Manufacturing and Quality Control of Inoculants from the Paradigm of Circular Agriculture

  • Inés E. García de SalamoneEmail author
  • Rosalba Esquivel-Cote
  • Dulce Jazmín Hernández-Melchor
  • Alejandro Alarcón


The use of beneficial rhizosphere microorganisms is part of a “new green revolution” for increasing crop productivity without environmental damage in accordance with the new paradigm of the circular agriculture and bioeconomy that includes either organic or sustainable agriculture which is a reality in several countries. This review analyzes several types of bio-inputs with emphasis on inoculants containing either single or a mixture of beneficial microorganisms such as rhizobia, plant growth-promoting rhizobacteria, or mycorrhizal fungi. Inoculants help in achieving greater harvests by using available microbial resources whose physiological activities or mechanisms may prevent significant losses due to pest and disease incidence. Multiple beneficial mechanisms are considered for isolating functional and beneficial microorganisms from soils and plant tissues. Thus, several methodological steps are involved for developing effective microbial inoculants based on achieving consistent results under field conditions. The survival and maintenance of the microbial activity of inoculants in both rhizosphere and non-rhizosphere soils is critical for the success of any inoculation protocol. This chapter pointed out the need to integrate plant breeding programs, which include the selection of elite microbial strains to enhance inoculant performance. In addition, an extensive revision was made on types of formulations and quality control of inoculants which are determinants to define both strain survival and their effects under field conditions. Experiences of use, regulations, and legislations for inoculants in Latin America are also described. Overall, the perspectives about the use of inoculants are directly linked to reach sustainable agroecosystems.


Beneficial microorganisms Bioeconomy Bio-inputs PGPR Rhizosphere 


  1. Acosta-Andocilla C, Di Salvo LP, Escobar-Ortega JS et al (2014) Nitrógeno potencialmente mineralizable y producción de trigo fertilizado e inoculado con rizobacterias. In: Paper presented at the XXIV Congreso Argentino de la Ciencia del Suelo, Universidad Nacional de Río Cuarto, Argentina, 27 June–1 July 2016Google Scholar
  2. Adl S (2016) Rhizosphere, food security and climate change: a critical role for plant-soil research. Rhizosphere 1:1–3Google Scholar
  3. Aeron A, Kumar S, Pandey P et al (2011) Emerging role of plant growth promoting rhizobacteria in agrobiology. In: Maheshwari DK (ed) Bacteria in agrobiology: crop ecosystems. Springer, Berlin/Heidelberg, pp 1–36Google Scholar
  4. Afanador-Barajas LN (2017) Biofertilizantes: conceptos, beneficios y su aplicación en Colombia. Universidad Central. Accessed 25 Aug 2018
  5. Agencia Brasil (2018) La producción orgánica crece en Brasil. http: / / Accessed 20 Sept 2018
  6. Aguado-Santacruz GA (2012) Uso de microorganismos como biofertilizantes. In: Aguado-Santacruz GA (ed) Introducción al uso y manejo de los biofertilizantes en la agricultura. INIFAP/SAGARPA, México, pp 35–78Google Scholar
  7. Aguilar A, Wohlgemuth R, Twardowsk T (2018) Preface to the special issue bioeconomy. New Biotechnol 40:1–4CrossRefGoogle Scholar
  8. Aizen MA, Garibaldi LA, Dondo M (2009) Expansión de la soja y diversidad de la agricultura argentina. Ecol Aust 19:45–54Google Scholar
  9. Altieri MA, Nicholls CI (2000) Applying agroecological concepts to development of ecologically based pest management strategies. In: National Research Council (ed) Professional societies and ecologically based pest management: proceedings of a workshop. National Academy Press, Washington, DC, p 60Google Scholar
  10. Altieri MA, Companioni N, Cañizares K et al (1999) The greening of the “barrios”: urban agriculture for food security in Cuba. Agric Hum Values 16(2):131–140CrossRefGoogle Scholar
  11. Amenta M, Molina-Favero C, Creus CM et al (2015) Nitric oxide in Azospirillum and related bacteria: production and effects. In: Cassán F, Okon Y, Creus C (eds) Handbook for Azospirillum. Springer, Cham, pp 155–180Google Scholar
  12. Ansari MF, Tipre DR, Dave SR (2015) Efficiency evaluation of commercial liquid biofertilizers for growth of Cicer aeritinum (chickpea) in pot and field study. Biocatal Agric Biotechnol 4(1):17–24CrossRefGoogle Scholar
  13. Antoun H, Prevost D (2006) Ecology of plant growth promoting rhizobacteria. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 1–38Google Scholar
  14. Armenta-Bojórquez AD, García-Gutiérrez C, Camacho-Báez JR et al (2010) Biofertilizantes en el desarrollo agrícola de México. Ra Ximahai 6(1):51–56CrossRefGoogle Scholar
  15. Arora NK, Mishra J (2016) Prospecting the roles of metabolites and additives in future bioformulations for sustainable agriculture. Appl Soil Ecol 107:405–407CrossRefGoogle Scholar
  16. Arriola KG, Queiroz OC, Romero JJ et al (2015) Effect of microbial inoculants on the quality and aerobic stability of bermudagrass round-bale haylage. J Dairy Sci 98:478–485PubMedCrossRefPubMedCentralGoogle Scholar
  17. Atlas RM, Bartha R (1997) Microbial ecology. Fundamentals and applications, 4th edn. Benjamin/Cummings, San Francisco, p 694Google Scholar
  18. Avis TJ, Gravel V, Antoun H et al (2008) Multifaceted beneficial effects of rhizosphere microorganisms on plant health and productivity. Soil Biol Biochem 40(7):1733–1740CrossRefGoogle Scholar
