PGPR Inoculation and Chemical Fertilization of Cereal Crops, How Do the Plants and Their Rhizosphere Microbial Communities’ Response?

  • Luciana P. Di Salvo
  • Inés E. García de SalamoneEmail author


Soil microorganisms have a preponderant role in most ecosystem processes, and different crop management strategies applied to agricultural production can modify microbial physiology and biodiversity. However, at field conditions, the effects of the application of chemical fertilizers and microbial bioinsumes on native microbial communities are not completely known. Results from several independent experiments performed for wheat and maize in different years at establishments of the province of Buenos Aires, Argentina, are discussed. Inoculants were formulated with Azospirillum brasilense, one of the most worldwide studied plant growth-promoting rhizobacteria. Multi-strain inoculants have greater advantages than mono-strain inoculants. Inoculation and chemical fertilization did not modify functional diversity, characterized through the community-level physiological profiles (CLPP), and they did not affect most of the evaluated rhizosphere microbial communities such as cellulose degraders, diazotrophs, and nitrifiers. Modifications in Shannon’s index of these communities determined from CLPP data were observed throughout the crop cycle and between different crops. Thus, 40M and 42M strains have shown great potential to be used as biofertilizers in both cereal crops. Inoculation and chemical fertilization, at least at the levels evaluated, constitute good agricultural practices for food production in a sustainable way. This knowledge provides tools not only to improve crop inoculation response with A. brasilense in interaction with chemical fertilization but also to characterize the ecological risk of both agronomic practices. This chapter shows scientific information allowing to connect processes which occur in the aerial portion of the system with those that take place underground. Academic, productive, and environmental implications are directly transferable to advisers and farmers, under the current paradigm of the bioeconomy and sustainable agriculture.


Azospirillum brasilense Rhizosphere microbial interactions Bioinsumes Wheat Maize 



This work was partially supported by FONCYT 2008 PICT1864 from the MINCyT, UBACyT project 20020090100255, Universidad de Buenos Aires in Argentina. We are grateful to Perdoménico’s family and the personal of both “El Correntino,” 30 de Agosto, and “El Coronel,” Pehuajó, Buenos Aires, Argentina. We are also grateful to Lic. Florencia D’Auria, Ma. Laura Beldoménico, Ma. Eugenia Carlino, Marcos Falabella, Ing. Agr. Gabriel C. Cellucci, and Ing. Agr. Claudio Acosta Andocilla for helping during the field experiments and determinations. We are grateful to Laboratorios CKC, Buenos Aires, Argentina, for supplying the commercial inoculant used in this work. We would like to dedicate this work to the memory of Dr. Yoav Bashan, who will always be in our hearts.


  1. Abril A, Biasutti C, Maich R, Dubbini L, Noe L (2006) Inoculacion con Azospirillum spp. en la región semiarida-central de la Argentina: factores que afectan la colonización rizosférica. Cienc Suelo 24:11–19Google Scholar
  2. Adl S (2016) Rhizosphere, food security and climate change: a critical role for plant-soil research. Rhizosphere 1:1–3CrossRefGoogle Scholar
  3. Aeron A, Kumar S, Pandey P, Maheshwari DK (2011) Emerging role of plant growth promoting rhizobacteria in agrobiology. In: Maheshwari DK (ed) Bacteria in agrobiology: crop ecosystems. Springer, Berlin Heidelberg, pp 1–36Google Scholar
  4. Ahkami AH, Allen White R, Handakumburaa PP, Jansson C (2017) Rhizosphere engineering: enhancing sustainable plant ecosystem productivity. Rhizosphere 3:233–243CrossRefGoogle Scholar
  5. Altieri MA (1999) The ecological role of biodiversity in agroecosystems. Agric Ecosyst Environ 74:19–31CrossRefGoogle Scholar
