Advertisement

Plant-Microbe Communication: New Facets for Sustainable Agriculture

  • Purnima Bhandari
  • Neera Garg
Chapter

Abstract

Nowadays, sustainable agriculture is the need of the hour as it necessitates increasing plant productivity without causing much disturbance in the environment. In principle, regression in crop production has been attributed to several environmental vagaries including water deficit conditions, saline stress, and heavy metal (HM) stress. Sustainability of any agroecosystems depends on plant-microbe communications that operate in the rhizosphere where microbial biota including both saprophytes and mutualistic symbionts exist. Among them, plant growth-promoting rhizobacteria (PGPRs) and arbuscular mycorrhizal (AM) fungi are designated as biofertilizers due to their multifunctional traits including soil stabilization, nitrogen fixation, nutrient recycling, phytohormone synthesis, and upregulation of defense responses in plants when subjected to stress conditions. At the rhizospheric level, such microorganisms interact intensely with host roots as well as among themselves, thus leading to the successful establishment of the microcosm environment of mutable activities. This chapter documents and highlights (1) the physical and chemical communication that assists in the functioning of root microbiota and (2) the potential role of multifaceted microbes (PGPRs and AM fungi) in stimulating plant growth and development under stressed environment.

Keywords

Arbuscular mycorrhiza Plant-microbe interactions Plant growth-promoting rhizobacteria Abiotic stresses Sustainable agriculture 

Notes

Acknowledgements

The authors are grateful to the Department of Biotechnology (DBT), Government of India, for providing financial assistance for undertaking related research.

References

  1. Abbamondi GR, Tommonaro G, Weyens N, Thijs S, Sillen W, Gkorezis P, Iodice C, Rangel WDM, Nicolaus B, Vangronsveld J (2016) Plant growth-promoting effects of rhizospheric and endophytic bacteria associated with different tomato cultivars and new tomato hybrids. Chem Biol Technol Agric 3:1–10CrossRefGoogle Scholar
  2. Abdel Latef AAH, Miransari M (2014) The role of arbuscular mycorrhizal Fungi in alleviation of salt stress. In: Miransari M (ed) Use of microbes for the alleviation of soil stresses. Springer, New YorkCrossRefGoogle Scholar
  3. Abou-Shanab RA, Angle JS, Chaney RL (2006) Bacterial inoculants affecting nickel uptake by Alyssum murale from low, moderate and high Ni soils. Soil Biol Biochem 38:2882–2889CrossRefGoogle Scholar
  4. Akhgar M, Arzanlou R, Bakker PAHM, Hamidpour M (2014) Characterization of 1-Aminocyclopropane-1-carboxylate (ACC) deaminase-containing Pseudomonas spp. in the rhizosphere of salt-stressed canola. Pedosphere 24:461–468CrossRefGoogle Scholar
  5. Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827PubMedCrossRefPubMedCentralGoogle Scholar
  6. Alamgir M (2016) The effects of soil properties to the extent of soil contamination with metals. In: Environmental remediation technologies for metal-contaminated soils. Springer, Tokyo, pp 1–19Google Scholar
  7. Allen EB, Cunningham GL (1983) Effects of vesicular-arbuscular mycorrhizae on Distichlis spicata under three salinity levels. New Phytol 93:227–236CrossRefGoogle Scholar
  8. Arshad M, Shaharoona B, Mahmood T (2008) Inoculation with Pseudomonas spp. Containing ACC-deaminase partially eliminates the effects of drought stress on growth, yield, and ripening of pea (Pisum sativum L.). Pedosphere 18:611–620CrossRefGoogle Scholar
  9. Ashraf M, Foolad M (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59(2):206–216CrossRefGoogle Scholar
  10. Ashraf M, Hasnain S, Berge O, Mahmood T (2004) Inoculating wheat seedlings with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress. Biol Fertil Soils 40:157–162Google Scholar
  11. Badri DV, Loyola-Vargas VM, Broeckling CD, De-La-Peña C, Jasinaski M, Santelia D, Martinoia E, Sumner LW, Banta LM, Stermitz F, Vivanco JM (2008) Altered profile of secondary metabolites in the root exudates of Arabidopsis ATP-binding cassette transporter mutants. Plant Physiol 146(2):762–771PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bagyaraj DJ, Rangaswami G (2005) Microorganisms in soil. In: Agricultural microbiology, 2nd edn. Prentice Hall of India Private Limited, New Delhi, p 254Google Scholar
  13. Bano A, Fatima M (2009) Salt tolerance in Zea mays (L). Following inoculation with Rhizobium and Pseudomonas. Biol Fertil Soils 45(4):405–413Google Scholar
  14. Barea JM, Azcón R, Azcón-Aguilar C (2005) Interactions between mycorrhizal fungi and bacteria to improve plant nutrient cycling and soil structure. In: Buscot F, Varma A (eds) Microorganisms in soils: roles in genesis and functions. Springer, Berlin/Heidelberg, pp 195–212CrossRefGoogle Scholar
  15. Barea JM, Pozo MJ, López-Ráez JA, Aroca R, Ruíz-Lozano JM, Ferrol N, Azcón R, Azcón-Aguilar C (2014) Arbuscular mycorrhizas and their significance in promoting soil-plant system sustainability against environmental stresses. In: Rodelas MB, González-López J (eds) Beneficial plant-microbial interactions ecology and applications. CRC Press/Taylor & Francis, Boca Raton, pp 353–387Google Scholar
  16. Barea JM, Azcón R, Azcón-Aguilar C (2017) Mycorrhizosphere interactions to improve a sustainable production of legumes. In: Zaidi A, Khan M, Musarrat J (eds) Microbes for legume improvement. Springer, Cham, pp 199–225CrossRefGoogle Scholar
  17. Barnawal D, Maji D, Bharti N, Chanotiya CS, Kalra A (2013) ACC deaminase-containing Bacillus subtilis reduces stress ethylene-induced damage and improves mycorrhizal colonization and rhizobial nodulation in Trigonella foenum-graecum under drought stress. J Plant Growth Regul 32:809–822CrossRefGoogle Scholar
  18. Barnawal D, Bharti N, Maji D, Chanotiya CS, Kalra A (2014) ACC deaminase-containing Arthrobacter protophormiae induces NaCl stress tolerance through reduced ACC oxidase activity and ethylene production resulting in improved nodulation and mycorrhization in Pisum sativum. J Plant Physiol 171(11):884–894PubMedCrossRefPubMedCentralGoogle Scholar
  19. Behie SW, Bidochka MJ (2014) Nutrient transfer in plant – fungal symbioses. Trends Plant Sci 19:734–740PubMedCrossRefPubMedCentralGoogle Scholar
  20. Besset-Manzoni Y, Rieusset L, Joly P, Comte G, Prigent-Combaret C (2018) Exploiting rhizosphere microbial cooperation for developing sustainable agriculture strategies. Environ Sci Pollut Res Int 25(30):29953–29970PubMedCrossRefPubMedCentralGoogle Scholar
