubMedCentralGoogle Scholar
  74. Jia Y, Liu G, Park D, Yang Y (2013) Inoculation and scoring methods for rice sheath blight disease. In: Yang Y (ed) Rice protocols. Methods in molecular biology (methods and protocols), vol 956. Humana Press, Totowa, pp 257–268Google Scholar
  75. Jin N, Hui X, Wen-jing LI et al (2017a) Field evaluation of Streptomyces rubrogriseus HDZ-9-47 for biocontrol of Meloidogyne incognita on tomato. J Integr Agric 16(4):1347–1357CrossRefGoogle Scholar
  76. Jin Q, Jiang Q, Zhao L et al (2017b) Complete genome sequence of Bacillus velezensis S3-1, a potential biological pesticide with plant pathogen inhibiting and plant promoting capabilities. J Biotechnol 259:199–203CrossRefGoogle Scholar
  77. John RP, Tyagi RD, Prévost D et al (2010) Mycoparasitic Trichoderma viride as a biocontrol agent against Fusarium oxysporum f. sp. adzuki and Pythium arrhenomanes and as a growth promoter of soybean. Crop Prot 29:1452–1459CrossRefGoogle Scholar
  78. Kamal R, Gusain YS, Kumar V (2014) Interaction and symbiosis of AM fungi, actinomycetes and plant growth promoting rhizobacteria with plants: strategies for the improvement of plants health and defense system. Int J Curr Microbiol Appl Sci 3:564–585Google Scholar
  79. Karimi E, Sadeghi A, Abbaszade Dehaji P et al (2012) Biocontrol activity of salt tolerant Streptomyces isolates against phytopathogens causing root rot of sugar beet. Biocontrol Sci Tech 22:333–349CrossRefGoogle Scholar
  80. Karimi E, Safaie N, Shams-Baksh M et al (2016) Bacillus amyloliquefaciens SB14 from rhizosphere alleviates Rhizoctonia damping-off disease on sugar beet. Microbiol Res 192:221–230PubMedCrossRefPubMedCentralGoogle Scholar
  81. Katiyar V, Goel R (2004) Siderophore-mediated plant growth promotion at low temperature by mutant of fluorescent pseudomonad. Plant Growth Regul 42:239–244CrossRefGoogle Scholar
  82. Keinan A, Clark AG (2012) Recent explosive human population growth has resulted in an excess of rare genetic variants. Science 336:740–743PubMedPubMedCentralCrossRefGoogle Scholar
  83. Kepenekci I, Hazir S, Oksal E et al (2018) Application methods of Steinernema feltiae, Xenorhabdus bovienii and Purpureocillium lilacinum to control root-knot nematodes in greenhouse tomato systems. Crop Prot 108:31–38CrossRefGoogle Scholar
  84. Khan AL, Hamayun M, Khan SA et al (2012) Pure culture of Metarhizium anisopliae LHL07 reprograms soybean to higher growth and mitigates salt stress. World J Microbiol Biotechnol 28:1483–1494PubMedCrossRefPubMedCentralGoogle Scholar
  85. Kheirandish Z, Harighi B (2015) Evaluation of bacterial antagonists of Ralstonia solanacearum, causal agent of bacterial wilt of potato. Biol Control 86:14–19CrossRefGoogle Scholar
  86. Kim HS, Sang MK, Jung HW et al (2012) Identification and characterization of Chryseobacterium wanjuense strain KJ9C8 as a biocontrol agent of Phytophthora blight of pepper. Crop Prot 32:129–137CrossRefGoogle Scholar
  87. Kiss L (2003) A review of fungal antagonists of powdery mildews and their potential as biocontrol agents. Pest Manag Sci 59:475–483PubMedCrossRefPubMedCentralGoogle Scholar
  88. Kloepper JW, Schroth MN (1978) Plant growth-promoting rhizobacteria on radishes. In: Station de Pathologie, Proceedings of the 4th international conference on plant pathogenic bacteria, Tours, France, Végétale et Phyto-Bactériologie, Ed, pp 879–882Google Scholar
  89. Krell V, Unger S, Jakobs-Schoenwandt D et al (2018) Endophytic Metarhizium brunneum mitigates nutrient deficits in potato and improves plant productivity and vitality. Fungal Ecol 34:43–49CrossRefGoogle Scholar