  19. Baldani JI, Baldani VLD (2005) History on the biological nitrogen fixation research in graminaceous plants: special emphasis on the Brazilian experience. Ann Acad Bras Ciênc 77(3):549–579CrossRefGoogle Scholar
  20. Barea JM (2004) Impacto de las micorrizas en la calidad del suelo y la productividad vegetal en sistemas agrícolas y espacios naturales. In: Monzón de Asconegui MA, García de Salamone IE, Miyazaki SS (eds) Biología del Suelo. Transformaciones de la materia orgánica, usos y biodiversidad de los organismos edáficos. FAUBA, Universidad de Buenos Aires, pp 7–11Google Scholar
  21. Barea JM, Azcón R, Azcón-Aguilar C (2002) Mycorrhizosphere interactions to improve plant fitness and soil quality. Antonie Van Leeuwenhoek 81:343–351PubMedCrossRefPubMedCentralGoogle Scholar
  22. Barea J-M, Pozo MJ, Azcón R, Azcón-Aguilar C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56(417):1761–1778PubMedCrossRefPubMedCentralGoogle Scholar
  23. Barea JM, Pozo MJ, Azcón R et al (2015) Microbial co-operation in the rhizosphere. J Exp Bot 56(417):1761–1778CrossRefGoogle Scholar
  24. Barquero M (2016) Terrenos para cultivo orgánico crecieron en dos últimos años. La nación. Accessed 20 Sept 2018
  25. Bashan Y (1998) Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnol Adv 16(4):729–770CrossRefGoogle Scholar
  26. Bashan Y, de Bashan LE (2010) How plant growth-promoting bacterium Azospirillum promotes plant growth – a critical assessment. Adv Agron 108:77–136CrossRefGoogle Scholar
  27. Bashan Y, de-Bashan LE (2015) Inoculant preparation and formulations for Azospirillum spp. In: Cassán FD, Okon Y, Creus CM (eds) Handbook for Azospirillum. Technical issues and protocols. Springer, Geneva, pp 469–485Google Scholar
  28. Bashan Y, Holguín G (1998) Proposal for the division of plant growth-promoting rhizobacteria into two classifications: biocontrol PGPB (plant growth-promoting bacteria) and PGPB. Soil Biol Biochem 30:1225–1228CrossRefGoogle Scholar
  29. Bashan Y, Holguin G, de-Bashan LE (2004) Azospirillum-plant relationships: agricultural, physiological, molecular and environmental advances (1997–2003). Can J Microbiol 50:521–577PubMedPubMedCentralCrossRefGoogle Scholar
  30. Bashan Y, de-Bashan LE, Prabbu SR et al (2014) Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant Soil 378(1–2):1–33CrossRefGoogle Scholar
  31. Bell J, Paula L, Dodd T et al (2018) EU ambition to build the world’s leading bioeconomy – uncertain times demand innovative and sustainable solutions. New Biotechnol 40:25–30CrossRefGoogle Scholar
  32. Benintende S (2010) Calidad de inoculantes comerciales para el cultivo de soja en la Argentina: concentración de rizobios viables y presencia de contaminantes. Rev Argent Microbiol 42(2):129–132PubMedPubMedCentralGoogle Scholar
  33. Benintende S, Uhrich W, Herrera M et al (2010) Comparación entre coinoculación com Bradyrhizobium japonicum y Azospirillum brasilense e inoculación simple con Bradyrhizobium japonicum en la nodulación, crecimiento y acumulación de N en el cultivo de soja. Agriscientia 23(2):71–77Google Scholar
  34. Bianchini V (2016) Vinte anos do PRONAF, 1995–2015. Avanços e desafios. Ministerio de Desarrollo Agrario. 113 pp. Retrieved from Accessed 12 Sept 2018
  35. Blanke V, Renker C, Wagner M et al (2005) Nitrogen supply affects arbuscular mycorrhizal colonization of Artemisia vulgaris in a phosphate-polluted field site. New Phytol 166:981–992PubMedCrossRefPubMedCentralGoogle Scholar
  36. Bonkowski M (2004) Protozoa and plant growth: the microbial loop in soil revisited. New Phytol 162(3):617–631CrossRefGoogle Scholar
  37. Bortagaray I (2016) Políticas de ciencia, tecnología e innovación sustentable e inclusiva en América Latina. UNESCO. Accessed 2 Aug 2018
  38. Bottini R, Cassán F, Piccoli P (2004) Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl Microbiol Biotechnol 65:497–503CrossRefGoogle Scholar
  39. Brewin NJ (2010) Root nodules (Legume–Rhizobium Symbiosis). In: eLS. Wiley, Chichester.
  40. CAC (2017) Biopesticides, biofertilizers, biostimulants. Joint FAO/WHO Food Standards Programme Codex Alimentarius Commission 40th Session CICG, Geneva, Switzerland 17–22 July 2017. Accessed 1 Oct 2018Google Scholar
  41. Carrasco-Espinosa K, García-Cabrera RI, Bedoya-López A et al (2015) Positive effect of reduced aeration rate on growth and stereospecificity of dl-malic acid consumption by Azospirillum brasilense: improving the shelf life of a liquid inoculant formulation. J Biotechnol 195:74–81PubMedCrossRefPubMedCentralGoogle Scholar
  42. Cassán F, Diaz-Zorita M (2016) Azospirillum sp. in current agriculture: from the laboratory to the field. Soil Biol Biochem 103:117–130CrossRefGoogle Scholar
  43. Cassán FD, García de Salamone IE (2008) Azospirillum sp.: cell physiology, plant interactions and agronomic research in Argentina. In: Paper presented at the international workshop on Azospirillum: cell physiology, plant response and agronomic research in Argentina. Córdoba, Argentina, 12–13 October 2007Google Scholar
  44. Cassán FD, Okon Y, Creus CM (eds) (2015) Handbook for Azospirillum. Technical issues and protocols. Springer, Geneva. Google Scholar
  45. Cassman KG (1999) Ecological intensification of cereal production systems: yield potential, soil quality, and precision agriculture. Proc Natl Acad Sci U S A 96:5952–5959PubMedPubMedCentralCrossRefGoogle Scholar
  46. Chavarría-Vega M (2016) El uso de microorganismos benéficos: Biofertilizantes y Biocontroladores. CIA. INTA. ACCS. Accessed 1 Oct 2018
  47. Cherr CM, Scholberg JMS, McSorley R (2006) Green manure approaches to crop production. Agron J 98(2):302–319CrossRefGoogle Scholar