  21. Bhandari P, Garg N (2017) Dynamics of arbuscular mycorrhizal symbiosis and its role in nutrient acquisition: an overview. In: Varma A, Prasad R, Tuteja N (eds) Mycorrhiza – nutrient uptake, biocontrol, ecorestoration. Springer, Cham, pp 21–43CrossRefGoogle Scholar
  22. Bharti N, Barnawal D, Wasnik K, Tewari SK, Kalra A (2016) Co-inoculation of Dietzia natronolimnaea and Glomus intraradices with vermicompost positively influences Ocimum basilicum growth and resident microbial community structure in salt affected low fertility soils. Appl Soil Ecol 100:211–225CrossRefGoogle Scholar
  23. Bitla UM, Sorty AM, Meena KK, Singh NP (2017) Rhizosphere signaling cascades: fundamentals and determinants. In: Singh D, Singh H, Prabha R (eds) Plant-microbe interactions in agro-ecological perspectives. Springer, Singapore, pp 211–226CrossRefGoogle Scholar
  24. Bonfante P, Desiró A (2015) Arbuscular mycorrhizas: the lives of beneficial fungi and their plant host. In: Lugtenberg B (ed) Principles of plant-microbe interactions. Springer, Cham, pp 235–245Google Scholar
  25. Brewin NJ (2004) Plant cell wall remodeling in the rhizobium-legume symbiosis. Crit Rev Plant Sci 23:293–316CrossRefGoogle Scholar
  26. Broghammer A, Krusell L, Blaise M, Sauer J, Sullivan JT, Maolanon N, Vinther M, Lorentzen A, Madsen EB, Jensen KJ, Roepstorff P, Thirup S, Ronson CW, Thygesen MB, Stougaard J (2012) Legume receptors perceive the rhizobial lipochitin oligosaccharide signal molecules by direct binding. Proc Natl Acad Sci U S A 109:13859–13864PubMedPubMedCentralCrossRefGoogle Scholar
  27. Carbonnel S, Gutjahr C (2014) Control of arbuscular mycorrhiza development by nutrient signals. Front Plant Sci 5:462PubMedPubMedCentralCrossRefGoogle Scholar
  28. Carlos MH, Stefani PV, Janette AM, Melani MS, Gabriela PO (2016) Assessing the effects of heavy metals in ACC deaminase and IAA production on plant growth-promoting bacteria. Microbiol Res 189:53–61CrossRefGoogle Scholar
  29. Chakraborty U, Chakraborty BN, Chakraborty AP, Dey PL (2013) Water stress amelioration and plant growth promotion in wheat plants by osmotic stress tolerant bacteria. World J Microbiol Biotechnol 29:789–803PubMedCrossRefPubMedCentralGoogle Scholar
  30. Chakraborty U, Chakraborty B, Sarkar J (2018) Amelioration of abiotic stresses in plants through multi-faceted beneficial microorganisms. In: Kashyap PK, Srivastava AK, Tiwari SP, Kumar S (eds) Microbes for climate resilient agriculture. Wiley, Hoboken, pp 105–148Google Scholar
  31. Chandra P, Singh E (2016) Applications and mechanisms of plant growth-stimulating rhizobacteria. In: Choudhary D, Varma A, Tuteja N (eds) Plant-microbe interaction: an approach to sustainable agriculture. Springer, Singapore, pp 37–62CrossRefGoogle Scholar
  32. Chimwamurombe PM, Grönemeyer JL, Reinhold-Hurek B (2016) Isolation and characterization of culturable seed-associated bacterial endophytes from gnotobiotically grown Marama bean seedlings. FEMS Microbiol Ecol 92(6):fiw083PubMedCrossRefGoogle Scholar
  33. Choudhary D (2012) Microbial rescue to plant under habitat-imposed abiotic and biotic stresses. Appl Microbiol Biotechnol 96:1137–1155PubMedCrossRefGoogle Scholar
  34. Clark RB, Zeto SK (2000) Mineral acquisition by arbuscular mycorrhizal plants. J Plant Nutr 23:867–902CrossRefGoogle Scholar
  35. Coats VC, Rumpho ME (2014) The rhizosphere microbiota of plant invaders: an overview of recent advances in the microbiomics of invasive plants. Front Microbiol 5:368.  https://doi.org/10.3389/fmicb.2014.00368 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Crespi MD, Jurkevitch E, Poiret M, D’Aubenton-Carafa Y, Petrovics G, Kondorosi E, Kondorosi A (1994) Enod40, a gene expressed during nodule organogenesis, codes for a nontranslatable RNA involved in plant growth. EMBO J 13:5099–5112PubMedPubMedCentralCrossRefGoogle Scholar
  37. Czarny JC, Grichko VP, Glick BR (2006) Genetic modulation of ethylene biosynthesis and signalling in plants. Biotechnol Adv 24(4):410–419PubMedCrossRefGoogle Scholar
  38. D’Haeze W, Holsters M (2002) Nod factor structures, responses and perception during initiation of nodule development. Glycobiology 12:79–105CrossRefGoogle Scholar
  39. Dey RK, Pal KM, Thomas DN, Sherathia VB, Mandaliya RA, Bhadania MB, Patel P, Maida DH, Mehta BD, Nawade S, Patel V (2018) Endophytic microorganisms: future tools for climate resilient agriculture. In: Kashyap PL, Srivastava AK, Tiwari SP, Kumar S (eds) Microbes for climate resilient agriculture. Wiley, Hoboken, pp 235–253Google Scholar
  40. Diédhiou I, Diouf D (2018) Transcription factors network in root endosymbiosis establishment and development. World J Microbiol Biotechnol 34(3):37PubMedCrossRefGoogle Scholar
  41. Dimkpa C, Weinand T, Asch F (2009) Plant-rhizobacteria interactions alleviate abiotic stresses conditions. Plant Cell Environ 32:1682–1694CrossRefGoogle Scholar
  42. Dobert RC, Breil BT, Triplett EW (1994) DNA sequence of the common nodulation genes of Bradyrhizobium elkanii and their phylogenetic relationships to those of other nodulating bacteria. Mol Plant-Microbe Interact 7:564–572PubMedCrossRefGoogle Scholar
  43. Dodd IC, Pérez-Alfocea F (2012) Microbial amelioration of crop salinity stress. J Exp Bot 63:3415–3428CrossRefGoogle Scholar
  44. Downie JA, Rossen L, Knight CD, Robertson JG, Wells B, Johnston AW (1985) Rhizobium leguminosarum genes involved in early stages of nodulation. J Cell Sci Suppl 2:347–354PubMedCrossRefGoogle Scholar
  45. Effmert U, Kalderás J, Warnke R (2012) Volatile mediated interactions between bacteria and fungi in the soil. J Chem Ecol 38:665–703PubMedCrossRefGoogle Scholar
  46. Ehrhardt DW, Wais R, Long SR (1996) Calcium spiking in plant root hairs responding to rhizobium nodulation signals. Cell 85:673–681PubMedCrossRefGoogle Scholar
  47. Estrada B, Barea JM, Aroca R, Ruiz-Lozano JM (2013) A native Glomus intraradices strain from a Mediterranean saline area exhibits salt tolerance and enhanced symbiotic efficiency with maize plants under salt stress conditions. Plant Soil 366:333–349CrossRefGoogle Scholar
  48. Etesami H, Alikhani HA (2016a) Co-inoculation with endophytic and rhizosphere bacteria allows reduced application rates of N-fertilizer for rice plant. Rhizosphere 2:15.  https://doi.org/10.1016/j.rhisph.2016.09.003 CrossRefGoogle Scholar
  49. Etesami H, Alikhani HA (2016b) Rhizosphere and endorhiza of oilseed rape (Brassica napus L.) plant harbor bacteria with multifaceted beneficial effects. Biol Control 94:11–24CrossRefGoogle Scholar