  6. Altieri MA, Nicholls CI (2000) Applying agroecological concepts to development of ecologically based pest management strategies. In: National Research Council (ed) Professional societies and ecologically based pest management: proceedings of a workshop. National Academy Press, Washington DCGoogle Scholar
  7. Álvarez R (2005a) Fertilización de trigo. In: Álvarez R (coord) Fertilización de cultivos de granos y pasturas. Diagnóstico y recomendación en la Región Pampeana, Editorial Facultad de Agronomía, Buenos Aires, Argentina, pp 55–80Google Scholar
  8. Álvarez R (2005b) Fertilización de maíz. In: Álvarez R (coord) Fertilización de cultivos de granos y pasturas. Diagnóstico y recomendación en la Región Pampeana, Editorial Facultad de Agronomía, Buenos Aires, Argentina, pp 91–110Google Scholar
  9. Aulakh MS, Wassmann R, Bueno C, Kreuzwieser J, Rennenberg H (2001) Characterization of root exudates at different growth stages of the rice (Oryza sativa L.) cultivars. Plant Biol 3:139–148CrossRefGoogle Scholar
  10. Babalola OO (2010) Beneficial bacterial of agricultural importance. Biotechnol Lett 32:1559–1570PubMedCrossRefPubMedCentralGoogle Scholar
  11. Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266PubMedCrossRefPubMedCentralGoogle Scholar
  12. Bashan Y (1999) Interactions of Azospirillum spp. in soils: a review. Biol Fertil Soils 29:246–256CrossRefGoogle Scholar
  13. Bashan Y, Levanony H (1990) Current status of Azospirillum inoculation technology: Azospirillum as a challenge for agriculture. Can J Microbiol 36:591–600CrossRefGoogle Scholar
  14. Bashan Y, Holguin G, de-Bashan LE (2004) Azospirillum-plant relationships: physiological, molecular, agricultural and environmental advances (1997–2003). Can J Microbiol 50:521–577PubMedCrossRefPubMedCentralGoogle Scholar
  15. Baudoin E, Benizri E, Guckert A (2002) Impact of growth stage on the bacterial community structure along maize roots, as determined by metabolic and genetic fingerprinting. Appl Soil Ecol 19:135–145CrossRefGoogle Scholar
  16. Baudoin E, Benizri E, Guckert A (2003) Impact of artificial root exudates on the bacterial community structure in bulk soil and maize rhizosphere. Soil Biol Biochem 35:1183–1192CrossRefGoogle Scholar
  17. Benizri E, Amiaud B (2005) Relationship between plants and soil microbial communities in fertilized grasslands. Soil Biol Biochem 37:2055–2064CrossRefGoogle Scholar
  18. Bossio DA, Girvan MS, Verchot L, Bullimore J, Borelli T, Albrecht A, Scow KM, Ball AS, Pretty JN, Osborn AM (2005) Soil microbial community response to land use change in an agricultural landscape of Western Kenya. Microb Ecol 49:50–62PubMedCrossRefPubMedCentralGoogle Scholar
  19. Bottini R, Fulchieri M, Pearce D, Pharis RP (1989) Identification of gibberellins A1, A3, and Iso-A3 in cultures of Azospirillum lipoferum. Plant Physiol 90:45–47PubMedPubMedCentralCrossRefGoogle Scholar
  20. Caballero-Mellado J (2004) Uso de Azospirillum como alternativa tecnologica viable para cultivos de cereales. In: Monzón de Asconegui MA, García de Salamone IE, Miyazaki SS (eds) Biología del suelo. Transformaciones de la materia orgánica, usos y biodiversidad de los organismos edáficos. Editoral Facultad de Agronomía, Buenos Aires, pp 45–49Google Scholar
  21. Campbell CD, Grayston SJ, Hirst DJ (1997) Use of rhizosphere carbon sources in sole carbon source tests to discriminate soil microbial communities. J Microbiol Methods 30:33–41CrossRefGoogle Scholar
  22. Cappelletti JP, García de Salamone IE, Ventimiglia L (2004) Colonización rizosférica con bacterias microaerofílicas, longitud de raíces y rendimiento en grano de plantas Zea mays inoculadas con dos inoculantes comerciales de Azospirillum spp. In: Monzón de Asconegui MA, García de Salamone IE, Miyazaki SS (eds) Biología del suelo. Transformaciones de la materia orgánica, usos y biodiversidad de los organismos edáficos. Editoral Facultad de Agronomía, Buenos Aires, pp 201–205Google Scholar