  90. Kumar S, Singh A (2015) Biopesticides: present status and the future prospects. J Fertil Pestic 6(2):2CrossRefGoogle Scholar
  91. Kumari P, Meena M, Upadhyay RS (2018) Characterization of plant growth promoting rhizobacteria (PGPR) isolated from the rhizosphere of Vigna radiata (mung bean). Biocatal Agric Biotechnol 16:155–162CrossRefGoogle Scholar
  92. Kurabachew H, Wydra K (2013) Characterization of plant growth promoting rhizobacteria and their potential as bioprotectant against tomato bacterial wilt caused by Ralstonia solanacearum. Biol Control 67(1):75–83CrossRefGoogle Scholar
  93. Kwak Y, Shin J (2015) Complete genome sequence of Burkholderia pyrrocinia 2327 T, the first industrial bacterium which produced antifungal antibiotic pyrrolnitrin. J Biotechnol 211:3–4PubMedCrossRefPubMedCentralGoogle Scholar
  94. Law JWF, Ser HL, Khan TM et al (2017) The potential of Streptomyces as biocontrol agents against the rice blast fungus, Magnaporthe oryzae (Pyricularia oryzae). Front Microbiol 8:3PubMedPubMedCentralGoogle Scholar
  95. Li H, Li X, Wang Y (2011) Antifungal metabolites from Chaetomium globosum, an endophytic fungus in Ginkgo biloba. Biochem Syst Ecol 4(39):876–879CrossRefGoogle Scholar
  96. Li YT, Hwang SG, Huang YM (2018) Effects of Trichoderma asperellum on nutrient uptake and Fusarium wilt of tomato. Crop Prot 110:275–282CrossRefGoogle Scholar
  97. Lopez DC, Sword GA (2015) The endophytic fungal entomopathogens Beauveria bassiana and Purpureocillium lilacinum enhance the growth of cultivated cotton (Gossypium hirsutum) and negatively affect survival of the cotton bollworm (Helicoverpa zea). Biol Control 89:53–60CrossRefGoogle Scholar
  98. Lugtenberg BJJ (2015) Introduction to plant-microbe-interactions. In: Lugtenberg B (ed) Principles of plant-microbe interactions microbes for sustainable agriculture. Springer, Berlin, pp 1–2Google Scholar
  99. Magnin-Robert M, Quantinet D, Couderchet M et al (2013) Differential induction of grapevine resistance and defense reactions against Botrytis cinerea by bacterial mixtures in vineyards. BioControl 58:117–131CrossRefGoogle Scholar
  100. Manasa M, Yashoda K, Pallavi S et al (2013) Biocontrol potential of Streptomyces species against Fusarium oxysporum f. sp. zingiberi (causal agent of rhizome rot of ginger). J Adv Sci Res 4:1–3Google Scholar
  101. Martínez-Absalón S, Rojas-Solís D, Hernández-León R et al (2014) Potential use and mode of action of the new strain Bacillus thuringiensis UM96 for the biological control of the grey mould phytopathogen Botrytis cinerea. Biocontrol Sci Tech 24:1349–1362CrossRefGoogle Scholar
  102. Martins SA, Schurt DA, Seabra SS et al (2018) Common bean (Phaseolus vulgaris L.) growth promotion and biocontrol by rhizobacteria under Rhizoctonia solani suppressive and conducive soils. Appl Soil Ecol 127:129–135CrossRefGoogle Scholar
  103. Molinari S, Baser N (2010) Induction of resistance to root-knot nematodes by SAR elicitors in tomato. Crop Prot 29:1354–1362CrossRefGoogle Scholar
  104. Morohoshi T, Wang W, Suto T et al (2013) Phenazine antibiotic production and antifungal activity are regulated by multiple quorum-sensing systems in Pseudomonas chlororaphis subsp. aurantiaca StFRB508. J Biosci Bioeng 116:580–584PubMedCrossRefPubMedCentralGoogle Scholar
  105. Murali M, Sudisha J, Amruthesh KN et al (2013) Rhizosphere fungus Penicillium chrysogenum promotes growth and induces defence-related genes and downy mildew disease resistance in pearl millet. Plant Biol 15:111–118PubMedCrossRefPubMedCentralGoogle Scholar