  50. Etesami H, Beattie GA (2017) Plant-microbe interactions in adaptation of agricultural crops to abiotic stress conditions. In: Kumar V, Kumar M, Sharma S, Prasad R (eds) Probiotics and plant health. Springer, Singapore, pp 163–200CrossRefGoogle Scholar
  51. Etesami H, Alikhani HA, Hosseini HM (2015) Indole-3-acetic acid and 1-aminocyclopropane-1-carboxylate deaminase: bacterial traits required in rhizosphere, rhizoplane and/or endophytic competence by beneficial bacteria. In: Maheshwari DK (ed) Bacterial metabolites in sustainable agroecosystem. Springer, Cham, pp 183–258CrossRefGoogle Scholar
  52. Evelin H, Kapoor R (2014) Arbuscular mycorrhizal symbiosis modulates antioxidant response in salt-stressed Trigonella foenum-graecum plants. Mycorrhiza 24(3):197–208PubMedCrossRefGoogle Scholar
  53. Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104(7):1263–1280PubMedPubMedCentralCrossRefGoogle Scholar
  54. FAO (2008) FAO land and plant nutrition management service. http://www.fao.org/ag/agl/ahll/spush
  55. Feddermann N, Reinhardt D (2011) Conserved residues in the ankyrin domain of VAPYRIN indicate potential protein-protein interaction surfaces. Plant Signal Behav 6:680–684PubMedPubMedCentralCrossRefGoogle Scholar
  56. Fellbaum CR, Gachomo EW, Beesetty Y, Choudhari S, Strahan GD, Pfeffer PE, Kiers ET, Bücking H (2012) Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci 109(7):2666–2671PubMedCrossRefGoogle Scholar
  57. Felle HH, Kondorosi E, Kondorosi A, Schultze M (1996) Rapid alkalization of root hairs in response to rhizobial lipochitooligosaccharide signals. Plant J 10:295–301CrossRefGoogle Scholar
  58. Filho JAC, Sobrinho RR, Pascholati SF (2017) Arbuscular mycorrhizal symbiosis and its role in plant nutrition in sustainable agriculture. In: Meena V, Mishra P, Bisht J, Pattanayak A (eds) Agriculturally important microbes for sustainable agriculture. Springer, Singapore, pp 129–164CrossRefGoogle Scholar
  59. Floss DS, Levy JG, Lévesque-Tremblay V et al (2013) DELLA proteins regulate arbuscule formation in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci 110:E5025–E5034PubMedCrossRefGoogle Scholar
  60. Foo E, Ross JJ, Jones WT, Reid JB (2013) Plant hormones in arbuscular mycorrhizal symbioses: an emerging role for gibberellins. Ann Bot 111:769–779PubMedPubMedCentralCrossRefGoogle Scholar
  61. Gans J, Wolinsky M, Dunbar J (2005) Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309:1387–1390PubMedCrossRefGoogle Scholar
  62. Garg N, Baher N (2013) Role of arbuscular mycorrhizal symbiosis in proline biosynthesis and metabolism of Cicer arietinum L. (chickpea) genotypes under salt stress. J Plant Growth Regul 32:767–778CrossRefGoogle Scholar
  63. Garg N, Bhandari P (2012) Influence of cadmium stress and arbuscular mycorrhizal fungi on nodule senescence in Cajanus cajan (L.) Millsp. Int J Phytoremediation 14(1):62–74PubMedCrossRefPubMedCentralGoogle Scholar
  64. Garg N, Bhandari P (2016a) Silicon nutrition and mycorrhizal inoculations improve growth, nutrient status, K+/Na+ ratio and yield of Cicer arietinum L. genotypes under salinity stress. Plant Growth Regul 78:371–387CrossRefGoogle Scholar
  65. Garg N, Bhandari P (2016b) Interactive effects of silicon and arbuscular mycorrhiza in modulating ascorbate-glutathione cycle and antioxidant scavenging capacity in differentially salt-tolerant Cicer arietinum L. genotypes subjected to long-term salinity. Protoplasma 253(5):1325–1345PubMedCrossRefPubMedCentralGoogle Scholar
  66. Garg N, Chandel S (2010) Arbuscular mycorrhizal networks: process and functions. A review. Agron Sustain Dev 30:581–591CrossRefGoogle Scholar
  67. Garg N, Chandel S (2011) The effects of salinity on nitrogen fixation and trehalose metabolism in mycorrhizal Cajanus cajan (L.) millsp. plants. J Plant Growth Regul 30(4):490–503CrossRefGoogle Scholar
  68. Garg N, Geetanjali (2007) Symbiotic nitrogen fixation in legume nodules: process and signaling. A review. Agron Sustain Dev 27:59–68CrossRefGoogle Scholar
  69. Garg N, Kashyap L (2017) Silicon and Rhizophagus irregularis: potential candidates for ameliorating negative impacts of arsenate and arsenite stress on growth, nutrient acquisition and productivity in Cajanus cajan (L.) Millsp. genotypes. Environ Sci Pollut Res 24:18520–18535CrossRefGoogle Scholar
  70. Garg N, Kaur H (2013) Response of antioxidant enzymes, phytochelatins and glutathione production towards Cd and Zn stresses in Cajanus cajan (L.) Millsp. genotypes colonized by arbuscular mycorrhizal fungi. J Agron Crop Sci 199(2):118–133CrossRefGoogle Scholar
  71. Garg N, Manchanda G (2008) Effect of arbuscular mycorrhizal inoculation on salt-induced nodule senescence in Cajanus cajan (pigeonpea). J Plant Growth Regul 27(2):115CrossRefGoogle Scholar
  72. Garg N, Manchanda G (2009) Role of arbuscular mycorrhizae in the alleviation of ionic, osmotic and oxidative stresses induced by salinity in Cajanus cajan (L.) Millsp. (pigeonpea). J Agron Crop Sci 195:110–123CrossRefGoogle Scholar
  73. Garg N, Pandey R (2015) Effectiveness of native and exotic arbuscular mycorrhizal fungi on nutrient uptake and ion homeostasis in salt-stressed Cajanus cajan L. (Millsp.) genotypes. Mycorrhiza 25(3):165–180PubMedCrossRefPubMedCentralGoogle Scholar
  74. Garg N, Pandey R (2016) High effectiveness of exotic arbuscular mycorrhizal fungi is reflected in improved rhizobial symbiosis and trehalose turnover in Cajanus cajan genotypes grown under salinity stress. Fungal Ecol 21:57–67CrossRefGoogle Scholar
  75. Garg N, Singh S (2017) Arbuscular mycorrhiza Rhizophagus irregularis and silicon modulate growth, proline biosynthesis and yield in Cajanus cajan L. Millsp. (pigeonpea) genotypes under cadmium and zinc stress. J Plant Growth Regul 37:46–63CrossRefGoogle Scholar
  76. Garg N, Singla P (2012) The role of Glomus mosseae on key physiological and biochemical parameters of pea plants grown in arsenic contaminated soil. Sci Hortic 143:92–101CrossRefGoogle Scholar
  77. Garg N, Singla P (2015) Naringenin-and Funneliformis mosseae-mediated alterations in redox state synchronize antioxidant network to alleviate oxidative stress in Cicer arietinum L. genotypes under salt stress. J Plant Growth Regul 34(3):595–610CrossRefGoogle Scholar
  78. Garg N, Singla P (2016) Stimulation of nitrogen fixation and trehalose biosynthesis by naringenin (Nar) and arbuscular mycorrhiza (AM) in chickpea under salinity stress. Plant Growth Regul 80(1):5–22CrossRefGoogle Scholar
  79. Genre A (2012) Signalling and the re-structuring of plant cell architecture in am symbiosis. In: Perotto S, Baluška F (eds) Signaling and communication in plant symbiosis, signaling and communication in plants, vol 11. Springer, Berlin, pp 51–71CrossRefGoogle Scholar
