Advertisement

Plant-Microbiome Interaction and the Effects of Biotic and Abiotic Components in Agroecosystem

  • Indramani Kumar
  • Moumita Mondal
  • Raman Gurusamy
  • Sundarakrishnan Balakrishnan
  • Sakthivel Natarajan
Chapter

Abstract

A myriad of microorganisms colonizes the plant habitats and influences the flora and fauna along with the soil microenvironments. These microbes dwell in three major compartments such as spermosphere, rhizosphere, and phyllosphere. Plant rhizodeposits are the root exudates that determine the nature of root-colonizing microbes. Plant microbiome is also influenced by multiple biotic and abiotic factors. The functions of ecosystems are closely modulated by the plant and soil microbiome and their signal-mediated complex communications. These interactions facilitate the biogeochemical cycles of nutrients and minerals. Furthermore, these interactions regulate nutrient uptake of plants, growth promotion, and lead to the increase of resistance and suppression of plant pests and pathogens, reduction of soil pollutants, and soil health. Thus, understanding the biodiversity, dynamics, and interactions of a microbiome is required for a sustainable agroecosystem. The present chapter explains the microbial biodiversity, the plant-microbiome interaction, and the effects of biotic and abiotic components in the agroecosystem.

Keywords

Microbial functions Phyllosphere Plant habitats Rhizosphere Soil health 

Notes

Acknowledgments

The authors thank the University Grant Commission, New Delhi, for financial support through University Research Fellowship to Indramani Kumar and Rajiv Gandhi National Fellowship to Moumita Mondal. The authors also thank UGC-SAP and DST-FIST programs coordinated by Prof. N. Sakthivel for providing infrastructure facilities.