  23. Casaretto E, Labandera C (2008) Respuesta de Maíz a la inoculación con Azospirillum. In: Cassán FC, García de Salamone IE (eds) Azospirillum sp.: cell physiology, plant interactions and agronomic research in Argentina. Asociación Argentina de Microbiología, Buenos Aires, pp 261–268Google Scholar
  24. Cassán FD, Díaz-Zorita M (2016) Azospirillum sp. in current agriculture: from the laboratory to the field. Soil Biol Biochem 103:117–130CrossRefGoogle Scholar
  25. Cassán FD, García de Salamone IE (eds) (2008) Azospirillum sp.: cell physiology, plant interactions and agronomic research in Argentina. Asociación Argentina de Microbiología, Buenos AiresGoogle Scholar
  26. Chessa L, Pusino A, Garau G, Mangia NP, Pinna MV (2016) Soil microbial response to tetracycline in two different soils amended with cow manure. Environ Sci Pollut Res 23:5807–5817CrossRefGoogle Scholar
  27. Cocking EC (2003) Endophytic colonization of plant roots by nitrogen-fixing bacteria. Plant Soil 252:169–175CrossRefGoogle Scholar
  28. Conn VM, Franco CMM (2004) Analysis of the endophytic actinobacterial population in the roots of wheat (Triticum aestivum L.) by terminal restriction fragment length polymorphism and sequencing of 16S rRNA clones. Appl Environ Microbiol 70:1787–1794PubMedPubMedCentralCrossRefGoogle Scholar
  29. Coskun D, Britto D, Shi W, Kronzucker HJ (2017) How plant root exudates shape the nitrogen cycle. Trends Plant Sci 22:661–673PubMedCrossRefPubMedCentralGoogle Scholar
  30. Creus CM, Sueldo RJ, Barassi CA (2004) Water relations and yield in Azospirillum-inoculated wheat exposed to drought in the field. Can J Bot 82:273–281CrossRefGoogle Scholar
  31. Creus CM, Pereyra MA, Molina-Favero C, Ramella NA, Casanovas EM, Pereyra CM, Arruebarrena-Di Palma A, Lamattina L, Sueldo RJ, Barassi CA (2008) La pared celular como target en la promoción del crecimiento de las plantas por Azospirillum. In: Cassán FC, García de Salamone IE (eds) Azospirillum sp.: cell physiology, plant interactions and agronomic research in Argentina. Asociacion Argentina de Microbiología, Buenos Aires, pp 97–112Google Scholar
  32. Cummings SP (2009) The application of plant growth promoting rhizobacteria (PGPR) in low input and organic cultivation of graminaceous crops; potential and problems. Environ Biotechnol 5:43–50Google Scholar
  33. Dardanelli J, Collino D, Otegui ME, Sadras OV (2004) Bases funcionales para el manejo del agua en los sistemas de producción de los cultivos de grano. In: Satorre E, Benech-Arnold R, Slafer GA, de la Fuente EB, Miralles DJ, Otegui ME, Savin R (eds) Producción de granos. Bases funcionales para su manejo, Editorial Facultad de Agronomía, Buenos Aires, pp 377–440Google Scholar
  34. de Bashan LE, Holguin G, Glick BR, Bashan Y (2007) Bacterias promotoras de crecimiento en plantas para propósitos agrícolas y ambientales. In: Ferrera-Cerrato R, Alarcón A (eds) Microbiología Agrícola: Hongos, bacterias, micro y macrofauna, control biológico y planta-microorganismo. Editorial Trillas, México DF, pp 161–215Google Scholar
  35. de Freitas JR, Banerjee MR, Germida JJ (1997) Phosphate-solubilizing rhizobacteria enhance the growth and yield but not phosphorus uptake of canola (Brassica napus L.). Biol Fertil Soils 24:358–364CrossRefGoogle Scholar
  36. Degens BP, Schipper LA, Sparling GP, Duncan LC (2001) Is the microbial community in a soil with reduced catabolic diversity less resistant to stress or disturbance? Soil Biol Biochem 33:1143–1153CrossRefGoogle Scholar
  37. Den Herder G, Van Isterdael G, Beeckman T, De Smet I (2010) The roots of a new green revolution. Trends Plant Sci 15:600–607CrossRefGoogle Scholar
  38. Di Salvo LP, García de Salamone IE (2012) Evaluation of soil-microbial communities by their CLPP. Standardization of a laboratory technique to replace commercial available microplates. Ecol Austral 22:129–136Google Scholar