  80. Genre A, Chabaud M, Timmers T et al (2005) Arbuscular mycorrhizal fungi elicit a novel intracellular apparatus in Medicago truncatula root epidermal cells before infection. Plant Cell 17:3489–3499PubMedPubMedCentralCrossRefGoogle Scholar
  81. Gibson KE, Kobayashi H, Walker GC (2008) Molecular determinants of a symbiotic chronic infection. Annu Rev Genet 42:413–441PubMedPubMedCentralCrossRefGoogle Scholar
  82. Giraud E, Moulin L, Vallenet D, Barbe V, Cytryn E, Avarre JC, Jaubert M, Simon D, Cartieaux F, Prin Y, Bena G, Hannibal L, Fardoux J, Kojadinovic M, Vuillet L, Lajus A, Cruveiller S, Rouy Z, Mangenot S, Segurens B, Dossat C, Franck WL, Chang WS, Saunders E, Bruce D, Richardson P, Normand P, Dreyfus B, Pignol D, Stacey G, Emerich D, Vermeglio A, Medigue C, Sadovsky M (2007) Legume symbioses: absence of nod genes in photosynthetic bradyrhizobia. Science 316:1307–1312PubMedCrossRefPubMedCentralGoogle Scholar
  83. Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 251:1–7PubMedCrossRefGoogle Scholar
  84. Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J, McConkey B (2007) Promotion of plant growth by bacterial ACC Deaminase. Crit Rev Plant Sci 26:227–242CrossRefGoogle Scholar
  85. Gonzalez-Guerrero M, Benabdellah K, Valderas A, Azcon-Aguilar C, Ferrol N (2010) GintABC1 encodes a putative ABC transprter of the MRP subfamily induced by Cu, Cd, and oxidative stress in Glomus intraradices. Mycorrhiza 20:137–146PubMedCrossRefPubMedCentralGoogle Scholar
  86. Grover M, Ali SZ, Sandhya V, Rasul A, Venkateswarlu B (2011) Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J Microbiol Biotechnol 27:1231–1240CrossRefGoogle Scholar
  87. Gururani MA, Upadhyaya CP, Baskar V, Venkatesh J, Nookaraju A, Park SW (2013) Plant growth-promoting rhizobacteria enhance abiotic stress tolerance in Solanum tuberosum through inducing changes in the expression of ROS-scavenging enzymes and improved photosynthetic performance. J Plant Growth Regul 32:245–258CrossRefGoogle Scholar
  88. Gutjahr C, Parniske M (2013) Cell and developmental biology of the arbuscular mycorrhiza symbiosis. Annu Rev Cell Dev Biol 29:593–617CrossRefGoogle Scholar
  89. Gutjahr C, Radovanovic D, Geoffroy J et al (2012) The half-size ABC transporters STR1 and STR2 are indispensable for mycorrhizal arbuscule formation in rice. Plant J 69:906–920PubMedCrossRefPubMedCentralGoogle Scholar
  90. Habib SH, Kausar H, Saud HM (2016) Plant growth-promoting rhizobacteria enhance salinity stress tolerance in Okra through ROS-scavenging enzymes. Biomed Res Int 2016:6284547PubMedPubMedCentralCrossRefGoogle Scholar
  91. Hajiboland R (2013) Role of arbuscular mycorrhiza in amelioration of salinity. In: Ahmad P, Azooz MA, MNV P (eds) Salt stress in plants: signalling, omics and adaptations. Springer Science+Business Media, New York, pp 301–354CrossRefGoogle Scholar
  92. Hajiboland R, Aliasgharzadeh N, Laiegh SF, Poschenrieder C (2010) Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicum L.) plants. Plant Soil 331:313–327CrossRefGoogle Scholar
  93. Haldar S, Sengupta S (2016) Microbial ecology at rhizosphere: bioengineering and future prospective. In: Choudhary D, Varma A, Tuteja N (eds) Plant-microbe interaction: an approach to sustainable agriculture. Springer, Singapore, pp 63–96CrossRefGoogle Scholar
  94. Hammer EC, Nasr H, Pallon J, Olsson PA, Wallander H (2011) Elemental composition of arbuscular mycorrhizal fungi at high salinity. Mycorrhiza 21:117–129PubMedCrossRefPubMedCentralGoogle Scholar
  95. Han Q, Lü X, Bai J, Qiao Y, Paré PW, Wang S, Zhang J, Wu Y, Pang X, Xu W, Wang Z (2014) Beneficial soil bacterium Bacillus subtilis (GB03) augments salt tolerance of white clover. Front Plant Sci 5:1–8Google Scholar
  96. Hartmann A, Rothballer M, Schmid M (2008) Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research. Plant Soil 312(1–2):7–14CrossRefGoogle Scholar
  97. Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598CrossRefGoogle Scholar
  98. Islam F, Yasmeen T, Ali Q, Mubin M, Ali S, Arif MS, Hussain S, Riaz M, Abbas F (2016) Copper-resistant bacteria reduces oxidative stress and uptake of copper in lentil plants: potential for bacterial bioremediation. Environ Sci Pollut Res 23:220–233CrossRefGoogle Scholar
  99. Jahromi F, Aroca R, Porcel R, Ruiz-Lozano JM (2008) Influence of salinity on the in vitro development of Glomus intraradices and on the in vivo physiological and molecular responses of mycorrhizal lettuce plants. Microb Ecol 55:45–53PubMedCrossRefPubMedCentralGoogle Scholar
  100. Jha CK, Saraf M (2015) Plant growth promoting rhizobacteria (PGPR): a review. E3 J Agric Res Dev 5:108–119Google Scholar
  101. Jiang C, Sheng X, Qian M, Wang Q (2008) Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil. Chemosphere 72:157–164PubMedCrossRefPubMedCentralGoogle Scholar
  102. Jones KM (2012) Increased production of the exopolysaccharide succinoglycan enhances Sinorhizobium meliloti 1021 symbiosis with the host plant Medicago truncatula. J Bacteriol 194:4322–4331PubMedPubMedCentralCrossRefGoogle Scholar
  103. Jones KM, Kobayashi H, Davies BW, Taga ME, Walker GC (2007) How rhizobial symbionts invade plants: the Sinorhizobium–Medicago model. Nat Rev Microbiol 5:619–633PubMedPubMedCentralCrossRefGoogle Scholar
  104. Junghans U, Polee A, Duchting P, Weiler E, Kuhlman B, Grubber F, Teichmann T (2006) Adaptation to high salinity in poplar involves changes in xylem anatomy and auxin physiology. Plant Cell Environ 29:1519–1531PubMedCrossRefPubMedCentralGoogle Scholar
  105. Juniper S, Abbott LK (2006) Soil salinity delays germination and limits growth of hyphae from propagules of arbuscular mycorrhizal fungi. Mycorrhiza 16:371–379PubMedCrossRefPubMedCentralGoogle Scholar
  106. Kapoor R, Sharma D, Bhatnagar AK (2008) Arbuscular mycorrhizae in micropropagation systems and their potential applications. Sci Hortic 116:227–239CrossRefGoogle Scholar
  107. Kapoor R, Evelin H, Mathur P, Giri B (2013) Arbuscular mycorrhiza: approaches for abiotic stress tolerance in crop plants for sustainable agriculture. In: Tuteja N, Gill SS (eds) Plant acclimation to environmental stress. Springer Science+Business Media, New York, pp 359–401CrossRefGoogle Scholar
  108. Kasotia A, Varma A, Tuteja N, Choudhary DK (2016) Microbial-mediated amelioration of plants under abiotic stress: an emphasis on arid and semiarid climate. In: Choudhary D, Varma A, Tuteja N (eds) Plant-microbe interaction: an approach to sustainable agriculture. Springer, Singapore, pp 155–163CrossRefGoogle Scholar