  106. Naeem M, Aslam Z, Khaliq A et al (2018) Plant growth promoting rhizobacteria reduce aphid population and enhance the productivity of bread wheat. Braz J Microbiol 49:9–14PubMedPubMedCentralCrossRefGoogle Scholar
  107. Nassimi Z, Taheri P (2017) Endophytic fungus Piriformospora indica induced systemic resistance against rice sheath blight via affecting hydrogen peroxide and antioxidants. Biocontrol Sci Tech 27:252–267CrossRefGoogle Scholar
  108. Nikolić I, Berić T, Dimkic I et al (2018) Biological control of Pseudomonas syringae pv. aptata on sugar beet with Bacillus pumilus SS10.7 and Bacillus amyloliquefaciens (SS12.6 and SS38.4) strains. J Appl Microbiol 126:165–176CrossRefGoogle Scholar
  109. Nimnoi P, Pongsilp N, Ruanpanun P (2017) Monitoring the efficiency of Streptomyces galilaeus strain KPS-C004 against root knot disease and the promotion of plant growth in the plant-parasitic nematode infested soils. Biol Control 114:158–166CrossRefGoogle Scholar
  110. Niu DD, Liu HX, Jiang CH et al (2011) The plant growth-promoting rhizobacterium Bacillus cereus AR156 induces systemic resistance in Arabidopsis thaliana by simultaneously activating salicylate- and jasmonate/ethylene-dependent signaling pathways. Mol Plant-Microbe Interact 24:533–542CrossRefGoogle Scholar
  111. Olson S (2015) An analysis of the biopesticide market now and where is going. Outlooks Pest Manag 26:203–206CrossRefGoogle Scholar
  112. Padaria JC, Tarafdar A, Raipuria R et al (2016) Identification of phenazine-1-carboxylic acid gene (phc CD) from Bacillus pumilus MTCC7615 and its role in antagonism against Rhizoctonia solani. J Basic Microbiol 56:999–1008PubMedCrossRefPubMedCentralGoogle Scholar
  113. Palazzini JM, Dunlap CA, Bowman MJ et al (2016) Bacillus velezensis RC 218 as a biocontrol agent to reduce Fusarium head blight and deoxynivalenol accumulation: genome sequencing and secondary metabolite cluster profiles. Microbiol Res 192:30–36PubMedCrossRefPubMedCentralGoogle Scholar
  114. Palumbo JD, Yuen GY, Jochum CC (2005) Mutagenesis of Beta-1,3-glucanase genes in Lysobacter enzymogenes strain C3 results in reduced biological control activity toward bipolaris leaf spot of tall fescue and Pythium damping-off of sugar beet. Phytopathology 95:701–707PubMedCrossRefPubMedCentralGoogle Scholar
  115. Pascale A, Vinale F, Manganiello G et al (2017) Trichoderma and its secondary metabolites improve yield and quality of grapes. Crop Prot 92:176–181CrossRefGoogle Scholar
  116. Patil HJ, Srivastava AK, Singh DP et al (2011) Actinomycetes mediated biochemical responses in tomato (Solanum lycopersicum) enhances bioprotection against Rhizoctonia solani. Crop Prot 30:1269–1273CrossRefGoogle Scholar
  117. Patil S, Nikama M, Anokhinab T et al (2017) Multi-stress tolerant plant growth promoting Pseudomonas sp. MCC 3145 producing cytostatic and fungicidal pigment. Biocatal Agric Biotechnol 10:53–63CrossRefGoogle Scholar
  118. Pavela R (2014) Limitation of plant biopesticides. In: Singh D (ed) Advances in plant biopesticides. Springer, New Delhi, pp 347–359CrossRefGoogle Scholar
  119. Pelaez V, Mizukawa G (2017) Diversification strategies in the pesticide industry: from seeds to biopesticides. Ciênc Rural 47:e20160007CrossRefGoogle Scholar
  120. Pieterse CMJ, Van Wees SCM (2015) Induced disease resistance. In: Lugtenberg B (ed) Principles of plant-microbe interactions: microbes for sustainable agriculture. Springer, Cham, pp 123–134Google Scholar