  48. CIA (2017) The world factbook. Accessed 20 Nov 2018
  49. Cieza RI, Ferraris G, Seibane C et al (2015) Aportes a la caracterización de la agricultura familiar en el partido de La Plata. Rev Fac Agron 114(3):129–142Google Scholar
  50. Collins-Johnson N, Rowland DL, Corkidi L et al (2003) Nitrogen enrichment alters mycorrhizal allocation at five mesic to semiarid grasslands. Ecology 84:1895–1908CrossRefGoogle Scholar
  51. Cortes-Patiño S, Bonilla RR (2015) Polymers selection for a liquid inoculant of Azospirillum brasilense based on the Arrhenius thermodynamic model. Afr J Biotechnol 14(33):2547–2553CrossRefGoogle Scholar
  52. Covacevich F, Echeverría HE, Aguirrezabal LAN (2007) Soil available phosphorus status determines indigenous mycorrhizal colonization at field and glasshouse-grown spring wheat from Argentina. Appl Soil Ecol 35:1–9CrossRefGoogle Scholar
  53. Creus CM (2017) Inoculantes microbianos: piezas de un rompecabezas que aún requiere ser ensamblado. Rev Argent Microbiol 49(3):207–209PubMedPubMedCentralGoogle Scholar
  54. Cuéllar-Gavira TZ (2014) Evaluación de la promoción de crecimiento de Bacillus subtilis EA-CB0575 en cultivos de banano, crisantemo y café. Universidad EAFIT, Colombia, p 135Google Scholar
  55. Cuevas-Valdéz J (2018) Agricultura orgánica, oportunidades de crecimiento en México (II). Accessed 20 Oct 2018
  56. Curiel R (2018) Anuncia SAGARPA biofertilizantes para agricultores de PROGRO Productivo que recibirán asesoría de CIMMYT. ( Accessed 20 Oct 2018
  57. D’Auria F, Di Salvo LP, García de Salamone IE (2012) Microbiología de la fitorremediación de suelos contaminados con hidrocarburos. Paper presented at XIX Congreso Latinoamericano de la Ciencia del Suelo. XXIII Congreso Argentino de la Ciencia del Suelo, Mar del Plata, Argentina, 16–20 April 2012Google Scholar
  58. de Souza R, Ambrosini A, Passaglia LMP (2015) Plant growth-promoting bacteria as inoculants in agricultural soils. Genet Mol Biol 38(4):401–419PubMedPubMedCentralCrossRefGoogle Scholar
  59. Deaker R, Roughley RJ, Kennedy IR (2004) Legume seed inoculation technology – a review. Soil Biol Biochem 36:1275–1288CrossRefGoogle Scholar
  60. Den Herder G, Van Isterdael G, Beeckman T et al (2010) The roots of a new green revolution. Trends Plant Sci 15:600–607CrossRefGoogle Scholar
  61. Di Salvo LP, Cellucci GC, Carlino ME et al (2013) Inocular el cultivo de maíz con Azospirillum brasilense y fertilizar con urea incrementa el rendimiento y altera temporalmente los microorganismos rizosféricos asociados a los ciclos del carbono y el nitrógeno. Simposio IPNI, Rosario, Argentina, May 22–23.Google Scholar
  62. Di Salvo LP, López Rondó GR, Radio Brandoni P et al (2014) Influence of Azospirillum brasilense inoculation and fertilization practices on the colonization of wheat by natural arbuscular mycorrhiza. In: Paper presented at the II Taller Latinoamericano sobre Rizobacterias Promotoras del Desarrollo Vegetal. Córdoba, Argentina, 21–26 September 2014Google Scholar
  63. Di Salvo LP, Cellucci GC, Carlino ME et al (2018a) Plant growth promoting rhizobacteria inoculation and nitrogen fertilization increase maize grain yield and modified rhizosphere microbial communities. Appl Soil Ecol 126:113–120CrossRefGoogle Scholar
  64. Di Salvo LP, Ferrando L, Fernández-Scavino A et al (2018b) Microorganisms reveal what plants do not: wheat growth and rhizosphere microbial communities after application of Azospirillum brasilense and nitrogen fertilizer under field conditions. Plant Soil 424:405–417CrossRefGoogle Scholar
  65. Díaz-Franco A, Mayek-Pérez N (2008) La biofertilización como tecnología sostenible. Consejo Nacional de Ciencia y Tecnología y Consejo Tamaulipeco de Ciencia y Tecnología de México. Plaza y Valdés, S.A. de C.V. México, p 260Google Scholar
  66. Dikshit A, Shukla SK, Mishra RK (2013) Exploring manomaterials with PGPR in current agriculture scenario. LAP Lambert Academic Publishing, Saarbrucken, p 78Google Scholar
  67. Döbereiner J (1966) Azotobacter paspali sp.n., uma bacteria fixadora de nitrogenio na rizosfera de Paspalum. Pesq Agropec Bras 1:357–365Google Scholar
  68. Döbereiner J, Ruschel AP (1958) Uma nova especie de Beijerinckia. Rev Biol 1:261–272Google Scholar
  69. Döbereiner J, Francos AA, Cuzmán I (1970) Estirpes ide Rhizobium japonicum de excepcional eficiência. Pesq Agropec Bras 5:155–161Google Scholar
  70. Döbereiner J, Marriel IE, Nery M (1976) Ecological distribution of Spirillum lipoferum Beijerinck. Can J Microbiol 22:1464–1473PubMedCrossRefPubMedCentralGoogle Scholar
  71. Dos Santos WCC, do Nascimento WG, Magalhães ALR et al (2015) Nutritive value, total losses of dry matter and aerobic stability of the silage from three varieties of sugarcane treated with commercial microbial additives. Anim Feed Sci Technol 204:1–8CrossRefGoogle Scholar
  72. El-Ghamry AM, Mosa AA, Alshaal TA et al (2018) Nanofertilizers vs. biofertilizers: new insights. Environ Biodivers Soil Security 2:51–72CrossRefGoogle Scholar
  73. El-Hage S, Hattam C (ed) (2003) La agricultura orgánica, ambiente y seguridad alimentaria. Colección FAO: Ambiente y Recursos Naturales No. 4. Accessed 18 Oct 2018
  74. Ellis JR, Roder W, Mason SC (1992) Grain sorghum soybean rotation and fertilization influence on vesicular arbuscular mycorrhizal fungi. Soil Sci Soc Am J 56:789–794CrossRefGoogle Scholar
  75. Escobar-Ortega JS, García de Salamone IE (2017) Dynamics of rhizosphere microbial communities of cover crops dried with glyphosate. In: Singh DP et al (eds) Plant-microbe interactions in agro-ecological perspectives. Springer Nature, pp 17–34.