  39. Di Salvo LP, García de Salamone IE (2018) Veil-like pellicle development by Azospirillum brasilense in semisolid NFb medium. Rev Argent Microbiol 51:184–185. CrossRefPubMedGoogle Scholar
  40. Di Salvo LP, Carlino ME, Cellucci GC, García de Salamone IE (2012) Métodos de análisis complementarios para maximizar la información obtenida sobre la diversidad funcional de comunidades microbianas rizosféricas. In: Abstracts of the 25° Reunión Argentina de Ecología, Universidad Nacional de Luján, Buenos Aires, Argentina, 24–28 September 2012Google Scholar
  41. Di Salvo LP, Silva E, Teixeira KR, Esquivel-Cote R, Pereyra MA, García de Salamone IE (2014) Physiological and biochemical characterization of Azospirillum brasilense strains commonly used as plant growth-promoting rhizobacteria. J Basic Microbiol 54:1310–1321PubMedCrossRefGoogle Scholar
  42. Di Salvo LP, Cellucci GC, Carlino ME, García de Salamone IE (2018a) Plant growth-promoting rhizobacteria inoculation and nitrogen fertilization increase maize grain yield and modified rhizosphere microbial communities. Appl Soil Ecol 126:113–120CrossRefGoogle Scholar
  43. Di Salvo LP, Ferrando L, Fernández Scavino A, García de Salamone IE (2018b) Microorganisms reveal what plants do not: wheat growth and rhizosphere microbial communities after application of Azospirillum brasilense and nitrogen fertilizer under field conditions. Plant Soil 424:405–417CrossRefGoogle Scholar
  44. Dobbelaere S, Croonenborghs A, Thys A, VandeBroek A, Vanderleyden J (1999) Phytostimulatory effect of Azospirillum brasilense wild type and mutant strains altered in IAA production on wheat. Plant Soil 212:155–164CrossRefGoogle Scholar
  45. Dobbelaere S, Croonenborghs A, Thys A, Ptacek D, Vanderleyden J, Dutto P, Labandera-Gonzalez C, Caballero-Mellado J, Aguirre J, Kapulnik Y, Brener S, Burdman S, Kadouri D, Sarig S, Okon Y (2001) Responses of agronomically important crops to inoculation with Azospirillum. Aust J Plant Physiol 28:871–887Google Scholar
  46. Dobbelaere S, Croonenborghs A, Thys A, Ptacek D, Okon Y, Vanderleyden J (2002) Effect of inoculation with wild type Azospirillum brasilense and A. irakense strains on development and nitrogen uptake of spring wheat and grain maize. Biol Fertil Soils 36:284–297CrossRefGoogle Scholar
  47. Döbereiner J (1998) Isolation and identification of aerobic nitrogen-fixing bacteria from soil and plants. In: Alef K, Nannipieri P (eds) Methods in applied soil microbiology and biochemistry. Academic, LondonGoogle Scholar
  48. Doornbos RF, van Loon LC, Bakker PAHM (2012) Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere. A review. Agron Sustain Dev 32:227–243CrossRefGoogle Scholar
  49. Eisenhauer N, Lanoue A, Strecker T, Scheu S, Steinauer K, Thakur MP, Mommer L (2017) Root biomass and exudates link plant diversity with soil bacterial and fungal biomass. Sci Rep 7:44641PubMedPubMedCentralCrossRefGoogle Scholar
  50. Ellis RJ, Morgan P, Weightman AJ, Fry JC (2003) Cultivation-dependent and -independent approaches for determining bacterial diversity in heavy-metal-contaminated soil. Appl Environ Microbiol 69:3223–3230PubMedPubMedCentralCrossRefGoogle Scholar
  51. FAOSTAT (2012) Food and agricultural commodities production. Accessed 2 Mar 2015
  52. Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci U S A 103:626–631PubMedPubMedCentralCrossRefGoogle Scholar
  53. García de Salamone IE (2012a) Use of soil microorganisms to improve plant growth and ecosystem sustainability. In: Caliskan M (ed) The molecular basis of plant genetic diversity. INTECH, Rijeka, pp 233–258. Open access: Google Scholar
  54. García de Salamone IE (2012b) Microorganismos promotores del crecimiento vegetal. Informaciones Agronómicas de Hispanoamérica (IPNI) 5:12–16Google Scholar
  55. García de Salamone IE, Döbereiner J (1996) Maize genotype effects on the response to Azospirillum inoculation. Biol Fertil Soils 21:193–196CrossRefGoogle Scholar