  121. Pradhanang PM, Ji P, Momol MT et al (2005) Application of acibenzolar-S-methyl enhances host resistance in tomato against Ralstonia solanacearum. Plant Dis 89(9):989–993PubMedCrossRefPubMedCentralGoogle Scholar
  122. Rahardjo BT, Tarno H (2018) Diamondback Moth, Plutella xylostella (Linnaeus) Responses on Chinese Kale (Brassica oleracea var. alboglabra) treated by plant growth promoting rhizobacteria. Asian J Crop Sci 10(2):73–79CrossRefGoogle Scholar
  123. Rahman M, Ali AM, Dey TK et al (2014) Evolution of disease and potential biocontrol activity of Trichoderma sp. against Rhiozctonia solani on potato. Biosci J 30:1108–1117Google Scholar
  124. Rahman SFSA, Singh E, Pieterse CMJ, Schenk PM (2018) Emerging microbial biocontrol strategies for plant pathogens. Plant Sci.  https://doi.org/10.1016/j.plantsci.2017.11.012PubMedCrossRefPubMedCentralGoogle Scholar
  125. Ramadan EM, AbdelHafez AA, Hassan EA et al (2016) Plant growth promoting rhizobacteria and their potential for biocontrol of phytopathogens. Afr J Microbiol Res 10:486–504CrossRefGoogle Scholar
  126. Ramesh R, Phadke GS (2012) Rhizosphere and endophytic bacteria for the suppression of eggplant wilt caused by Ralstonia solanacearum. Crop Prot 37:35–41CrossRefGoogle Scholar
  127. Ramette A, Frapolli M, Saux MF (2011) Pseudomonas protegens sp nov. widespread plant-protecting bacteria producing the biocontrol compounds 2,4-diacetylphloroglucinol and pyoluteorin. Syst Appl Microbiol 34:180–188PubMedCrossRefPubMedCentralGoogle Scholar
  128. Rath M, Mitchell TR, Gold SE (2018) Volatiles produced by Bacillus mojavensis RRC101 act as plant growth modulators and are strongly culture-dependent. Microbiol Res 208:76–84PubMedCrossRefPubMedCentralGoogle Scholar
  129. Regnault-Roger C, Philogène BJR, Vincent C (2005) Biopesticides of plant origin. Intercept, Paris, p 313Google Scholar
  130. Rojas-Solís D, Zetter-Salmon E, Contreras-Perez M et al (2018) Pseudomonas stutzeri E25 and Stenotrophomonas maltophilia CR71 endophytes produce antifungal volatile organic compounds and exhibit additive plant growth-promoting effects. Biocatal Agric Biotechnol 13:46–52CrossRefGoogle Scholar
  131. Sabaté DC, Brandan CP, Petroselli G et al (2017) Decrease in the incidence of charcoal root rot in common bean (Phaseolus vulgaris L.) by Bacillus amyloliquefaciens B14, a strain with PGPR properties. Biol Control 113:1–8CrossRefGoogle Scholar
  132. Saengnak V, Chaisiri C, Nalumpang S (2013) Antagonistic Streptomyces species can protect chili plants against wilt disease caused by Fusarium. J Agric Technol 9:1895–1908Google Scholar
  133. Saha M, Sarkar S, Sarkar B et al (2016) Microbial siderophores and their potential applications: a review. Environ Sci Pollut Res 23:3984–3999CrossRefGoogle Scholar
  134. Sajitha KL, Dev SA (2016) Quantification of antifungal lipopeptide gene expression levels in Bacillus subtilis B1 during antagonism against sapstain fungus on rubberwood. Biol Control 96:78–85CrossRefGoogle Scholar
  135. Saksirirat W, Chareerak P, Bunyatrachata W (2009) Induced systemic resistance of bio control fungus, Trichoderma sp. against bacterial and gray leaf spot in tomatoes. Asian J Food Agro-Ind (Special issue) 2:99–104Google Scholar
  136. Sakthivel N (2010) Effectiveness of three introduced encyrtid parasitic wasps (Acerophagus papayae, Anagyrus loecki and Pseudleptomastix mexicana) against papaya mealybug, Paracoccus marginatus, infesting mulberry in Tamil Nadu. J Biopest 6:71–76Google Scholar