  76. FAO (2011) FAO enseña a combatir plagas y enfermedades con sustancias naturales. Accessed 25 Aug 2018
  77. FAO (2014) Organic Agriculture. Accessed 25 Aug 2018
  78. FAO (2015) La Habana. Agricultura urbana y periurbana en América Latina y el Caribe.
  79. FAO (2018) FAOSTAT: Agricultura bajo agricultura orgánica certificada. Organización de las Naciones Unidas para la Alimentación y la Agricultura. Accessed 30 Aug 2018
  80. FAOTERM–Organic Agriculture (2018) Manual del compostaje del agricultor. Experiencias en América Latina. Accessed 25 Sept 2018
  81. Feito MC (2013) Agricultura familiar con enfoque agroecológico en zonas periurbanas. Análisis de una experiencia de intervención para el desarrollo rural en Lujan (Buenos Aires, Argentina) Rev Electron Geogr Austral. Accessed December 2018
  82. Ferrera-Cerrato R, Alarcón A (2001) La microbiología del suelo en la agricultura sostenible. Revista Ciencia Ergo Sum. Universidad Autónoma del Estado de México 8(22):175–183Google Scholar
  83. Finkel OM, Castrillo G, Herrera-Paredes S et al (2017) Understanding and exploiting plant beneficial microbes. Curr Opin Plant Biol 38:155–163PubMedPubMedCentralCrossRefGoogle Scholar
  84. Gamarnik M, Zambrano-Soledispa A, Di Salvo LP et al (2017) Diversidad de esporas de micorrizas arbusculares modificada por ciertas prácticas agronómicas del cultivo de trigo. In: Paper presented at the XI Reunión Nacional de Biología de Suelos REBIOS. Corrientes, Argentina, October 25–27Google Scholar
  85. Gámez RM, Rodríguez F, Bernal JF et al (2015) Genome sequence of the banana plant growth-promoting rhizobacterium Bacillus amyloliquefaciens BS006. Genome Announc 3(6):e01391–e01315PubMedPubMedCentralCrossRefGoogle Scholar
  86. Gámez RM, Rodríguez F, Ramírez S et al (2016) Genome sequence of the banana plant growth-promoting rhizobacterium Pseudomonas fluorescens PS006. Genome Announc 4(3):e00329–e00316PubMedPubMedCentralCrossRefGoogle Scholar
  87. García SD (2017) Bioestimulantes Agrícolas, Definición, Principales Categorías y Regulación a Nivel Mundial. Serie Nutrición Vegetal Núm. 94. INTAGRI. México. Accessed 25 Sept 2018
  88. García de Salamone IE (2000) Direct beneficial effects of cytokinin-producing rhizobacteria on plant growth. University of Saskatchewan, Canada.
  89. García de Salamone IE (2012a) Use of soil microorganisms to improve plant growth and ecosystem sustainability. In: Caliskan M (ed) The molecular basis of plant genetic diversity. INTECH, Rijeka, pp 233–258. Scholar
  90. García de Salamone IE (2012b) Microorganismos promotores del crecimiento vegetal. Informaciones Agronómicas de Hispanoamérica (IPNI) 5:12–16Google Scholar
  91. García de Salamone IE, Monzón de Asconegui M (2008) Ecofisiología de la respuesta a la inoculación con Azospirillum en cultivos de cereales. In: Cassán FD, García de Salamone IE (eds) Azospirillum sp.: cell physiology, plant interactions and agronomic research in Argentina. Asociación Argentina de Microbiología, Buenos Aires, pp 209–226Google Scholar
  92. García de Salamone IE, Dobereiner J, Urquiaga S et al (1996) Biological nitrogen fixation in Azospirillum strain-maize genotype associations as evaluated by the 15N isotope dilution technique. Biol Fertil Soils 23:249–256CrossRefGoogle Scholar
  93. García de Salamone IE, Hynes RK, Nelson LM (2001) Cytokinin production by plant growth promoting rhizobacteria and selected mutants. Can J Microbiol 47:404–411CrossRefGoogle Scholar
  94. García de Salamone IE, Hynes RK, Nelson LM (2006a) Role of cytokinins in plant growth promotion by rhizosphere bacteria. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 173–195Google Scholar
  95. García de Salamone IE, Michelena R, Rodríguez A et al (2006b) Ocurrencia de micorrizas vesículo arbusculares en plantas de maíz, soja y trigo en sistemas de siembra directa. Revista de la Facultad de Agronomía, Universidad de Buenos Aires 26(1):67–72Google Scholar
  96. García de Salamone IE, Escobar-Ortega JS, Gatica M et al (2009) Effect of Azospirillum inoculation on N-cycling microorganisms associated with rice and wheat crops. In: Paper presented at the 16th Nitrogen Workshop, Turin, Italy, June 28th–July 1st 2009.Google Scholar
  97. García de Salamone IE, Di Salvo LP, Escobar-Ortega JS et al (2010) Field response of rice paddy crop to inoculation with Azospirillum: physiology of rhizosphere bacterial communities and the genetic diversity of endophytic bacteria in different parts of the plants. Plant Soil 336:351–362CrossRefGoogle Scholar
  98. García de Salamone IE, Funes JM, Di Salvo LP et al (2012) Inoculation of paddy rice with Azospirillum brasilense and Pseudomonas fluorescens: Impact of plant genotypes on the rhizosphere microbial communities and field crop production. Appl Soil Ecol 61:198–204CrossRefGoogle Scholar
  99. García de Salamone IE, Vázquez S, Penna C, Cassán FD (2013) Rizosfera, biodiversidad y agricultura sustentable. Paper publicated at the Taller Internacional sobre Rizosfera, Biodiversidad y Agricultura Sustentable 2010. Buenos Aires, Argentina. 21–22 October 2010Google Scholar
  100. García JE, Puente ML, Maronichea GA et al (2013) Estudio de Azospirillum como tecnología aplicable en los cultivos de trigo y maíz. Microbiología Agrícola. Un aporte de la Investigación en Argentina, pp 351–366. Accessed December 2018
  101. Gargoloff NA, Blandi ML, and Sarandón SJ (2017) The importance of the family horticultural history on the knowledge and ecological management of agrobiodiversity. A case study in the green belt of La Plata, Argentina. VI Congreso Latino-Americano de Agroecologia, Brasilia, Brazil. September 12–15. file:///C:/Users/inese/Documents/SPRINGER%202018/family%20Agriculture%20Argentina%202018.pdf. Accessed December 2018.Google Scholar
  102. Gewin V (2010) Food: An underground revolution. Nature 466:552–553CrossRefGoogle Scholar
  103. Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica. CrossRefGoogle Scholar
  104. Gliessman SR (1998) Agroecology: ecological processes in sustainable agriculture. Ann Arbor Press, Ann Arbor, p 357Google Scholar
  105. Gold S, Kunz N, Reine G (2017) Sustainable global agrifood supply chains: exploring the barriers. J Ind Ecol 21(2):249–260CrossRefGoogle Scholar
  106. Gómez M, Silva N, Hartmann A et al (1997) Evaluation of commercial soybean inoculants from Argentina. World J Microbiol Biotechnol 13:167–173CrossRefGoogle Scholar
  107. Gonzalez EJ, Hernandez JP, de-Bashan LE (2018) Dry micro-polymeric inoculant of Azospirillum brasilense is useful for producing mesquite transplants for reforestation of degraded arid zones. Appl Soil Ecol 129:84–93CrossRefGoogle Scholar
  108. Graham PH, Vance CP (2000) Nitrogen fixation in perspective: an overview of research and extension needs. Field Crop Res 65:93–106CrossRefGoogle Scholar
  109. Großkinsky DK, Tafner R, Moreno MV et al (2016) Cytokinin production by Pseudomonas fluorescens G20-18 determines biocontrol activity against Pseudomonas syringae in Arabidopsis. Sci Rep 6:23310. CrossRefPubMedPubMedCentralGoogle Scholar