  109. Kaur S, Kaur G (2018) Morphological and physiological aspects of symbiotic plant–microbe interactions and their significance. In: Giri B, Prasad R, Varma A (eds) Root biology. Soil biology, vol 52. Springer, Cham, pp 367–407CrossRefGoogle Scholar
  110. Kawaharada Y, Kelly S, Nielsen MW, Hjuler CT, Gysel K, Muszynski A (2015) Receptor-mediated exopolysaccharide perception controls bacterial infection. Nature 523:308–312PubMedCrossRefPubMedCentralGoogle Scholar
  111. Kawaharada Y, Nielsen MW, Kelly S, James EK, Andersen KR, Rasmussen SR (2017) Differential regulation of the Epr3 receptor coordinates membrane-restricted rhizobial colonization of root nodule primordia. Nat Commun 8:14534PubMedPubMedCentralCrossRefGoogle Scholar
  112. Kelly SJ, Muszŷnski A, Kawaharada Y, Hubber AM, Sullivan JT, Sandal N (2013) Conditional requirement for exopolysaccharide in the Mesorhizobium–Lotus symbiosis. Mol Plant-Microbe Interact 26:319–329PubMedCrossRefPubMedCentralGoogle Scholar
  113. Khalid A, Arshad M, Zahir ZA (2006) Phytohormones: microbial production and applications. In: Uphoff N, Ball AS, Fernandes E, Herren H, Husson O, Laing M, Palm C, Pretty J, Sanchez P, Sanginga N, Thies J (eds) Biological approaches to sustainable soil systems. Taylor & Francis/CRC Press, Boca Raton, pp 207–220CrossRefGoogle Scholar
  114. Kohler J, Hernández JA, Caravaca F, Roldán A (2009) Induction of antioxidant enzymes is involved in the greater effectiveness of a PGPR versus AM fungi with respect to increasing the tolerance of lettuce to severe salt stress. Environ Exp Bot 65(2):245–252CrossRefGoogle Scholar
  115. Kondorosi E, Banfalvi Z, Kondorosi A (1984) Physical and genetic analysis of a symbiotic region of Rhizobium meliloti: identification of nodulation genes. Mol Gen Genet 193:445–452CrossRefGoogle Scholar
  116. Lee GW, Lee K, Chae J (2016a) Herbaspirillum sp. strain GW103 alleviates salt stress in Brassica rapa L. ssp. pekinensis. Protoplasma 253:655–661PubMedCrossRefPubMedCentralGoogle Scholar
  117. Lee S, Yap M, Behringer G, Hung R (2016b) Volatile organic compounds emitted by Trichoderma species mediate plant growth. Fungal Biol Biotechnol 3:7PubMedPubMedCentralCrossRefGoogle Scholar
  118. Lerouge P, Roche P, Faucher C (1990) Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal. Nature 344:781–784PubMedCrossRefPubMedCentralGoogle Scholar
  119. Li Q, Saleh-Lakha S, Glick BR (2005) The effect of native and ACC deaminase containing Azospirillum brasilense Cd1843 on the rooting of carnation cuttings. Can J Microbiol 51:511–514PubMedCrossRefPubMedCentralGoogle Scholar
  120. Li T, Hu Y, Hao Z, Li H, Wang Y, Chen B (2013) First cloning and characterization of two functional aquaporin genes from an Arbuscular mycorrhizal fungus Glomus intraradices. New Phytol 197:617–630PubMedCrossRefPubMedCentralGoogle Scholar
  121. Li L, Nagai K, Yin F (2016) Progress in cold roll bonding of metals. Sci Technol Adv Mater 9:023001 (11pp).  https://doi.org/10.1088/1468-6996/9/2/023001 CrossRefGoogle Scholar
  122. Lopez-Pedrosa A, Gonzalez-Guerrero M, Valderas A, Azcon-Aguilar C, Ferrol N (2006) GintAMT1 encodes a functional high-affinity ammonium transporter that is expressed in the extraradical mycelium of Glomus intraradices. Fungal Genet Biol 43:102–110PubMedCrossRefPubMedCentralGoogle Scholar
  123. López-Ráez JA (2016) How drought and salinity affect arbuscular mycorrhizal symbiosis and strigolactone biosynthesis? Planta 243(6):1375–1385PubMedCrossRefPubMedCentralGoogle Scholar
  124. Ludwig-Müller J (2004) From auxin homeostasis to understanding plant pathogen and plant symbiont interaction: editor’s research interests. J Plant Growth Regul 23:1–8CrossRefGoogle Scholar
  125. Maheswari TU, Anbukkarasi K, Hemalatha T, Chendrayan K (2013) Studies on phytohormone producing ability of indigenous endophytic bacteria isolated from tropical legume crops. Int J Curr Microbiol Appl Sci 2:127–136Google Scholar
  126. Manaf HH, Zayed MS (2015) Productivity of cowpea as affected by salt stress in presence of endomycorrhizae and Pseudomonas fluorescens. Ann Agric Sci 60(2):219–226CrossRefGoogle Scholar
  127. Mastouri F, Björkman T, Harman GE (2010) Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings. Phytopathology 100:1213–1221PubMedPubMedCentralCrossRefGoogle Scholar
  128. Meena RS, Lal R (2018) Legumes and sustainable use of soils. In: Meena R, Das A, Yadav G, Lal R (eds) Legumes for soil health and sustainable management. Springer, Singapore, pp 1–32CrossRefGoogle Scholar
  129. Meena H, Ahmed MA, Prakash P (2015) Amelioration of heat stress in wheat, Triticum aestivum by PGPR (Pseudomonas aeruginosa strain 2CpS1). Biosci Biotech Res Commun 8:171–174Google Scholar
  130. Mendes R, Kruijt M, de Bruijn I, Dekkers E, van der Voort M, Schneider JH, Piceno YM, De Santis TZ, Andersen GL, Bakker PA, Raaijmakers JM (2011) Deciphering the rhizosphere microbiome for disease suppressive bacteria. Science 332(6033):1097–1100.  https://doi.org/10.1126/science.1203980. PMID: 21551032CrossRefPubMedPubMedCentralGoogle Scholar
  131. Miliute I, Buzaite O, Stanys V (2015) Bacterial endophytes in agricultural crops and their role in stress tolerance: a review. Zemdirbyste-Agriculture 102(4):465–478CrossRefGoogle Scholar
  132. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681PubMedPubMedCentralCrossRefGoogle Scholar
  133. Murray JD, Muni RRD, Torres-Jerez I, Tang Y, Allen S, Andriankaja M, Li G, Laxmi A, Cheng X, Wen J, Vaughan D, Schultze M, Sun J, Charpentier M, Oldroyd G, Tadege M, Ratet P, Mysore KS, Chen R, Udvardi MK (2011) Vapyrin, a gene essential for intracellular progression of arbuscular mycorrhizal symbiosis, is also essential for infection by rhizobia in the nodule symbiosis of Medicago truncatula. Plant J 65:244–252PubMedCrossRefGoogle Scholar
  134. Nadarajah KK (2016) Rhizosphere interactions: life below ground. In: Choudhary D, Varma A, Tuteja N (eds) Plant-microbe interaction: an approach to sustainable agriculture. Springer, Singapore, pp 3–23CrossRefGoogle Scholar
  135. Nadeem SM, Naveed M, Ahmad M, Zahir ZA (2015) Rhizosphere bacteria for crop production and improvement of stress tolerance: mechanisms of action, applications, and future prospects. In: Arora N (ed) Plant microbes symbiosis: applied facets. Springer, New Delhi, pp 1–36Google Scholar
  136. Naveed M, Aziz MZ, Yaseen M (2017) Perspectives of using endophytic microbes for legume improvement. In: Zaidi A, Khan M, Musarrat J (eds) Microbes for legume improvement. Springer, Cham, pp 277–299CrossRefGoogle Scholar