  137. Salamone AL, Gundersen B, Inglis DA (2018) Clonostachys rosea, a potential biological control agent for Rhizoctonia solani AG-3 causing black scurf on potato. Biocontrol Sci Tech 28:895–900CrossRefGoogle Scholar
  138. Salomon MV, Bottini R, de Souza Filho GA et al (2014) Bacteria isolated from roots and rhizosphere of Vitis vinifera retard water losses, induce abscisic acid accumulation and synthesis of defense-related terpenes in in vitro cultured grapevine. Physiol Plant 151:359–374PubMedCrossRefPubMedCentralGoogle Scholar
  139. Salomon MV, Pinter IF, Piccoli P et al (2017) Use of plant growth-promoting rhizobacteria as biocontrol agents: induced systemic resistance against biotic stress in plants. In: Kalia V (ed) Microbial applications, vol 2. Springer, New Delhi, pp 133–152CrossRefGoogle Scholar
  140. Sánchez-Rodríguez AR, Raya-Díaz S, Zamarreño ÁM et al (2018) An endophytic Beauveria bassiana strain increases spike production in bread and durum wheat plants and effectively controls cotton leafworm (Spodoptera littoralis) larvae. Biol Control 116:90–102CrossRefGoogle Scholar
  141. Santoro MV, Bogino PC, Nocelli N et al (2016) Analysis of plant growth promoting effects of fluorescent Pseudomonas strains isolated from Mentha piperita rhizosphere and effects of their volatile organic compounds on essential oil composition. Front Microbiol 7(1085):1–17Google Scholar
  142. Saravanakumar K, Yu C, Dou K et al (2016) Synergistic effect of Trichoderma-derived antifungal metabolites and cell wall degrading enzymes on enhanced biocontrol of Fusarium oxysporum f. sp. cucumerinum. Biol Control 94:37–46CrossRefGoogle Scholar
  143. Sasan RK, Bidochka MJ (2012) The insect-pathogenic fungus Metarhizium robertsii (Clavicipitaceae) is also an endophyte that stimulates plant root development. Am J Bot 99:1483–1494CrossRefGoogle Scholar
  144. Sharma P, Verma PP, Kaur M (2017a) Identification of secondary metabolites produced by fluorescent pseudomonads applied for controlling fungal pathogens of apple. Indian Phytopathol 70:452–456Google Scholar
  145. Sharma P, Verma PP, Kaur M (2017b) Phytohormones production and phosphate solubilization capacities of fluorescent Pseudomonas sp. isolated from Shimla Dist. of Himachal Pradesh. IJCMAS 6:2447–2454Google Scholar
  146. Sharma V, Salwan R, Sharma PN et al (2017c) Elucidation of biocontrol mechanisms of Trichoderma harzianum against different plant fungal pathogens: universal yet host specific response. Int J Biol Macromol 95:72–79PubMedCrossRefPubMedCentralGoogle Scholar
  147. Shelake RM, Waghunde RR, Morita EH et al (2018) Plant-microbe-metal interactions: basics, recent advances, and future trends. In: Egamberdieva D, Ahmad P (eds) Plant microbiome: stress response. Microorganisms for sustainability, vol 5. Springer, Singapore, pp 1–5Google Scholar
  148. Shobha G, Kumudini BS (2012) Antagonistic effect of the newly isolated PGPR Bacillus sp. on Fusarium oxysporum. Int J Appl Sci Eng Res 1:463–474CrossRefGoogle Scholar
  149. Sillero JC, Rojas-Molina MM, Ávila CM et al (2012) Induction of systemic acquired resistance against rust, ascochyta blight and broomrape in faba bean by exogenous application of salicylic acid and benzothiadiazole. Crop Prot 34:65–69CrossRefGoogle Scholar
  150. Singh SP, Gaur R (2017) Endophytic Streptomyces sp. underscore induction of defense regulatory genes and confers resistance against Sclerotium rolfsii in chickpea. Biol Control 104:44–56CrossRefGoogle Scholar