  56. García de Salamone IE, Monzón de Asconegui MA (2008) Ecofisiología de la respuesta a la inoculación con Azospirillum en cultivo de cereales. In: Cassán FC, García de Salamone IE (eds) Azospirillum sp.: cell physiology, plant interactions and agronomic research in Argentina. Asociación Argentina de Microbiología, Buenos Aires, pp 209–226Google Scholar
  57. García de Salamone IE, Laballos N, Monzón de Asconegui MA (1990) Effect of inoculation with Azospirillum of wheat cv. Buck Pucará growing in field conditions. In: AIANBA (eds) Actas del II Congreso Nacional de Trigo, Pergamino, Buenos Aires, pp 101–110Google Scholar
  58. García de Salamone IE, Döbereiner J, Urquiaga S, Boddey RM (1996) Biological nitrogen fixation in Azospirillum strain-maize genotype associations as evaluated by the 15N isotope dilution technique. Biol Fertil Soils 23:249–256CrossRefGoogle Scholar
  59. García de Salamone IE, Hynes RK, Nelson LM (2001) Cytokinin production by plant growth promoting rhizobacteria and selected mutants. Can J Microbiol 47:404–411PubMedCrossRefGoogle Scholar
  60. García de Salamone IE, Rorig M, Bordato F, Michelena R (2004) Actividad microbiana luego de la aplicación de compactacion sobre un suelo Haplustol éntico bajo siembra directa. In: Abstracts of the XVI y XII Congresos latinoamericano y colombiano de la ciencia del suelo, Cartagena de Indias, Colombia, 26 September–1 October 2004Google Scholar
  61. García de Salamone IE, Escobar Ortega J, Gatica M, Di Salvo L, Vilches MV, Zubillaga M, Urquiaga S (2009) Effect of Azospirillum inoculation on N-cycling microorganisms associated with rice and wheat crops. In: Abstracts of the 16th Nitrogen Workshop, Torino, Italy, 28 July–1 July 2009Google Scholar
  62. García de Salamone IE, Di Salvo LP, Escobar Ortega JS, Boa Sorte PMF, Urquiaga S, Teixeira KRS (2010) Field response of rice paddy crop to Azospirillum inoculation: physiology of rhizosphere bacterial communities and the genetic diversity of endophytic bacteria in different parts of the plants. Plant Soil 336:351–362CrossRefGoogle Scholar
  63. García de Salamone IE, Funes JM, Di Salvo LP, Escobar Ortega JS, D’Auria F, Ferrando L, Fernandez Scavino A (2012) Inoculation of paddy rice with Azospirillum brasilense and Pseudomonas fluorescens: impact of plant genotypes on the rhizosphere microbial communities and field crop production. Appl Soil Ecol 61:196–204CrossRefGoogle Scholar
  64. Gatica SM, Anzovini MB, Di Salvo LP, Escobar Ortega JS, García de Salamone IE (2009) Inoculación de arroz con Azospirillum brasilense: incremento en rendimiento con impacto reversible sobre las comunidades microbianas nativas. In: Abstracts of the VII Reunión Nacional Científico Técnica de Biología de Suelo y Fijación Biológica del Nitrógeno, San Miguel de Tucumán, Tucumán, Argentina, 1–4 July 2009Google Scholar
  65. Geisseler D, Scow KM (2014) Long-term effects of mineral fertilizers on soil microorganisms – a review. Soil Biol Biochem 75:54–63CrossRefGoogle Scholar
  66. Gewin V (2010) An underground revolution. Nature 466:552–553PubMedCrossRefGoogle Scholar
  67. Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117CrossRefGoogle Scholar
  68. Gómez E, Garland J, Conti M (2004) Reproducibility in the response of soil bacterial community-level physiological profiles from a land use intensification gradient. Appl Soil Ecol 26:21–30CrossRefGoogle Scholar
  69. González Sanjuan MF, Grasso AA, Bassi J (2013) Fertilizantes en Argentina – Análisis del Consumo. In: García FO, Correndo AA (eds) Simposio Fertilidad 2013: nutrición de cultivos para la intensificación productiva, Accessed 27 Sept 2018
  70. Grayston SJ, Wang S, Campbell CD, Edwards AC (1998) Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol Biochem 30:369–378CrossRefGoogle Scholar