  137. Ocón A, Hampp R, Requena N (2007) Trehalose turnover during abiotic stress in arbuscular mycorrhizal fungi. New Phytol 174:879–891PubMedCrossRefGoogle Scholar
  138. Ogut M, Er F, Kandemir N (2010) Phosphate solubilization potentials of soil Acinetobacter strains. Biol Fertil Soils 46(7):707–715CrossRefGoogle Scholar
  139. Oldroyd GED (2013) Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat Rev Microbiol 11:252–263CrossRefGoogle Scholar
  140. Oldroyd GE, Downie JA (2008) Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu Rev Plant Biol 59:519–546PubMedPubMedCentralCrossRefGoogle Scholar
  141. Oldroyd GE, Murray JD, Poole PS, Downie JA (2011) The rules of engagement in the legume-rhizobial symbiosis. Annu Rev Genet 45:119–144CrossRefGoogle Scholar
  142. Ortíz-Castro R, Contreras-Cornejo HA, Macías-Rodríguez L, López-Bucio J (2009) The role of microbial signals in plant growth and development. Plant Signal Behav 4:701–712PubMedPubMedCentralCrossRefGoogle Scholar
  143. Ovchinnikova E, Journet E-P, Chabaud M (2011) IPD3 controls the formation of nitrogen-fixing symbiosomes in pea and Medicago Spp. Mol Plant-Microbe Interact 24:1333–1344PubMedCrossRefGoogle Scholar
  144. Oves M, Khan M, Zaidi A (2013) Chromium reducing and plant growth promoting novel strain Pseudomonas aeruginosa OSG41 enhance chickpea growth in chromium amended soils. Eur J Soil Biol 56:72–83CrossRefGoogle Scholar
  145. Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775PubMedCrossRefGoogle Scholar
  146. Parniske M, Schmidt P, Kosch K, Muller P (1994) Plant defense responses of host plants with determinate nodules induced by EPS-defective exoB mutants of Bradyrhizobium japonicum. Mol Plant-Microbe Interact 7:631–638CrossRefGoogle Scholar
  147. Parvaiz A, Satyawati S (2008) Salt stress and phyto-biochemical responses of plants – a review. Plant Soil Environ 54(3):89–99CrossRefGoogle Scholar
  148. Paul D, Lade H (2014) Plant-growth-promoting rhizobacteria to improve crop growth in saline soils: a review. Agron Sustain Dev 34:737–752CrossRefGoogle Scholar
  149. Paul D, Sarma YR (2006) Plant growth promoting rhizhobacteria (PGPR)-mediated root proliferation in black pepper (Piper nigrum L.) as evidenced through GS root software. Arch Phytopathol Plant Protect 39:311–314CrossRefGoogle Scholar
  150. Pellegrino E, Bedini S (2014) Enhancing ecosystem services in sustainable agriculture: biofertilization and biofortification of chickpea (Cicer arietinum L.) by arbuscular mycorrhizal fungi. Soil Biol Biochem 68:429–439CrossRefGoogle Scholar
  151. Pellegrino E, Opik M, Bonari E, Ercoli L (2015) Responses of wheat to arbuscular mycorrhizal fungi: a meta-analysis of field studies from 1975 to 2013. Soil Biol Biochem 84:210–217CrossRefGoogle Scholar
  152. Pellock BJ, Cheng H-P, Walker GC (2000) Alfalfa root nodule invasion efficiency is dependent on Sinorhizobium meliloti polysaccharides. J Bacteriol 182:4310–4318PubMedPubMedCentralCrossRefGoogle Scholar
  153. Pereyra MA, Garcia P, Colabelli MN, Barassi CA, Creus CM (2012) A better water status in wheat seedlings induced by Azospirillum under osmotic stress is related to morphological changes in xylem vessels of the coleoptile. Appl Soil Ecol 53:94–97CrossRefGoogle Scholar
  154. Porcel R, Aroca R, Ruiz-Lozano JM (2012) Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agron Sustain Dev 32:181–200CrossRefGoogle Scholar
  155. Porcel R, Aroca R, Azcon R, Ruiz-Lozano JM (2016) Regulation of cation transporter genes by the arbuscular mycorrhizal symbiosis in rice plants subjected to salinity suggests improved salt tolerance due to reduced Na+ root-to-shoot distribution. Mycorrhiza 26:673–684PubMedCrossRefGoogle Scholar
  156. Prasad MP, Dagar S (2014) Identification and characterization of endophytic bacteria from fruits like avocado and black grapes. Int J Curr Microbiol App Sci 3(8):937–947Google Scholar
  157. Prasad R, Bhola D, Akdi K, Cruz C, Sairam KVSS, Tuteja N, Varma A (2017) Introduction to mycorrhiza: historical development. In: Varma A, Prasad R, Tuteja N (eds) Mycorrhiza. Springer, Cham, pp 1–7Google Scholar
  158. Pumplin N, Harrison MJ (2009) Live-cell imaging reveals periarbuscular membrane domains and organelle location in Medicago truncatula roots during arbuscular mycorrhizal symbiosis. Plant Physiol 151:809–819PubMedPubMedCentralCrossRefGoogle Scholar
  159. Puppo A, Pauly N, Boscari A, Mandon K, Brouquisse R (2013) Hydrogen peroxide and nitric oxide: key regulators of the legume Rhizobium and mycorrhizal symbioses. Antioxid Redox Signal 18:2202–2219PubMedCrossRefGoogle Scholar
  160. Radutoiu S, Madsen LH, Madsen EB, Felle HH, Umehara Y, Grønlund M (2003) Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature 425:585–592PubMedCrossRefGoogle Scholar
  161. Radutoiu S, Madsen LH, Madsen EB, Jurkiewicz A, Fukai E, Quistgaard EM, Albrektsen AS, James EK, Thirup S, Stougaard J (2007) LysM domains mediate lipochitin–oligosaccharide recognition and Nfr genes extend the symbiotic host range. EMBO J 26:3923–3935PubMedPubMedCentralCrossRefGoogle Scholar
  162. Rech SS, Heidt S, Requena N (2013) A tandem Kunitz protease inhibitor (KPI106)-serine carboxypeptidase (SCP1) controls mycorrhiza establishment and arbuscule development in Medicago truncatula. Plant J 75:711–725PubMedCrossRefGoogle Scholar
  163. Reddy S, Schorderet M, Feller U, Reinhardt D (2007) A petunia mutant affected in intracellular accommodation and morphogenesis of arbuscular mycorrhizal fungi. Plant J 51:739–750CrossRefGoogle Scholar
  164. Remans R, Beebe S, Blair M, Manrique G, Tovar E, Rao I, Croonenborghs A, Torres-Gutierrez R, El-Howeity M, Michiels J, Vanderleyden (2008) Physiological and genetic analysis of root responsiveness to auxin-producing plant growth-promoting bacteria in common bean (Phaseolus vulgaris L.). Plant Soil 302:149–161CrossRefGoogle Scholar
  165. Rich MK, Schorderet M, Reinhardt D (2014) The role of the cell wall compartment in mutualistic symbioses of plants. Plant-Microbe Interact 5:238Google Scholar
  166. Ruiz-Lozano JM, Aroca R (2010) Host response to osmotic stresses: stomatal behaviour and water use efficiency of arbuscular mycorrhizal plants. In: Koltai H, Kapulnik Y (eds) Arbuscular mycorrhizas: physiology and function, 2nd edn. Springer Science +Business Media BV, Dordrecht, pp 239–256CrossRefGoogle Scholar
  167. Ruiz-Lozano JM, Porcel R, Azcón C, Aroca R (2012a) Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies. J Exp Bot 63(11):4033–4044PubMedCrossRefGoogle Scholar