References

  1. Abanda-Nkpwatt D, Musch M, Tschiersch J et al (2006) Molecular interaction between Methylobacterium extorquens and seedlings: growth promotion, methanol consumption, and localization of the methanol emission site. J Exp Bot.  https://doi.org/10.1093/jxb/erl173 PubMedCrossRefGoogle Scholar
  2. Abdelfattah A, Nicosia M, Cacciola SO et al (2015) Metabarcoding analysis of fungal diversity in the phyllosphere and carposphere of olive (Olea europaea). PLoS One 10:e0131069PubMedPubMedCentralCrossRefGoogle Scholar
  3. Achnine L, Blancaflor EB, Rasmussen S, Dixon RA (2004) Colocalization of L-phenylalanine ammonia-lyase and cinnamate 4-hydroxylase for metabolic channeling in phenylpropanoid biosynthesis. Plant Cell 16:3098–3109PubMedPubMedCentralCrossRefGoogle Scholar
  4. Agler MT, Ruhe J, Kroll S et al (2016) Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biol.  https://doi.org/10.1371/journal.pbio.1002352 PubMedPubMedCentralCrossRefGoogle Scholar
  5. Ahemad M, Khan MS (2012) Alleviation of fungicide-induced phytotoxicity in greengram [Vigna radiata (L.) Wilczek] using fungicide-tolerant and plant growth promoting Pseudomonas strain. Saudi J Biol Sci.  https://doi.org/10.1016/j.sjbs.2012.06.003 PubMedPubMedCentralCrossRefGoogle Scholar
  6. Ahmed Z, Lim B-R, Cho J et al (2008) Biological nitrogen and phosphorus removal and changes in microbial community structure in a membrane bioreactor: effect of different carbon sources. Water Res.  https://doi.org/10.1016/j.watres.2007.06.062 PubMedCrossRefGoogle Scholar
  7. Andrew DR, Fitak RR, Munguia-Vega A et al (2012) Abiotic factors shape microbial diversity in Sonoran desert soils. Appl Environ Microbiol.  https://doi.org/10.1128/AEM.01459-12 PubMedPubMedCentralCrossRefGoogle Scholar
  8. Andrews JH, Harris RF (2000) The ecology and biogeography of microorganisms on plant surfaces. Annu Rev Phytopathol 38:145–180PubMedCrossRefGoogle Scholar
  9. Angel R, Soares MIM, Ungar ED, Gillor O (2010) Biogeography of soil archaea and bacteria along a steep precipitation gradient. ISME J.  https://doi.org/10.1038/ismej.2009.136 PubMedCrossRefGoogle Scholar
  10. Arnold AE (2007) Understanding the diversity of foliar endophytic fungi: progress, challenges, and frontiers. Fungal Biol Rev 21:51–66CrossRefGoogle Scholar
  11. Arrage AA, Phelps TJ, Benoit RE, White DC (1993) Survival of subsurface microorganisms exposed to UV radiation and hydrogen peroxide. Appl Environ Microbiol 59(11):3545–3550PubMedPubMedCentralGoogle Scholar
  12. Azcón R, Barea J-M (2010) Mycorrhizosphere interactions for legume improvement. In: Microbes for legume improvement. Springer, pp 237–271Google Scholar
  13. Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32:666–681PubMedPubMedCentralCrossRefGoogle Scholar
  14. Badri DV, Zolla G, Bakker MG et al (2013) Potential impact of soil microbiomes on the leaf metabolome and on herbivore feeding behavior. New Phytol.  https://doi.org/10.1111/nph.12124 PubMedCrossRefPubMedCentralGoogle Scholar
  15. Bais HP, Weir TL, Perry LG et al (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol.  https://doi.org/10.1146/annurev.arplant.57.032905.105159 PubMedCrossRefPubMedCentralGoogle Scholar
  16. Baker CM, Chitrakar R, Obulareddy N et al (2010) Molecular battles between plant and pathogenic bacteria in the phyllosphere. Braz J Med Biol Res.  https://doi.org/10.1590/S0100-879X2010007500060 PubMedPubMedCentralCrossRefGoogle Scholar
  17. Bakker AW, Schippers B (1987) Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp-mediated plant growth-stimulation. Soil Biol Biochem 19:451–457CrossRefGoogle Scholar
  18. Baldotto LEB, Olivares FL (2008) Phylloepiphytic interaction between bacteria and different plant species in a tropical agricultural system. Can J Microbiol.  https://doi.org/10.1139/W08-087 PubMedCrossRefPubMedCentralGoogle Scholar
  19. Balint-Kurti P, Simmons SJ, Blum JE et al (2010) Maize leaf epiphytic bacteria diversity patterns are genetically correlated with resistance to fungal pathogen infection. Mol Plant-Microbe Interact.  https://doi.org/10.1094/MPMI-23-4-0473 PubMedCrossRefPubMedCentralGoogle Scholar