  71. Hayat R, Ahmed I, Sheirdil RA (2012) An overview of plant growth promoting rhizobacteria (PGPR) for sustainable agriculture. In: Ashraf M, Ozturk M, Ahmad MSA, Aksoy A (eds) Crop production for agricultural improvement. Springer, Dordrecht, pp 557–579CrossRefGoogle Scholar
  72. Herschkovitz Y, Lerner A, Davidov Y, Rothballer M, Hartmann A, Okon Y, Jurkevitch E (2005) Inoculation with the plant-growth-promoting rhizobacterium Azospirillum brasilense causes little disturbance in the rhizosphere and rhizoplane of maize (Zea mays). Microb Ecol 50:277–288PubMedCrossRefPubMedCentralGoogle Scholar
  73. Hisinger P, Glyn Bengough A, Vetterlein D, Young IM (2009) Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant Soil 321:117–152CrossRefGoogle Scholar
  74. Houlden A, Timms-Wilson TM, Day MJ, Bailey MJ (2008) Influence of plant development stage on microbial community structure and activity in the rhizosphere of three field crops. FEMS Microbiol Ecol 65:193–201PubMedCrossRefPubMedCentralGoogle Scholar
  75. Kamilova F, Kravchenko LV, Shaposhnikov AI, Azarova T, Makarova N, Lugtenberg B (2006) Organic acids, sugars, and L-tryptophane in exudates of vegetables growing on stonewool and their effects on activities of rhizosphere bacteria. Mol Plant-Microbe Interact 19:250–256PubMedCrossRefPubMedCentralGoogle Scholar
  76. Kapulnik Y, Okon Y, Kigel J, Nur I, Henis Y (1981) Effects of temperature, nitrogen fertilization, and plant age on nitrogen fixation by Setaria italica inoculated with Azospirillum brasilense (strain cd). Plant Physiol 68:340–343PubMedPubMedCentralCrossRefGoogle Scholar
  77. Kaushik R, Saxena AK, Tilak KVBR (2002) Can Azospirillum strains capable of growing at a sub-optimal temperature perform better in field-grown-wheat rhizosphere. Biol Fertil Soils 35:92–95CrossRefGoogle Scholar
  78. Kennedy IR, Choudhury ATMA, Kecskes ML (2004) Non-symbiotic bacterial diazotrophs in crop farming systems: can their potential for plant growth promotion be better exploited? Soil Biol Biochem 36:1229–1244CrossRefGoogle Scholar
  79. Kent AD, Triplett EW (2002) Microbial communities and their interactions in soil and rhizosphere ecosystems. Annu Rev Microbiol 56:211–236PubMedCrossRefGoogle Scholar
  80. Kristin A, Miranda H (2013) The root microbiota -a fingerprint in the soil? Plant Soil 370:671–686CrossRefGoogle Scholar
  81. Krol S, Agler MT, Kemen E (2017) Genomic dissection of host-microbe and microbe-microbe interactions for advanced plant breeding. Curr Opin Plant Biol 36:71–78CrossRefGoogle Scholar
  82. Marschner P, Neumann G, Kania A, Weiskopf L, Lieberei R (2002) Spatial and temporal dynamics of the microbial community structure in the rhizosphere of cluster roots of white lupin (Lupinus albus L.). Plant Soil 246:167–174CrossRefGoogle Scholar
  83. Meier IC, Finzi AC, Phillips RP (2017) Root exudates increase N availability by stimulating microbial turnover of fast-cycling N pools. Soil Biol Biochem 106:119–128CrossRefGoogle Scholar
  84. Mhlongo MI, Piater LA, Madala NE, Labuschagne N, Dubery IA (2018) The chemistry of plant-microbe interactions in the rhizosphere and the potential for metabolomics to reveal signaling related to defense priming and induced systemic resistance. Front Plant Sci 9:112PubMedPubMedCentralCrossRefGoogle Scholar
  85. Miethling R, Wieland G, Backhaus H, Tebbe CC (2000) Variation of microbial rhizosphere communities in response to crop species, soil origin, and inoculation with Sinorhizobium meliloti L33. Microb Ecol 41:43–56CrossRefGoogle Scholar
  86. Minz D, Ofek M (2011) Rhizosphere microorganisms. In: Rosenberg E, Gophna U (eds) Beneficial microorganisms in multicellular life forms. Springer, Berlin, pp 105–121Google Scholar
  87. Morgan JAW, Bending GD, White PJ (2005) Biological costs and benefits to plant-microbe interactions in the rhizosphere. J Exp Bot 56:1729–1739PubMedCrossRefGoogle Scholar
  88. Naiman AD, Latrónico A, García de Salamone IE (2009) Inoculation of wheat with Azospirillum brasilense and Pseudomonas fluorescens: impact on the production and culturable rhizosphere microflora. Eur J Soil Biol 45:44–51CrossRefGoogle Scholar