  168. Ruiz-Lozano JM, Porcel R, Bárzana G, Azcón C, Aroca R (2012b) Contribution of arbuscular mycorrhizal symbiosis to plant drought tolerance: state of the art. In: Aroca R (ed) Plant responses to drought stress, from morphological to molecular features. Springer, Heidelberg, pp 335–362CrossRefGoogle Scholar
  169. Sadeghi A, Karimi E, Dahaji PA, Javid MG, Dalvand Y, Askari H (2012) Plant growth promoting activity of an auxin and siderophore producing isolate of Streptomyces under saline soil conditions. World J Microbiol Biotechnol 28:1503–1509CrossRefGoogle Scholar
  170. Saif S, Zaidi A, Khan MS, Rizvi A (2017) Metal-legume-microbe interactions: toxicity and remediation. In: Zaidi A, Khan M, Musarrat J (eds) Microbes for legume improvement. Springer, Cham, pp 367–385CrossRefGoogle Scholar
  171. Sandhya V, Ali SZ, Grover M, Reddy G, Venkateswarlu B (2009) Alleviation of drought stress effects in sunflower seedlings by exopolysaccharides producing Pseudomonas putida strain P45. Biol Fertil Soils 46:17–26CrossRefGoogle Scholar
  172. Saxena S, Kaur H, Verma P, Petla BP, Andugula VR, Majee M (2013) Osmoprotectants: potential for crop improvement under adverse conditions. In: Tuteja N, Gill SS (eds) Plant acclimation to environmental stress. Springer, New York, pp 197–232CrossRefGoogle Scholar
  173. Schnitzer SA, Klironomos JN, HilleRisLambers J, Kinkel LL, Reich PB, Xiao K, Rillig MC, Sikes BA, Callaway RM, Mangan SA, van Nes EH, Scheffer M (2011) Soil microbes drive the classic plant diversity-productivity pattern. Ecology 92(2):296–303PubMedCrossRefGoogle Scholar
  174. Selim SM, Zayed MS (2017) Role of biofertilizers in sustainable agriculture under abiotic stresses. In: Panpatte D, Jhala Y, Vyas R, Shelat H (eds) Microorganisms for green revolution. Microorganisms for sustainability, vol 6. Springer, Singapore, pp 281–301CrossRefGoogle Scholar
  175. Sengupta A, Gunri SK, Biswas T (2017) Microbial interactions and plant health. In: Singh D, Singh H, Prabha R (eds) Plant-microbe interactions in agro-ecological perspectives. Springer, Singapore, pp 61–84CrossRefGoogle Scholar
  176. Sharma P, Khanna V, Kumari S (2016) Abiotic stress mitigation through plant-growth-promoting rhizobacteria. In: Choudhary D, Varma A, Tuteja N (eds) Plant-microbe interaction: an approach to sustainable agriculture. Springer, Singapore, pp 327–342CrossRefGoogle Scholar
  177. Shelden MC, Roessner U (2013) Advances in functional genomics for investigating salinity stress tolerance mechanisms in cereals. Front Plant Sci 4:123PubMedPubMedCentralCrossRefGoogle Scholar
  178. Sheng XF, Xia JJ (2006) Improvement of rape (Brassica napus) plant growth and cadmium uptake by cadmium-resistant bacteria. Chemosphere 64:1036–1042PubMedCrossRefGoogle Scholar
  179. Sherameti I, Tripathi S, Varma A, Oelmüller R (2009) The root-colonizing endophyte Pirifomospora indica confers drought tolerance in Arabidopsis by stimulating the expression of drought stress–related genes in leaves. Mol Plant-Microbe Interact 21:799–807CrossRefGoogle Scholar
  180. Shoresh M, Harman GE (2008) The molecular basis of shoot responses of maize seedlings to Trichoderma harzianum T22 inoculation of the root: a proteomic approach. Plant Physiol 147:2147–2163PubMedPubMedCentralCrossRefGoogle Scholar
  181. Simões M, Simões LC, Cleto S, Machado I, Pereira MO, Vieira MJ (2007) Antimicrobial mechanisms ofortho – phthalaldehyde action. J Basic Microbiol 47(3):230–242PubMedCrossRefPubMedCentralGoogle Scholar
  182. Singh A, Sarma BK, Upadhyay RS, Singh HB (2013) Compatible rhizosphere microbes mediated alleviation of biotic stress in chickpea through enhanced antioxidant and phenylpropanoid activities. Microbiol Res 168:33–40PubMedCrossRefPubMedCentralGoogle Scholar
  183. Singh S, Katzer K, Lambert J, Cerri M, Parniske M (2014) CYCLOPS, a DNA-binding transcriptional activator, orchestrates symbiotic root nodule development. Cell Host Microbe 15:139–152PubMedCrossRefPubMedCentralGoogle Scholar
  184. Singh RP, Shelke GM, Kumar A, Jha PN (2015) Biochemistry and genetics of ACC deaminase: a weapon to “stress ethylene” produced in plants. Front Microbial.  https://doi.org/10.3389/fmicb.2015.00937
  185. Singh RK, Singh P, Li HB, Yang LT, Li YR (2017) Soil–plant–microbe interactions: use of nitrogen-fixing bacteria for plant growth and development in sugarcane. In: Singh D, Singh H, Prabha R (eds) Plant-microbe interactions in agro-ecological perspectives. Springer, Singapore, pp 35–59CrossRefGoogle Scholar
  186. Singh RP, Manchanda G, Anwar MN, Zhang JJ, Li YZ (2018) Mycorrhiza – helping plants to navigate environmental stresses. In: Kashyap PK, Srivastava AK, Tiwari SP, Kumar S (eds) Microbes for climate resilient agriculture. Wiley, Hoboken, pp 205–233Google Scholar
  187. Skorupska A, Wielbo J, Kidaj D, Marek-Kozaczuk M (2010) Enhancing rhizobium–legume symbiosis using signaling factors. In: Khan MS, Musarrat J, Zaidi A (eds) Microbes for legume improvement. Springer, Vienna, pp 27–54CrossRefGoogle Scholar
  188. Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, San DiegoGoogle Scholar
  189. Smith SE, Facelli E, Pope S, Smith FA (2010) Plant performance in stressful environments: interpreting new and established knowledge of the roles of arbuscular mycorrhizas. Plant Soil 326(1–2):3–20CrossRefGoogle Scholar
  190. Spaink HP (2000) Root nodulation and infection factors produced by rhizobial bacteria. Annu Rev Microbiol 54:257–288PubMedPubMedCentralCrossRefGoogle Scholar
  191. Spaink HP, Sheeley DM, van Brussel AAN et al (1991) A novel highly unsaturated fatty acid moiety of lipooligosaccharide signals determines host specificity of Rhizobium. Nature 354:125–130PubMedCrossRefPubMedCentralGoogle Scholar
  192. Sugiyama A, Shitan N, Yazaki K (2008) Signaling from soybean roots to rhizobium: an ATP-binding cassette-type transporter mediates genistein secretion. Plant Signal Behav 3(1):38–40PubMedPubMedCentralCrossRefGoogle Scholar
  193. Sundaramoorthy S, Balabaskar P (2012) Consortial effect of endophytic and plant growth promoting rhizobacteria for the management of early blight of tomato incited by Alternaria solani. J Plant Pathol Microbiol 3:145.  https://doi.org/10.4172/2157-7471.1000145 CrossRefGoogle Scholar
  194. Talaat NB, Shawky BT (2011) Influence of arbuscular mycorrhizae on yield, nutrients, organic solutes, and antioxidant enzymes of two wheat cultivars under salt stress. J Plant Nutr Soil Sci 174:283–291CrossRefGoogle Scholar