  110. Guanche-García A (2012) Los abonos verdes. Información técnica.
  111. Guzmán-Casado GI, Mielgo AM (2008) Buenas prácticas en producción ecológica. Uso de abonos verdes. Ministerio de Medio Ambiente y Medio Rural y Marino. España, p 22
  112. Henry G, Hodson E, Aramendis R et al (2017) Bioeconomy: An engine for integral development of Colombia. file:///C:/Users/inese/Documents/SPRINGER%202018/Articulos%20revisados/Bioeconomy_An_engine_for_the_integral_development_of_Colombia.pdfGoogle Scholar
  113. Hernández-Rodríguez OA, Hernández-Tecorral A, Rivera-Figueroa C et al (2013) Calidad Nutrimental de cuatro abonos orgánicos producidos a partir de residuos vegetales y pecuarios. Terra Latinoamericana 31:35–46Google Scholar
  114. Herrera Paredes S, Lebeis SL (2016) Giving back to the community: microbial mechanisms of plant–soil interactions. Funct Ecol 30:1043–1052CrossRefGoogle Scholar
  115. Howieson JG, Malden J, Yates RJ et al (2000a) Techniques for the selection and development of elite inoculant strains of Rhizobium leguminosarum in southern Australia. Symbiosis 28:33–48Google Scholar
  116. Howieson JG, O’Hara GW, Carr SJ (2000b) Changing roles for legumes in Mediterranean agriculture: developments from an Australian perspective. Field Crop Res 65:107–122CrossRefGoogle Scholar
  117. Iannone MF, Rosales EP, Groppa MD et al (2012) Reactive oxygen species formation and cell death in catalase-deficient tobacco leaf discs exposed to paraquat. Biol Trace Elem Res 146:246–255PubMedCrossRefPubMedCentralGoogle Scholar
  118. Iannone MF, Rosales EP, Groppa MD et al (2013) H2O2 Involvement in Polyamine-induced cell death in tobacco leaf discs. J Plant Growth Regul 32:745–757CrossRefGoogle Scholar
  119. ICO (2018). Accessed 28 Sept 2018
  120. IFOAM (2003) Normas para la producción y procesado orgánico. Die Deutsche Bibliothek, p 154Google Scholar
  121. IFOAM (2018) Definition of organic agriculture. Accessed 1 Oct 2018
  122. Ikerd J (1997) Toward an economics of sustainability. Dept of Agricultural Economics, University of Missouri. Accessed November 2018.
  123. INEC (2017) Encuesta Nacional Agropecuaria. Accessed 12 Nov 2018
  124. INEGI (2018). pib_pconst/pib_pconst2018_08.pdf. Accessed 1 Oct 2018
  125. INTAGRI (2018) Los abonos orgánicos beneficios tipos y contenidos nutrimentales. Accessed 28 Sept 2018
  126. IPES/FAO/RUAF Foundation (2010) Biopreparados para el manejo sostenible de plagas y enfermedades en la agricultura urbana y periurbana. Accessed 30 Aug 2018
  127. Jeffries P, Craven-Griffiths A, Barea JM et al (2002) Application of arbuscular mycorrhizal fungi in the revegetation of desertified Mediterranean ecosystems. In: Gianinazzi S, Schuepp H, Barea JM et al (eds) Mycorrhizal technology in agriculture. Birkhauser verlag, Basel, pp 151–174CrossRefGoogle Scholar
  128. Jeffries P, Gianinazzi S, Perotto S, Turnau K, Barea JM (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fertil Soils 37:1–16Google Scholar
  129. Johansson JF, Paul LR, Finlay RD (2004) Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol Ecol 48:1–13PubMedCrossRefPubMedCentralGoogle Scholar
  130. Khan K, Pankaj U, Verma SK et al (2015) Bio-inoculants and vermicompost influence on yield, quality of Andrographis paniculata, and soil properties. Ind Crop Prod 70:404–409CrossRefGoogle Scholar
  131. Koide RT, Mosse B (2004) A history of research on arbuscular mycorrhiza. Mycorrhiza 14(3):145–163PubMedCrossRefPubMedCentralGoogle Scholar
  132. Kouadio ANM-S, Nandjui J, Krou SM et al (2017) A native arbuscular mycorrhizal fungus inoculant outcompetes an exotic commercial species under two contrasting yam field conditions. Rhizosphere 4:112–118CrossRefGoogle Scholar
  133. Krauss JB, Kuttenkeuler D (2018) Intellectual property rights derived from academic research and their role in the modern bioeconomy-a guide for scientist. New Biotechnol 40:133–139CrossRefGoogle Scholar
  134. Kroll S, Agler MT, Kemen E (2017) Genomic dissection of host-microbe and microbe-microbe interactions for advance plant breeding. Curr Opin Plant Biol 36:71–78PubMedCrossRefPubMedCentralGoogle Scholar
  135. Kumar B, Trivedi P, Pandey A (2007) Pseudomonas corrugate: a suitable bacterial inoculant for maize grown under rainfed conditions of Himalayan region. Soil Biol Biochem 39:3093–3100CrossRefGoogle Scholar
  136. Labrador MJ, Bello A (2001) La materia orgánica en los agroecosistemas. 2ª. Ed. Mundi-Prensa. España, p 293Google Scholar
  137. Liu A, Hamel C, Hamilton RI et al (2000) Mycorrhizae formation and nutrient uptake of new corn (Zea mays L.) hybrids with extreme canopy and leaf architecture as influenced by soil N and P levels. Plant Soil 221:157–166CrossRefGoogle Scholar
  138. Lodeiro AR (2015) Interrogantes en la tecnología de la inoculación de semillas de soja con Bradyrhizobium spp. Rev Argent Microbiol 47(3):261–273PubMedPubMedCentralGoogle Scholar
  139. Lone R, Shuab R, Khan S et al (2017) Arbuscular mycorrhizal fungi for sustainable agriculture. In: Kumar V, Kumar M, Sharma S et al (eds) Probiotics and plant health. Springer, Singapore, pp 553–577CrossRefGoogle Scholar
  140. Lucy M, Reed E, Glick BR (2004) Applications of free-living plant growth-promoting rhizobacteria. Review. Antonie van Leewenhoek 86:1–25CrossRefGoogle Scholar
  141. Lynch JP (2007) Roots of the second green revolution. Aust J Bot 55(5):493–512CrossRefGoogle Scholar
  142. MAG (2010a). Unidad de prensa oficial del Ministerio de Agricultura y Ganadería de Costa Rica. Accessed 25 Sept 2018
  143. MAG (2010b) Guía técnica para la difusión de tecnología de producción agropecuaria sostenible. Accessed 25 Sept 2018