  89. Okon Y, Labandera-Gonzalez CA (1994) Agronomic applications of Azospirillum: an evaluation of 20 years worldwide field inoculation. Soil Biol Biochem 26:1591–1601CrossRefGoogle Scholar
  90. Okon Y, Vanderleyden J (1997) Root-associated Azospirillum species can stimulate plants. ASM News 63:366–370Google Scholar
  91. Ortiz-Castro R, Contreras-Cornejo HA, Macías-Rodríguez L, López-Bucio J (2009) The role of microbial signals in plant growth and development. Plant Signal Behav 4:701–712PubMedPubMedCentralCrossRefGoogle Scholar
  92. Øvreǻs L, Torsvik V (1998) Microbial diversity and community structure in two different agricultural soil communities. Microb Ecol 36:303–315PubMedCrossRefPubMedCentralGoogle Scholar
  93. Pedraza RO, Ramirez-Mata A, Xiqui ML, Baca BE (2004) Aromatic amino acid aminotransferase activity and indole-3-acetic acid production by associative nitrogen-fixing bacteria. FEMS Microbiol Lett 233:15–21PubMedCrossRefPubMedCentralGoogle Scholar
  94. Pedraza RO, Motok J, Tortora ML, Salazar SM, Diaz Ricci JC (2007) Natural occurrence of Azospirillum brasilense in strawberry plants. Plant Soil 295:169–178CrossRefGoogle Scholar
  95. Pedraza RO, Bellone CH, Carrizo de Bellone S, Fernandes Boa Sorte PM, Teixeira KRS (2009) Azospirillum inoculation and nitrogen fertilization effect on grain yield and on the diversity of endophytic bacteria in the phyllosphere of rice rainfed crop. Eur J Soil Biol 45:36–43CrossRefGoogle Scholar
  96. Pliego C, Kamilova F, Lugtenberg B (2011) Plant growth-promoting bacteria: fundamentals and exploitation. In: Maheshwari DK (ed) Bacteria in agrobiology: plant growth responses. Springer, Verlag, Berlin, pp 295–343CrossRefGoogle Scholar
  97. Pramanik P, Safique S, Zahan A, Phukan M, Ghosh S (2017) Cellulolytic microorganisms control the availability of nitrogen in microcosm of shredded pruning litter treated highly acidic tea-growing soils of Assam in Northeast India. Appl Soil Ecol 120:20–34CrossRefGoogle Scholar
  98. Preston-Mafham J, Boddy L, Randerson PF (2002) Analysis of microbial community functional diversity using sole-carbon-source utilisation profiles – a critique. FEMS Microbiol Ecol 42:1–14PubMedGoogle Scholar
  99. Ramirez KS, Geisen S, Morriën E, Snoek BL, van der Putten WH (2018) Network analyses can advance above-belowground ecology. Trends Plant Sci 23:759–768PubMedCrossRefGoogle Scholar
  100. Reis FBD, Da Silva LG, Reis VM, Dobereiner J (2000a) Ocorrência de bactérias diazotróficas em diferentes genótipos de cana-de-açúcar. Pesq Agrop Brasileira 35:985–994CrossRefGoogle Scholar
  101. Reis FBD, Reis VM, Urquiaga S, Dobereiner J (2000b) Influence of nitrogen fertilisation on the population of diazotrophic bacteria Herbaspirillum spp. and Acetobacter diazotrophicus in sugarcane (Saccharum spp.). Plant Soil 219:153–159CrossRefGoogle Scholar
  102. Reis FBD, Silva MF, Teixeira KRS, Urquiaga S, Reis VM (2004) Identificaçao de isolados de Azospirillum amazonense associados a Brachiaria spp., em diferentes épocas e condiçoes de cultivo e produçao de fitormônio pela bactéria. Rev Bras Cienc Solo 28:103–113CrossRefGoogle Scholar
  103. Rengel Z (2002) Genetic control of root exudation. Plant Soil 245:59–70CrossRefGoogle Scholar
  104. Ritchie SW, Hanway JJ (1982) How a corn plant develops. Iowa State University. Special Report No. 48.Google Scholar
  105. Rodríguez-Cáceres EA, Ciocco CD, Pacheco-Basurco JC (1996) Influencia de la inoculación con Azospirillum brasilense en trigo cultivado en suelos de la provincia de La Pampa, Argentina. Cienc Suelo 14:110–112Google Scholar
  106. Roesti D, Gaur R, Johri BN, Imfeld G, Sharma S, Kawaljeet K, Aragno M (2006) Plant growth stage, fertilizer management and bio-inoculation of arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria affect the rhizobacterial community structure in rain-fed wheat fields. Soil Biol Biochem 38:1111–1120CrossRefGoogle Scholar