  195. Talaat NB, Shawky BT (2017) Microbe-mediated induced abiotic stress tolerance responses in plants. In: Singh D, Singh H, Prabha R (eds) Plant-microbe interactions in agro-ecological perspectives. Springer, Singapore, pp 101–133Google Scholar
  196. Tiwari S, Lata C, Chauhan PS, Nautiyal CS (2016) Pseudomonas putida attunes morphophysiological, biochemical and molecular responses in Cicer arietinum L. during drought stress and recovery. Plant Physiol Biochem 99:108–117PubMedCrossRefPubMedCentralGoogle Scholar
  197. UN (2016) United Nations proclaims 2016 as “International year of pulses”. Global pulse confederation. Retrieved 24 Jan 2016, (A/RES/68/231)Google Scholar
  198. Ullah S, Hussain MB, Khan MY, Asghar HN (2017) Ameliorating salt stress in crops through plant growth-promoting Bacteria. In: Singh D, Singh H, Prabha R (eds) Plant-microbe interactions in agro-ecological perspectives. Springer, Singapore, pp 549–575CrossRefGoogle Scholar
  199. Upadhyay S, Singh D, Saikia R (2009) Genetic diversity of plant growth promoting rhizobacteria isolated from rhizospheric soil of wheat under saline condition. Curr Microbiol 59:489–496PubMedCrossRefPubMedCentralGoogle Scholar
  200. Vacheron J, Desbrosses G, Bouffaud ML, Touraine B, Moënne-Loccoz Y, Muller D, Legendre L, Wisniewski-Dyé F, Prigent-Combaret C (2013) Plant growth promoting rhizobacteria and root system functioning. Front Plant Sci.  https://doi.org/10.3389/fpls.2013.00356
  201. Venkadasamy GP, George S, Raina SK, Kumar M, Rane J, Kannepalli A (2018) Plant-associated microbial interactions in the soil environment: role of endophytes in imparting abiotic stress tolerance to crops. In: Bal S, Mukherjee J, Choudhury B, Dhawan A (eds) Advances in crop environment interaction. Springer, Singapore, pp 245–284Google Scholar
  202. Venkateswarlu B, Shanker AK (2009) Climate change and agriculture: adaptation and mitigation strategies. Indian J Agron 54:226–230Google Scholar
  203. Via VD, Zanetti ME, Blanco F (2015) How legumes recognize rhizobia. Plant Signal Behav.  https://doi.org/10.1080/15592324.2015.1120396 CrossRefGoogle Scholar
  204. Vierheilig H, Lerat S, Piché Y (2003) Systemic inhibition of arbuscular mycorrhiza development by root exudates of cucumber plants colonized by Glomus mosseae. Mycorrhiza 13:167–170PubMedCrossRefPubMedCentralGoogle Scholar
  205. Vimal SR, Singh JS, Arora NK, Singh SK (2017) Soil-plant-microbe interactions in stressed agriculture management: a review. Pedosphere 27(2):177–192CrossRefGoogle Scholar
  206. Vurukonda SSKP, Vardharajula S, Shrivastava M, SkZ A (2016) Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol Res 184:13–24PubMedPubMedCentralCrossRefGoogle Scholar
  207. Wang Q, Dodd IC, Belimov AA et al (2016) Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase growth and photosynthesis of pea plants under salt stress by limiting Na+ accumulation. Funct Plant Biol 43:161–172CrossRefGoogle Scholar
  208. Wang Q, Liu J, Zhu H (2018) Genetic and molecular mechanisms underlying symbiotic specificity in legume-rhizobium interactions. Front Plant Sci 9:313PubMedPubMedCentralCrossRefGoogle Scholar
  209. Werner D (2008) Signalling in the rhizobia–legumes symbiosis. In: Varma A, Abbott L, Werner D, Hampp R (eds) Plant surface microbiology. Springer, Berlin/Heidelberg, pp 99–119CrossRefGoogle Scholar
  210. Weston LA, Ryan PR, Watt M (2012) Mechanisms for cellular transport and release of allelochemicals from plant roots into the rhizosphere. J Exp Bot 63(9):3445PubMedCrossRefGoogle Scholar
  211. Xie F, Murray JD, Kim J, Heckmann AB, Edwards A, Oldroyd GED, Downie JA (2012) Legume pectate lyase required for root infection by rhizobia. Proceed Nat Acad Sci 109(2):633–638CrossRefGoogle Scholar
  212. Yano K, Yoshida S, Müller J, Singh S, Banba M, Vickers K, Markmann K, White C, Schuller B, Sato S, Asamizu E, Tabata S, Murooka Y, Perry J, Wang TL, Kawaguchi M, Imaizumi-Anraku H, Hayashi M, Parniske M (2008) CYCLOPS, a mediator of symbiotic intracellular accommodation. Proc Natl Acad Sci 105:20540–20545PubMedCrossRefGoogle Scholar
  213. Yong X, Chen Y, Liu W, Xu L, Zhou J, Wang S, Chen P, Ouyang P, Zheng T (2014) Enhanced cadmium resistance and accumulation in Pseudomonas putida KT2440 expressing the phytochelatin synthase gene of Schizosaccharomyces pombe. Lett Appl Microbiol 58:255–261PubMedCrossRefGoogle Scholar
  214. Yuan J, Raza W, Shen Q (2018) Root exudates dominate the colonization of pathogen and plant growth-promoting rhizobacteria. In: Giri B, Prasad R, Varma A (eds) Root biology. Soil biology, vol 52. Springer, Cham, pp 167–180CrossRefGoogle Scholar
  215. Zahir ZA, Ghani U, Naveed M, Nadeem SM, Arshad M (2009) Comparative effectiveness of Pseudomonas and Serratia sp. containing ACC-deaminase for improving growth and yield of wheat under salt-stressed conditions. Arch Microbiol 191:415–424PubMedCrossRefGoogle Scholar
  216. Zarea MJ, Goltapeh EM, Karimi N, Varma A (2013) Sustainable agriculture in saline-arid and semiarid by use potential of AM fungi on mitigates NaCl effects. In: Goltapeh EM, Danesh YR, Varma A (eds) Fungi as bioremediators. Soil biology 32. Springer, Berlin, pp 347–369CrossRefGoogle Scholar
  217. Zhang H, Irving LJ, McGill C, Matthew C, Zhou D, Kemp P (2010a) The effects of salinity and osmotic stress on barley germination rate: sodium as an osmotic regulator. Ann Bot 106:1027–1035PubMedPubMedCentralCrossRefGoogle Scholar
  218. Zhang H, Murzello C, Kim MS, Xie X, Jeter RM, Zak JC et al (2010b) Choline and osmotic-stress tolerance induced in Arabidopsis by the soil microbe Bacillus subtilis (GB03). Mol Plant-Microbe Interact 23:1097–1104PubMedCrossRefPubMedCentralGoogle Scholar
  219. Zhang YF, He LY, Chen ZJ, Wang QY, Qian M, Sheng XF (2011) Characterization of ACC deaminase-producing endophytic bacteria isolated from copper-tolerant plants and their potential in promoting the growth and copper accumulation of Brassica napus. Chemosphere 83:57–62PubMedCrossRefPubMedCentralGoogle Scholar
  220. Zhang Y, Miró M, Kolev SD (2015) Hybrid flow system for automatic dynamic fractionation and speciation of inorganic arsenic in environmental solids. Environ Sci Technol 49:2733–2740PubMedCrossRefPubMedCentralGoogle Scholar
  221. Zhang H, Kim MS, Sun Y, Dowd SE, Shi H, Paré PW (2008) Soil Bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter. Mol Plant-Microbe Interact 21(6):737–744PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Purnima Bhandari
    • 1
  • Neera Garg
    • 2
  1. 1.Mehr Chand Mahajan DAV College for WomenChandigarhIndia
  2. 2.Department of BotanyPanjab UniversityChandigarhIndia

Personalised recommendations