  144. Malusá E, Sas-Paszt L, Ciesielska J (2012) Technologies for beneficial microorganisms inocula used as biofertilizers. Sci World J 491206:1–12CrossRefGoogle Scholar
  145. Małyska A, Jacobi J (2018) Plant breeding as the cornerstone of a sustainable bioeconomy. New Biotechnol 40:129–132CrossRefGoogle Scholar
  146. Manimekalai G, Kannahi M (2018) Evaluation of low cost liquid formulation of PGPR inoculants with protective substances. Int J Recent Sci Res 9(6):27330–27335. CrossRefGoogle Scholar
  147. MDA (2016) Ministerio de Desarrollo Agrario Brasil. O que é a agricultura familiar. Accessed 28 Sept 2018
  148. Mhlongo MI, Piater LA, Madala NE et al (2018) The chemistry of plant-microbe interactions in the rhizosphere and the potential for metabolomics to reveal signaling related to defense priming and induced systemic resistance. Front Plant Sci 9(112):1–19. CrossRefGoogle Scholar
  149. Mishra J, Arora NK (2018) Secondary metabolites of fluorescent pseudomonads in biocontrol of phytopathogens for sustainable agriculture. Appl Soil Ecol 125:35–45CrossRefGoogle Scholar
  150. Molina-Favero C, Creus CM, Simontacchi M et al (2008) Aerobic nitric oxide production by Azospirillum brasilense Sp245 and its influence on root architecture in tomato. Mol Plant-Microbe Interact 21(7):1001–1009CrossRefGoogle Scholar
  151. Montenegro-Gómez SP, Barrera-Berdugo SE (2014) Biofertilización nitrogenada como aporte a la sustentabilidad de la agricultura colombiana. Revista de Investigación Agraria y Ambiental 5(2):135–144CrossRefGoogle Scholar
  152. Morrissey JP, Dow JM, Mark GL et al (2004) Are microbes at the root of a solution to world food production? Rational exploitation of interactions between microbes and plants can help to transform agriculture. EMBO Rep 5:922–926PubMedPubMedCentralCrossRefGoogle Scholar
  153. Mrkovački N, Milić V (2001) Use of Azotobacter chroococcum as a potentially useful in agricultural application. Ann Microbiol 51:145–158Google Scholar
  154. Mugilan I, Gayathri P, Elumalai EK et al (2011) Studies on improve survivability and shelf life of carrier using liquid inoculation of Pseudomonas striata. Int J Pharm Biol Arch 2(4):1271–1275Google Scholar
  155. Naiman AD, Latronico AE, García de Salamone IE (2009) Inoculation of wheat with Azospirillum brasilense and Pseudomonas fluorescens: impact on the production and rhizospheric microflora. Eur J Soil Biol 45:44–51. CrossRefGoogle Scholar
  156. Nava-Pérez E, García-Gutiérrez C, Camacho-Báez JR et al (2012) Bioplaguicidas: Una opción para el biocontrol biológico de plagas. Ra Ximhai 8(3):17–29CrossRefGoogle Scholar
  157. Nobbe F, Hiltner L (1896) U.S. Patent 570 813. Inoculation of the soil for cultivating leguminous plants.Google Scholar
  158. NODAL (2017) La soja cambia el mapa de Brasil y su estatus agrícola en el mundo. Accessed 28 Sept 2018
  159. Numan M, Bashira S, Khana Y et al (2018) Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: a review. Microbiol Res 209:21–32PubMedCrossRefPubMedCentralGoogle Scholar
  160. O’Hara G, Yates R, Howieson J (2002) Selection of strains of root nodule bacteria to improve inoculant performance and increase legume productivity in stressful environments. In: Herridge D (ed) Inoculants and nitrogen fixation of legumes in Vietnam. ACIAR proceedings 109eGoogle Scholar
  161. Oehl F, Sieverding E, Ineichen K et al (2003) Impact of land use intensity on the species diversity of arbuscular mycorrhizal fungi in agroecosystems of central Europe. Appl Environ Microbiol 69:2816–2824PubMedPubMedCentralCrossRefGoogle Scholar
  162. Okon Y (1994) Azospirillum/plant associations. CRC Press, Florida, p 192Google Scholar
  163. Oleaginosas (2016) La producción de soya en Brasil. Accessed 12 Nov 2018
  164. OMRI (2018) Organic Materials Review Institute. Accessed 30 Aug 2018
  165. Owen D, Williams AP, Griffith GW et al (2015) Use of commercial bio-inoculants to increase agricultural production through improved phosphorous acquisition. Appl Soil Ecol 86:41–54CrossRefGoogle Scholar
  166. Palmqvist NGM, Bejai S, Meijer J et al (2015) Nano titania aided clustering and adhesion of beneficial bacteria to plant roots to enhance crop growth and stress management. Sci Rep 5:10146. CrossRefPubMedPubMedCentralGoogle Scholar
  167. Parnell JJ, Berka R, Young HA et al (2016) From the lab to the farm: an industrial perspective of plant beneficial microorganisms. Front Plant Sci 7:1110. CrossRefPubMedPubMedCentralGoogle Scholar
  168. Pedraza RO, Teixeira KRS, Scavino AF et al (2010) Microorganismos que mejoran el crecimiento de las plantas y la calidad de los suelos. Revista Corpoica – Ciencia y Tecnología Agropecuaria 11(2):155–164CrossRefGoogle Scholar
  169. Peña-Borrego MD, de Zayas-Pérez MR, Rodríguez-Fernández RM (2015) Scientific production about biofertilizers in Cuba in the 2008-2012 period: a bibliometric analysis of Cuban journal. Cultivos Tropicales 36(1):43–52Google Scholar
  170. Perez-Lavalle L, Bolivar Anillo HJ, Diaz Perez A (2017) Biofertilizantes en Colombia. In: Estrada-Lopez HH, Saumett-Espana HG, Iglesias-Navas MA et al (eds) Productos de confitería nutracéutica. Una opción empresarial para cultivadores de frutas y hortalizas. Universidad Simon Bolivar, Colombia, pp 179–222. Google Scholar
  171. Pérez-Montano F, Alías-Villegas C, Bellogín RA et al (2014) Plant growth promotion in cereal and leguminous agricultural important plants: from microorganism capacities to crop production. Microbiol Res 169:325–336PubMedCrossRefPubMedCentralGoogle Scholar