  20. Barbour WM, Hattermann DR, Stacey G (1991) Chemotaxis of Bradyrhizobium japonicum to soybean exudates. Appl Environ Microbiol 57(9):2635–2639PubMedPubMedCentralGoogle Scholar
  21. Bardgett RD, Bowman WD, Kaufmann R, Schmidt SK (2005) A temporal approach to linking aboveground and belowground ecology. Trends Ecol Evol 20:634–641PubMedCrossRefPubMedCentralGoogle Scholar
  22. Barea JM, Pozo MJ, Azcón R, Azcón-Aguilar C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56(417):1761–1778PubMedPubMedCentralCrossRefGoogle Scholar
  23. Bayliss C, Bent E, Culham DE et al (1997) Bacterial genetic loci implicated in the Pseudomonas putida GR12-2R3–canola mutualism: identification of an exudate-inducible sugar transporter. Can J Microbiol.  https://doi.org/10.1139/m97-118 PubMedCrossRefPubMedCentralGoogle Scholar
  24. Beattie GA, Lindow SE (1999) Bacterial colonization of leaves: a spectrum of strategies. Phytopathology.  https://doi.org/10.1094/PHYTO.1999.89.5.353 PubMedCrossRefPubMedCentralGoogle Scholar
  25. Beauregard MS, Hamel C, Atul-Nayyar, St-Arnaud M (2010) Long-term phosphorus fertilization impacts soil fungal and bacterial diversity but not AM fungal community in alfalfa. Microb Ecol.  https://doi.org/10.1007/s00248-009-9583-z PubMedCrossRefPubMedCentralGoogle Scholar
  26. Berendsen RL, Pieterse CMJ, Bakker PAHM (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17(8):478–486PubMedPubMedCentralCrossRefGoogle Scholar
  27. Berg G, Rybakova D, Grube M, Köberl M (2015) The plant microbiome explored: implications for experimental botany. J Exp Bot 67:995–1002PubMedPubMedCentralCrossRefGoogle Scholar
  28. Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28(4):1327–1350CrossRefGoogle Scholar
  29. Bhatti MK, Akhtar F, Choudhary MI (1992) Alkaloids of Fumaria indica. Phytochemistry 31:2869–2872CrossRefGoogle Scholar
  30. Bodenhausen N, Horton MW, Bergelson J (2013) Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana. PLoS One 8:e56329PubMedPubMedCentralCrossRefGoogle Scholar
  31. Bodenhausen N, Bortfeld-Miller M, Ackermann M, Vorholt JA (2014) A aynthetic community approach reveals plant genotypes affecting the phyllosphere microbiota. PLoS Genet.  https://doi.org/10.1371/journal.pgen.1004283 PubMedPubMedCentralCrossRefGoogle Scholar
  32. Bommarco R, Kleijn D, Potts SG (2013) Ecological intensification: harnessing ecosystem services for food security. Trends Ecol Evol 28(4):230–238PubMedCrossRefPubMedCentralGoogle Scholar
  33. Bonkowski M, Villenave C, Griffiths B (2009) Rhizosphere fauna: the functional and structural diversity of intimate interactions of soil fauna with plant roots. Plant Soil 321:213–233CrossRefGoogle Scholar
  34. Brandi M, Clark EM, Lindow SE (1996) Characterization of the indole-3-acetic acid (IAA) biosynthetic pathway in an epiphytic strain of Erwinia herbicola and IAA production in vitro. Can J Microbiol.  https://doi.org/10.1139/m96-079 CrossRefGoogle Scholar
  35. Brandl MT, Lindow SE (1998) Contribution of indole-3-acetic acid production to the epiphytic fitness of Erwinia herbicola. Appl Environ Microbiol 64(9):3256–3263PubMedPubMedCentralGoogle Scholar
  36. Bringel F, Couée I (2015) Pivotal roles of phyllosphere microorganisms at the interface between plant functioning and atmospheric trace gas dynamics. Front Microbiol 6:486PubMedPubMedCentralCrossRefGoogle Scholar
  37. Bronick CJ, Lal R (2005) Soil structure and management: a review. Geoderma.  https://doi.org/10.1016/j.geoderma.2004.03.005 CrossRefGoogle Scholar
  38. Buée M, De Boer W, Martin F et al (2009) The rhizosphere zoo: an overview of plant-associated communities of microorganisms, including phages, bacteria, archaea, and fungi, and of some of their structuring factors. Plant Soil 321:189–212CrossRefGoogle Scholar
  39. Bulgarelli D, Rott M, Schlaeppi K et al (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488(7409):91–95PubMedCrossRefPubMedCentralGoogle Scholar
  40. Burdon JJ, Wennström A, Elmqvist T, Kirby GC (1996) The role of race specific resistance in natural plant populations. Oikos 76:411–416CrossRefGoogle Scholar