  151. Sivasakhti S, Usharani G, Saranraj P (2014) Biocontrol potentiality of plant growth promoting bacteria (PGPR)- Pseudomonas fluorescence and Bacillus subtilis: a review. Afr J Agric Res 9:1265–1277Google Scholar
  152. Smith HS (1919) On some phases of insect control by the biological method1. J Econ Entomol 12(4):288–292CrossRefGoogle Scholar
  153. Sudisha J, Sharathchandra RG, Amruthesh KN et al (2012) Pathogenesis related protiens in plant defence response. In: Plant defence: biological control. Springer, Dordrecht, pp 379–403Google Scholar
  154. Sun G, Yao T, Feng C et al (2017) Identification and biocontrol potential of antagonistic bacteria strains against Sclerotinia sclerotiorum and their growth-promoting effects on Brassica napus. Biol Control 104:35–43CrossRefGoogle Scholar
  155. Tabli N, Rai A, Bensidhoum L (2018) Plant growth promoting and inducible antifungal activities of irrigation well water-bacteria. Biol Control 117:78–86CrossRefGoogle Scholar
  156. Tamreihao K, Ningthoujam DS, Nimaichand S et al (2016) Biocontrol and plant growth promoting activities of a Streptomyces corchorusii strain UCR3-16 and preparation of powder formulation for application as biofertilizer agents for rice plant. Microbiol Res 192:260–270CrossRefGoogle Scholar
  157. Tan S, Jiang Y, Song S et al (2013) Two Bacillus amyloliquefaciens strains isolated using the competitive tomato root enrichment method and their effects on suppressing Ralstonia solanacearum and promoting tomato plant growth. Crop Prot 43:134–140CrossRefGoogle Scholar
  158. Thampi A, Bhai RS (2017) Rhizosphere actinobacteria for combating Phytophthora capsici and Sclerotium rolfsii, the major soil borne pathogens of black pepper (Piper nigrum L.). Biol Control 109:1–13CrossRefGoogle Scholar
  159. Timmermann T, Armijo G, Donoso R et al (2017) Paraburkholderia phytofirmans PsJN protects Arabidopsis thaliana against a virulent strain of Pseudomonas syringae through the activation of induced resistance. Mol Plant-Microbe Interact 30:215–230PubMedCrossRefPubMedCentralGoogle Scholar
  160. Tjamos EC, Tjamos SE, Antoniou PP (2010) Biological management of plant diseases: highlights on research and application. J Plant Pathol 92:17–21Google Scholar
  161. Toghueo RMK, Eke P, Zabalgogeazcoa Í et al (2016) Biocontrol and growth enhancement potential of two endophytic Trichoderma sp. from Terminalia catappa against the causative agent of common bean root rot (Fusarium solani). Biol Control 96:8–20CrossRefGoogle Scholar
  162. Tohid VK, Taheri P (2015) Investigating binucleate Rhizoctonia induced defence responses in kidney bean against Rhizoctonia solani. Biocontrol Sci Tech 25(4):444–459CrossRefGoogle Scholar
  163. Torres MJ, Brandan CP, Sabaté DC et al (2017) Biological activity of the lipopeptide-producing Bacillus amyloliquefaciens PGPBacCA1 on common bean Phaseolus vulgaris L. pathogens. Biol Control 105:93–99CrossRefGoogle Scholar
  164. Toyota M, Spencer D, Sawai-Toyota S et al (2018) Glutamate triggers long-distance, calcium-based plant defense signaling. Science 361:1112–1115CrossRefGoogle Scholar
  165. Turatto MF, Dourado FDS, Zilli JE et al (2018) Control potential of Meloidogyne javanica and Ditylenchus sp. using fluorescent Pseudomonas and Bacillus sp. Braz J Microbiol 49:54–58PubMedCrossRefPubMedCentralGoogle Scholar
  166. Udayashankar AC, Nayaka SC, Reddy MS et al (2011) Plant growth-promoting rhizobacteria mediate induced systemic resistance in rice against bacterial leaf blight caused by Xanthomonas oryzae pv. oryzae. Biol Control 59:114–122CrossRefGoogle Scholar