  107. Rosier A, Bishnoi U, Lakshmanan V (2016) A perspective on inter-kingdom signaling in plant-beneficial microbe interactions. Plant Mol Biol 90:537–548PubMedCrossRefGoogle Scholar
  108. Salvaré FD (1995) Evaluación del rendimiento y la nutrición nitrogenada del cultivo de maíz (Zea mays L.) inoculado con bacterias del género Azospirillum spp. Trabajo de intensificación para optar por el título de ingeniero agrónomo, Facultad de Agronomía, Universidad de Buenos Aires, ArgentinaGoogle Scholar
  109. Sarig S, Okon Y, Blum A (1990) Promotion of leaf area development and yield in Sorghum bicolor inoculated with Azospirillum brasilense. Symbiosis 9:235–245Google Scholar
  110. Shi W, Norton JM (2000) Microbial control of nitrate concentrations in an agricultural soil treated with dairy waste compost or ammonium fertilizer. Soil Biol Biochem 32:1453–1457CrossRefGoogle Scholar
  111. Soares RA, Roesch LFW, Zanatta G, Oliveira Camargo FA, Passaglia LMP (2006) Occurrence and distribution of nitrogen fixing bacterial community associated with oat (Avena sativa) assessed by molecular and microbiological techniques. Appl Soil Ecol 33:221–234CrossRefGoogle Scholar
  112. Söderberg KH, Olsson PA, Baath E (2002) Structure and activity of the bacterial community in the rhizosphere of different plant species and the effect of arbuscular mycorrhizal colonisation. FEMS Microbiol Ecol 40:223–231PubMedCrossRefPubMedCentralGoogle Scholar
  113. Steinbach HS (2005) Funciones de producción. In: Álvarez R (coord) Fertilización de cultivos de granos y pasturas. Diagnóstico y recomendación en la Región Pampeana, Editorial Facultad de Agronomía, Buenos Aires, Argentina, pp 13–25Google Scholar
  114. Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677PubMedPubMedCentralCrossRefGoogle Scholar
  115. Urquiaga S, Jantalia CP, Alves BJR, Boddey RM (2004) Importancia de la FBN en el secuestro de carbono en el suelo y en la sustentabilidad agrícola. In: Monzón de Asconegui MA, García de Salamone IE, Miyazaki SS (eds) Biología del suelo. Transformaciones de la materia orgánica, usos y biodiversidad de los organismos edáficos. Editoral Facultad de Agronomía, Buenos Aires, pp 1–6Google Scholar
  116. Vejan P, Abdullah R, Khadiran T, Ismail S, Nasrulhaq Boyce A (2016) Role of plant growth promoting rhizobacteria in agricultural sustainability-a review. Molecules 21:573–590PubMedCentralCrossRefGoogle Scholar
  117. Verma JP, Yadav J, Tiwari KN, Lavakush SV (2010) Impact of plant growth promoting rhizobacteria on crop production. Int J Agric Res 5:954–983CrossRefGoogle Scholar
  118. Wieland G, Neumann R, Backhaus H (2001) Variation of microbial communities in soil, rhizosphere, and rhizoplane in response to crop species, soil type, and crop development. Appl Environ Microbiol 67:5849–5854PubMedPubMedCentralCrossRefGoogle Scholar
  119. Winding A, Hund-Rinke K, Rutgers M (2005) The use of microorganisms in ecological soil classification and assessment concepts. Ecotoxicol Environ Saf 62:230–248PubMedCrossRefGoogle Scholar
  120. Xue D, Yao HY, Ge DY, Huang CY (2008) Soil microbial community structure in diverse land use systems: a comparative study using Biolog, DGGE, and PLFA analyses. Pedosphere 18:653–663CrossRefGoogle Scholar
  121. Zak HC, Willig MR, Moorhead DL, Wildman HG (1994) Functional diversity of microbial communities: a quantitative approach. Soil Biol Biochem 26:1101–1108CrossRefGoogle Scholar
  122. Zhu W, Wang S, Caldwell CD (2012) Pathways of assessing agroecosystem health and agroecosystem management. Acta Ecol Sin 32:9–17CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Luciana P. Di Salvo
    • 1
  • Inés E. García de Salamone
    • 1
    Email author
  1. 1.Faculty of Agronomy, Department of Applied Biology and Foods, Chair of Agricultural MicrobiologyUniversity of Buenos AiresBuenos AiresArgentina

Personalised recommendations