  41. Buyer JS, Roberts DP, Russek-Cohen E (1999) Microbial community structure and function in the spermosphere as affected by soil and seed type. Can J Microbiol.  https://doi.org/10.1139/w98-227 CrossRefGoogle Scholar
  42. Caldwell MM, Bornman JF, Ballaré CL et al (2007) Terrestrial ecosystems, increased solar ultraviolet radiation, and interactions with other climate change factors. Photochem Photobiol Sci.  https://doi.org/10.1039/b700019g
  43. Caporaso JG, Lauber CL, Walters WA et al (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J.  https://doi.org/10.1038/ismej.2012.8 PubMedPubMedCentralCrossRefGoogle Scholar
  44. Cazorla FM, Codina JC, Abad C et al (2008) 62-kb plasmids harboring rulAB homologues confer UV-tolerance and epiphytic fitness to Pseudomonas syringae pv. syringae mango isolates. Microb Ecol.  https://doi.org/10.1007/s00248-007-9346-7 PubMedCrossRefGoogle Scholar
  45. Chapin FS, Matson PA, Mooney HA, Chapin MC (2002) Principles of terrestrial ecosystem ecology. Springer, New YorkGoogle Scholar
  46. Chazdon RL, Fetcher N (1984) Light environments of tropical forests. In: Medina E, Mooney HA, Vázquez-Yánes C (eds) Physiological ecology of plants of the wet tropics: proceedings of an international symposium held in Oxatepec and Los Tuxtlas, Mexico, June 29 to July 6, 1983. Springer Netherlands, Dordrecht, pp 27–36CrossRefGoogle Scholar
  47. Chen C, Meyermans H, Burggraeve B et al (2000) Cell-specific and conditional expression of caffeoyl-coenzyme A-3-O-methyltransferase in poplar. Plant Physiol 123:853–868PubMedPubMedCentralCrossRefGoogle Scholar
  48. Chu H, Neufeld JD, Walker VK, Grogan P (2011) The influence of vegetation type on the dominant soil bacteria, archaea, and fungi in a low Arctic Tundra landscape. Soil Sci Soc Am J.  https://doi.org/10.2136/sssaj2011.0057 CrossRefGoogle Scholar
  49. Clark CM, Tilman D (2008) Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands. Nature.  https://doi.org/10.1038/nature06503 PubMedCrossRefGoogle Scholar
  50. Clark CM, Cleland EE, Collins SL et al (2007) Environmental and plant community determinants of species loss following nitrogen enrichment. Ecol Lett.  https://doi.org/10.1111/j.1461-0248.2007.01053.x PubMedCrossRefGoogle Scholar
  51. Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo-and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678CrossRefGoogle Scholar
  52. Coolon JD, Jones KL, Todd TC et al (2013) Long-term nitrogen amendment alters the diversity and assemblage of soil bacterial communities in Tallgrass Prairie. PLoS One.  https://doi.org/10.1371/journal.pone.0067884 PubMedPubMedCentralCrossRefGoogle Scholar
  53. Crawford KM, Land JM, Rudgers JA (2010) Fungal endophytes of native grasses decrease insect herbivore preference and performance. Oecologia.  https://doi.org/10.1007/s00442-010-1685-2 PubMedCrossRefGoogle Scholar
  54. Croes S, Weyens N, Janssen J et al (2013) Bacterial communities associated with B rassica napus L. grown on trace element-contaminated and non-contaminated fields: a genotypic and phenotypic comparison. Microb Biotechnol 6:371–384PubMedPubMedCentralCrossRefGoogle Scholar
  55. da Silva LL, Olivares FL, Rodrigues de Oliveira R et al (2014) Root exudate profiling of maize seedlings inoculated with Herbaspirillum seropedicae and humic acids. Chem Biol Technol Agric.  https://doi.org/10.1186/s40538-014-0023-z
  56. Dakora FD, Phillips DA (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245:35–47CrossRefGoogle Scholar
  57. Dandurand LM, Knudsen GR (1993) Influence of Pseudomonas fluorescens on hyphal growth and biocontrol activity of Trichoderma harzianum in the spermosphere and rhizosphere of pea. Phytopathology 83:265–270CrossRefGoogle Scholar
  58. Darrasse A, Darsonval A, Boureau T et al (2010) Transmission of plant-pathogenic bacteria by nonhost seeds without induction of an associated defense reaction at emergence. Appl Environ Microbiol.  https://doi.org/10.1128/AEM.01098-10 PubMedPubMedCentralCrossRefGoogle Scholar
  59. De Wit R, Bouvier T (2006) “Everything is everywhere, but, the environment selects”; what did Baas Becking and Beijerinck really say? Environ Microbiol 8:755–758PubMedCrossRefGoogle Scholar