  167. Ulloa-Ogaz AL, Munoz-Castellanos LN, Nevarez-Moorillon GV (2015) Biocontrol of phytopathogens: antibiotic production as mechanism of control. In: Mendez Vilas A (ed) The battle against microbial pathogens, basic science, technological advance and educational programs. Formatex Research Center, Spain, pp 305–309Google Scholar
  168. Upadhyay A, Srivastava S (2011) Phenazine-1-carboxylic acid is a more important contributor to biocontrol Fusarium oxysporum than pyrrolnitrin in Pseudomonas fluorescens strain Psd. Microbiol Res 166:323–335PubMedCrossRefPubMedCentralGoogle Scholar
  169. Veresoglou SD, Rillig MC (2012) Suppression of fungal and nematode plant pathogens through arbuscular mycorrhizal fungi. Biol Lett 8:214–217PubMedCrossRefPubMedCentralGoogle Scholar
  170. Verma PP, Thakur S, Kaur M (2016) Antagonism of Pseudomonas putida against Dematophora nectarix a major apple plant pathogen and its potential use as a biostimulent. J Pure Appl Microbiol 10:2717–2726CrossRefGoogle Scholar
  171. Vos C, Geerinckx K, Mkandawire R et al (2012) Arbuscular mycorrhizal fungi affect both penetration and further life stage development of root-knot nematodes in tomato. Mycorrhiza 22:157–163PubMedCrossRefPubMedCentralGoogle Scholar
  172. Vos C, Schouteden N, Van Tuinen D et al (2013) Mycorrhiza-induced resistance against the root-knot nematode Meloidogyne incognita involves priming of defense gene responses in tomato. Soil Biol Biochem 60:45–54CrossRefGoogle Scholar
  173. Vu TT, Hauschild R, Sikora RA (2006) Fusarium oxysporum endophytes induced systemic resistance against Radopholus similis on banana. Nematology 8:847–852CrossRefGoogle Scholar
  174. Waghunde RR, Shelake RM, Sabalpara AN (2016) Trichoderma: a significant fungus for agriculture and environment. Afr J Agric Res 11:1952–1965Google Scholar
  175. Waghunde RR, Shelake RM, Shinde MS et al (2017) Endophyte microbes: a weapon for plant health management. In: Microorganisms for green revolution. Springer, Singapore, pp 303–3025Google Scholar
  176. Wang X, Mavrodi DV, Ke L et al (2015) Biocontrol and plant growth-promoting activity of rhizobacteria from Chinese fields with contaminated soils. Microb Biotechnol 8:404–418CrossRefGoogle Scholar
  177. Wani KA, Manzoor J, Shuab R (2017) Arbuscular mycorrhizal fungi as biocontrol agents for parasitic nematodes in plants. In: Varma A, Prasad R, Tuteja N (eds) Mycorrhiza – nutrient uptake, biocontrol, ecorestoration. Springer, Cham, pp 195–210CrossRefGoogle Scholar
  178. Weller DM, Mavrodi DV, van Pelt JA et al (2012) Induced systemic resistance in Arabidopsis thaliana against Pseudomonas syringae pv. tomato by 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens. Biol Control 102:403–412Google Scholar
  179. Westhoek H, Ingram J, van Berkum S et al (2016) Food systems and natural resources, United Nations environment rogramme: United Nations Environment ProgrammeGoogle Scholar
  180. Weyens N, van der Lelie D, Taghavi S et al (2009) Phytoremediation: plant-endophyte partnerships take the challenge. Curr Opin Biotechnol 20(2):248–254PubMedCrossRefPubMedCentralGoogle Scholar
  181. Winotai, A et al. (2012) Introduction of Anagyrus lopezi for biological control of the pink cassava mealybug, Phenacoccus manihoti, in Thailand. A paper presented in the XXIV international congress of entomology, Daegu, Korea, August 19–25Google Scholar
  182. Wu B, Wang X, Yang L et al (2016) Effects of Bacillus amyloliquefaciens ZM9 on bacterial wilt and rhizosphere microbial communities of tobacco. Appl Soil Ecol 103:1–12CrossRefGoogle Scholar