  172. Peterson RL, Massicotte HB (2004) Exploring structural definitions of mycorrhizas, with emphasis on nutrient-exchange interfaces. Can J Bot 82:1074–1088CrossRefGoogle Scholar
  173. Piccinetti C, Arias N, Ventimiglia L et al (2013) Efectos positivos de la inoculación de soja sobre la nodulación, la FBN y en los parámetros de producción del cultivo. In: Albanesi AS (ed) Microbiología agrícola. Un aporte de la investigación argentina. Magna Publicaciones, Tucumán, pp 283–297Google Scholar
  174. PNUD (2018) Un plan de agricultura familiar para Jujuy. Programa de las Naciones Unidas para el desarrollo. ourwork/environmentandenergy/successstories/PlanAgriculturaFamiliar.html. Accessed November 2018
  175. Prasanna R, Ramakrishnan B, Ranjan K et al (2016) Microbial inoculants with multifaceted traits suppress Rhizoctonia populations and promote plant growth in cotton. J Phytopathol 164(11–12):1030–1042. CrossRefGoogle Scholar
  176. Rascovan N, Carbonetto B, Revale S et al (2013) The PAMPA datasets: a metagenomic survey of microbial communities in Argentinean pampean soils. Microbiome 1:21. CrossRefPubMedPubMedCentralGoogle Scholar
  177. Reddy CA, Saravanan RS (2013) Polymicrobial multi-functional approach for enhancement of crop productivity. Adv Appl Microbiol 82:53–113PubMedPubMedCentralCrossRefGoogle Scholar
  178. Redecker D, Schüßler A, Stockinger H et al (2013) An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza 23:515–531PubMedCrossRefPubMedCentralGoogle Scholar
  179. Reid A, Greene S (2012) How microbes can help feed the world. Report on an American Academy of Microbiology Colloquium Washington, DC. Accessed December 2018
  180. Rengel Z (2002) Breeding for better symbiosis. Plant Soil 245:147–162CrossRefGoogle Scholar
  181. Rengel Z (2005) Breeding crops for adaptation to environments with low nutrient availability. In: Ashraf M, Harris PJC (eds) Abiotic stresses: plant resistance through breeding and molecular approaches. The Haworth Press, New York, pp 239–276CrossRefGoogle Scholar
  182. Reyes-Ramírez A, López-Arcos M, Ruiz-Sánchez E et al (2014) Efectividad de inoculantes microbianos en el crecimiento y productividad de chile habanero (Capsicum chinense Jacq.). Agrociencia 48(3):285–294Google Scholar
  183. Richardson AE, Barea JM, McNeill AM et al (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339CrossRefGoogle Scholar
  184. Rigby D, Caceres D (2001) Organic farming and the sustainable agricultural systems. Agric Syst 68:21–40CrossRefGoogle Scholar
  185. Rillig MC, Wright SF, Eviner VT (2002) The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: comparing effects of five plant species. Plant Soil 238:325–333CrossRefGoogle Scholar
  186. Rinu K, Pandey A (2009) Bacillus subtilis NRRL B-30408 inoculation enhances the symbiotic efficiency of Lens esculenta Moench at a Himalayan location. J Plant Nutr Soil Sci 172:134–139CrossRefGoogle Scholar
  187. Rivera JS, Cisneros-Vázquez JM (2008) Micronutrimentos solubles en vermicomposta. Revista Chapingo Series Zonas Áridas 7(1):29–35Google Scholar
  188. Rodríguez O (2001) Biofertilizante hecho en México. Accessed 25 Sept 2018
  189. Rorig M, Alderuccio S, Malcolm V et al (2004) Estimaciones del número de microorganismos, producción de nitratos y actividad de fosfatasa alcalina en un suelo Argiudol vértico de la localidad de Ramírez, Entre Ríos, bajo siembra directa y durante la rotación trigo-soja. In: Monzón de Asconegui M, García de Salamone IE, Miyazaki S (eds) Biología del Suelo. FAUBA, Buenos Aires, pp 137–142Google Scholar
  190. Rubio R, Borie F, Schalchli C et al (2003) Occurrence and effect of arbuscular mycorrhizal propagules in wheat as affected by the source and amount of phosphorus fertilizer and fungal inoculation. Appl Soil Ecol 23:245–255CrossRefGoogle Scholar
  191. Ruiz-Sanchez M, Armada E, Muñoz Y et al (2011) Azospirillum and arbuscular mycorrhizal colonization enhance rice growth and physiological traits under well-watered and drought conditions. J Plant Physiol 168:1031–1037PubMedCrossRefPubMedCentralGoogle Scholar
  192. Rumble H, Gange AC (2017) Microbial inoculants as a soil remediation tool for extensive green roofs. Ecol Eng 102:188–198CrossRefGoogle Scholar
  193. SAC (2002) No. 074 de 2002 Reglamentación para productos agropecuarios. Accessed 15 Nov 2018
  194. SAGARPA (2018) PROAGRO. Accessed 1 Oct 2018
  195. Sahoo RK, Bhardwaj D, Tuteja N (2013) Biofertilizers: a sustainable eco-friendly agricultural approach to crop improvement. In: Tuteja N, Singh Gill S (eds) Plant acclimation to environmental stress. Springer, New York, pp 403–432CrossRefGoogle Scholar
  196. Sanches-Santos M, Hungria M, Nogueira MA (2017) Production of polyhydroxybutyrate (PHB) and biofilm by Azospirillum brasilense aiming at the development of liquid inoculants with high performance. Afr J Biotechnol 16(37):1855–1862CrossRefGoogle Scholar
  197. Sasson A, Malpica C (2018) Bioeconomy in Latin America. New Biotechnol 40:40–45CrossRefGoogle Scholar
  198. Schalamuk S, Velázquez S, Chidichimo H et al (2006) Fungal spore diversity of arbuscular mycorrhizal fungi associated with spring wheat: effects of tillage. Mycologia 98:16–22PubMedCrossRefPubMedCentralGoogle Scholar
  199. Schmidt JE, Bowles TM, Gaudin ACM (2016) Using ancient traits to convert soil health into crop yield: impact of selection on maize root and rhizosphere function. Front Plant Sci 7:373PubMedPubMedCentralGoogle Scholar
  200. SENASA (2018) Listados oficiales de registros. Servicio Nacional de Sanidad y Calidad Alimentaria. Argentina. Accessed December 2018.