  183. Xiang N, Lawrence KS, Kloepper JW et al (2017) Biological control of Heterodera glycines by spore-forming plant growth-promoting rhizobacteria (PGPR) on soybean. PLoS One 12(7):e0181201PubMedPubMedCentralCrossRefGoogle Scholar
  184. Yang W, Xu Q, Liu HX et al (2012) Evaluation of biological control agents against Ralstonia wilt on ginger. Biol Control 62:144–151CrossRefGoogle Scholar
  185. Yi Y, Li Z, Song C, Kuipers OP (2018) Exploring plant-microbe interactions of the rhizobacteria Bacillus subtilis and Bacillus mycoides by use of the CRISPR-Cas9 system. Environ Microbiol.  https://doi.org/10.1111/1462-2920.14305PubMedCrossRefPubMedCentralGoogle Scholar
  186. Yoo SJ, Shin DJ, Won HY et al (2018) Aspergillus terreus JF27 promotes the growth of tomato plants and induces resistance against Pseudomonas syringae pv. tomato. Mycobiology:1–7Google Scholar
  187. Yoshioka Y, Ichikawa H, Naznin HA et al (2012) Systemic resistance induced in Arabidopsis thaliana by Trichoderma asperellum SKT-1, a microbial pesticide of seed borne diseases of rice. Pest Manag Sci 68:60–66PubMedCrossRefPubMedCentralGoogle Scholar
  188. Yu X, Ai C, Xin L et al (2011) The siderophore-producing bacterium, Bacillus subtilis CAS15, has a biocontrol effect on Fusarium wilt and promotes the growth of pepper. Eur J Soil Biol 47:138–145CrossRefGoogle Scholar
  189. Yuan Y, Feng H, Wang L et al (2017) Potential of endophytic fungi isolated from cotton roots for biological control against verticillium wilt disease. PLoS One 12(1):e0170557PubMedCentralCrossRefGoogle Scholar
  190. Zhang JX, Gu YB, Chi FM et al (2015) Bacillus amyloliquefaciens GB1 can effectively control apple valsa canker. Biol Control 88:1–7CrossRefGoogle Scholar
  191. Zhang F, Ge H, Zhang F (2016) Biocontrol potential of Trichoderma harzianum isolate T-aloe against Sclerotinia sclerotiorum in soybean. Plant Physiol Biochem 100:64–74PubMedCrossRefPubMedCentralGoogle Scholar
  192. Zhang F, Chen C, Zhang F et al (2017) Trichoderma harzianum containing 1-aminocyclopropane-1-carboxylate deaminase and chitinase improved growth and diminished adverse effect caused by Fusarium oxysporum in soybean. J Plant Physiol 210:84–94PubMedCrossRefPubMedCentralGoogle Scholar
  193. Zhao D, Zhao H, Zhao D et al (2018) Isolation and identification of bacteria from rhizosphere soil and their effect on plant growth promotion and root-knot nematode disease. Biol Control 119:12–19CrossRefGoogle Scholar
  194. Zhou T, Chen D, Li C et al (2012) Isolation and characterization of Pseudomonas brassicacearum J12 as an antagonist against Ralstonia solanacearum and identification of its antimicrobial components. Microbiol Res 167:388–394PubMedCrossRefGoogle Scholar
  195. Zhou JY, Zhao XY, Dai CC (2014) Antagonistic mechanisms of endophytic Pseudomonas fluorescens against Athelia rolfsii. J Appl Microbiol 117:1144–1158CrossRefGoogle Scholar
  196. Zhou L, Yuen G, Wang Y et al (2016) Evaluation of bacterial biological control agents for control of root-knot nematode disease on tomato. Crop Prot 84:8–13CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Pankaj Prakash Verma
    • 1
    • 2
  • Rahul Mahadev Shelake
    • 3
  • Suvendu Das
    • 1
  • Parul Sharma
    • 2
  • Jae-Yean Kim
    • 3
  1. 1.Institute of Agriculture and Life ScienceGyeongsang National UniversityJinjuRepublic of Korea
  2. 2.Department of Basic SciencesDr. Y.S. Parmar University of Horticulture and ForestrySolanIndia
  3. 3.Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuSouth Korea

Personalised recommendations