  201. SEPSA (2018) Informe comercio exterior del sector agropecuario. Accessed 15 Nov 2018
  202. Sharma SB, Sayyed RZ, Trivedi MH et al (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springerplus 2:587. CrossRefPubMedPubMedCentralGoogle Scholar
  203. Shen J, Li C, Mi G et al (2013) Maximizing root/rhizosphere efficiency to improve crop productivity and nutrient use efficiency in intensive agriculture of China. J Exp Bot 64:1181–1192PubMedCrossRefPubMedCentralGoogle Scholar
  204. Siddiqui ZA (2006) PGPR: biocontrol and biofertilization. Springer, Dordrecht, p 318CrossRefGoogle Scholar
  205. Siddiqui ZA, Kataoka R (2011) Mycorrhizal inoculants: progress in inoculant production technology. In: Ahmad I, Ahmad F, Pichtel J (eds) Microbes and microbial technology. Springer, New York, pp 489–506CrossRefGoogle Scholar
  206. Spatafora JW, Chang Y, Benny GL et al (2016) A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 108(5):1028–1046. CrossRefPubMedPubMedCentralGoogle Scholar
  207. Sruthilaxmi CB, Babu S (2017) Microbial bio-inoculants in Indian agriculture: ecological perspectives for a more optimized use. Agric Ecosyst Environ 242:23–25CrossRefGoogle Scholar
  208. Tabassum B, Khan A, Tariq M et al (2017) Bottlenecks in commercialisation and future prospects of PGPR. Appl Soil Ecol 121:102–117CrossRefGoogle Scholar
  209. Tejeda-González G, Martínez-Viera R, Arozarena-Daza N et al (2010) Biofertilizantes microbianos para una agricultura sostenible: sistema cubano de gestión tecnológica para las actividades de investigación, desarrollo, innovación y producción. Accessed 20 Oct 2018
  210. The World Bank (2018). Accessed 15 Nov 2018
  211. Thilakarathna MS, Raizada MN (2017) A meta-analysis of the effectiveness of diverse rhizobia inoculants on soybean traits under field conditions. Soil Biol Biochem 105:177–196CrossRefGoogle Scholar
  212. Tilman D (1999) Global environmental impacts of agricultural expansion: the need for sustainable and efficient practices. PNAS 96(11):5995–6000PubMedCrossRefPubMedCentralGoogle Scholar
  213. Tilman D, Cassman KG, Matson PA et al (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677PubMedPubMedCentralCrossRefGoogle Scholar
  214. Trabelsi D, Mhamdi R (2013) Microbial inoculants and their impact on soil microbial communities: a review. BioMed Research International. Hindawi Publishing Corporation. CrossRefGoogle Scholar
  215. Treseder KK (2004) A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytol 164:347–355CrossRefGoogle Scholar
  216. Trivedi P, Pandey A, Palni LMS (2005) Carrier based formulations of plant growth promoting bacteria suitable for use in the cooler regions. World J Microbiol Biotechnol 21(6-7):941–945CrossRefGoogle Scholar
  217. Trivedi P, Pandey A, Palni LMS (2012) Bacterial inoculants for field applications under mountain ecosystem: present initiatives and future prospects. In: Maheshwari D (ed) Bacteria in agrobiology: plant probiotics. Springer, Berlin/Heidelberg, pp 15–44CrossRefGoogle Scholar
  218. UCR (2018) Biofertilizantes desarrollados en la UCR ya están al alcance de los agricultores. Accessed 25 Sept 2018
  219. UNCTED (2018) Organic agriculture. Accessed 25 Sept 2018
  220. Urquiaga S, Jantalia CP, Alves BJR et al (2004) Importancia de la FBN en el secuestro de carbono en el suelo y en la sustentabilidad agrícola. In: Monzón de Asconegui MA, García de Salamone IE, Miyazaki SS (eds) Biología del Suelo. FAUBA, Buenos Aires, pp 1–6Google Scholar
  221. Valverde C, Gonzalez Anta G, Ferraris G (2015) Pseudomonas and Azospirillum. In: Cassán F, Okon Y, Creus C (eds) Handbook for Azospirillum. Technical issues and protocols. Springer, Geneva, pp 389–409Google Scholar
  222. Vázquez-Moreno L (2006) La lucha contra las plagas agrícolas en Cuba. De las aplicaciones de plaguicidas químicos por calendario al manejo agroecológico de plagas. Fitosanidad 10(3):221–242Google Scholar
  223. Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586CrossRefGoogle Scholar
  224. Villegas-Cornelio VM, Laines-Canepa JR (2017) Vermicompostaje: I avances estrategias en el tratamiento de residuos orgánicos. Rev Mex Ciencias Agrícolas 8(2):393–406CrossRefGoogle Scholar
  225. Wani SA, Chand S, Ali T (2013) Potential use of Azotobacter chroococcum in crop production: an overview. Curr Agric Res J 1(1):35–38CrossRefGoogle Scholar
  226. Willis A, Rodrigues BF, Harris PJC (2013) The ecology of arbuscular mycorrhizal fungi. Crit Rev Plant Sci 32:1–20CrossRefGoogle Scholar
  227. World Economic Forum (2014) Towards the circular economy: accelerating the scale-up across global supply chains. World Economic Forum, GenevaGoogle Scholar
  228. Xavier IJ, Holloway G, Leggett M (2004) Development of rhizobial inoculant formulations. Crop Manag 3(1). CrossRefGoogle Scholar
  229. Zambrano-Soledispa A, Gamarnik M, Di Salvo LP et al (2017) Diversidad de hongos micorrícicos arbusculares nativos del cultivo de maíz bajo distintas prácticas agronómicas. V Congreso CONEBIOS. Lujan, Argentina, November 5–8Google Scholar
  230. Zawoznik M, Groppa MD, Benavides MP (2007a) Nitric oxide and salt stress tolerance in wheat-Azospirillum association. XLIII Reunión Anual de la Sociedad Argentina de Investigación en Bioquímica y Biología Molecular. November 2–15Google Scholar
  231. Zawoznik MS, Groppa MD, Tomaro ML et al (2007b) Endogenous salicylic acid potentiates cadmium-induced oxidative stress in Arabidopsis thaliana. Plant Sci 173:190–197CrossRefGoogle Scholar
  232. Zawoznik MS, Rosales EP, Benavides MP et al (2009) Colonización radical con Azospirillum como factor mitigador del estrés salino. Influencia de la cepa microbiana. VII Simposio Nacional de Biotecnología (REDBIO- Argentina) y II Congreso Internacional-REDBIO-Argentina. Lugar: Rosario, Santa Fe, Argentina. April 20–24Google Scholar
  233. Zuffo AM, Rezende PM, Bruzi AT et al (2015) Co-inoculation of Bradyrhizobium japonicum and Azospirillum brasilense in the soybean crop. Rev Ciênc Agrár 38(1):87–93Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Inés E. García de Salamone
    • 1
    Email author
  • Rosalba Esquivel-Cote
    • 2
  • Dulce Jazmín Hernández-Melchor
    • 2
  • Alejandro Alarcón
    • 2
  1. 1.Faculty of Agronomy, Department of Applied Biology and Foods, Chair of Agricultural MicrobiologyUniversity of Buenos AiresBuenos AiresArgentina
  2. 2.Colegio de Postgraduados, Postgrado de EdafologíaTexcocoMexico

Personalised recommendations