  60. Degens BP, Schipper LA, Sparling GP, Vojvodic-Vukovic M (2000) Decreases in organic C reserves in soils can reduce the catabolic diversity of soil microbial communities. Soil Biol Biochem.  https://doi.org/10.1016/S0038-0717(99)00141-8 CrossRefGoogle Scholar
  61. Delmotte N, Knief C, Chaffron S et al (2009) Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc Natl Acad Sci 106:16428–16433PubMedCrossRefGoogle Scholar
  62. Dodd IC, Zinovkina NY, Safronova VI, Belimov AA (2010) Rhizobacterial mediation of plant hormone status. Ann Appl Biol.  https://doi.org/10.1111/j.1744-7348.2010.00439.x CrossRefGoogle Scholar
  63. Donnarumma F, Bazzicalupo M, Blažinkov M et al (2014) Biogeography of Sinorhizobium meliloti nodulating alfalfa in different Croatian regions. Res Microbiol.  https://doi.org/10.1016/j.resmic.2014.06.001 PubMedCrossRefGoogle Scholar
  64. Doré T, Makowski D, Malézieux E et al (2011) Facing up to the paradigm of ecological intensification in agronomy: revisiting methods, concepts and knowledge. Eur J Agron 34:197–210CrossRefGoogle Scholar
  65. Drenovsky RE, Vo D, Graham KJ, Scow KM (2004) Soil water content and organic carbon availability are major determinants of soil microbial community composition. Microb Ecol.  https://doi.org/10.1007/s00248-003-1063-2 PubMedCrossRefGoogle Scholar
  66. Drinkwater LE, Letourneau DK, Workneh F et al (1995) Fundamental differences between conventional and organic tomato agroecosystems in California. Ecol Appl.  https://doi.org/10.2307/2269357 CrossRefGoogle Scholar
  67. Dulla G, Lindow SE (2008) Quorum size of Pseudomonas syringae is small and dictated by water availability on the leaf surface. Proc Natl Acad Sci.  https://doi.org/10.1073/pnas.0711723105 CrossRefGoogle Scholar
  68. Egamberdieva D, Kamilova F, Validov S et al (2008) High incidence of plant growth-stimulating bacteria associated with the rhizosphere of wheat grown on salinated soil in Uzbekistan. Environ Microbiol 10:1–9Google Scholar
  69. Ekström G, Ekbom B (2011) Pest control in agro-ecosystems: an ecological approach. CRC Crit Rev Plant Sci.  https://doi.org/10.1080/07352689.2011.554354 CrossRefGoogle Scholar
  70. Ercolani GL (1991) Distribution of epiphytic bacteria on olive leaves and the influence of leaf age and sampling time. Microb Ecol 21:35–48PubMedCrossRefGoogle Scholar
  71. Fall R, Benson AA (1996) Leaf methanol – The simplest natural product from plants. Trends Plant Sci 1:296–301CrossRefGoogle Scholar
  72. Fiala V, Glad C, Martin M et al (1990) Occurrence of soluble carbohydrates on the phylloplane of maize (Zea mays L.): variations in relation to leaf heterogeneity and position on the plant. New Phytol.  https://doi.org/10.1111/j.1469-8137.1990.tb00492.x CrossRefGoogle Scholar
  73. Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci USA.  https://doi.org/10.1073/pnas.0507535103 CrossRefGoogle Scholar
  74. Figueiredo M do VB, Seldin L, de Araujo FF, Mariano R de LR (2010) Plant growth promoting rhizobacteria: fundamentals and applications. In: Plant growth and health promoting bacteria. Springer, pp 21–43Google Scholar
  75. Fitzpatrick CR, Copeland J, Wang PW et al (2018) Assembly and ecological function of the root microbiome across angiosperm plant species. Proc Natl Acad Sci.  https://doi.org/10.1073/pnas.1717617115 CrossRefGoogle Scholar
  76. Flores HE, Vicanco JM, Loyola-Vargas VM (1999) “Radicle” biochemistry: the biology of root-specific metabolism. Trends Plant Sci 4:220–226PubMedCrossRefGoogle Scholar
  77. Fravel DR, Roberts DP (1991) In situ Evidence for the role of Glucose oxidase in the biocontrol of verticillium wilt by Talaromyces flavus. Biocontrol Sci Tech.  https://doi.org/10.1080/09583159109355189 CrossRefGoogle Scholar
  78. Fry SC (1989) Cellulases, hemicelluloses and auxin-stimulated growth: a possible relationship. Physiol Plant.  https://doi.org/10.1111/j.1399-3054.1989.tb05620.x CrossRefGoogle Scholar
  79. Gaba S, Bretagnolle F, Rigaud T, Philippot L (2014) Managing biotic interactions for ecological intensification of agroecosystems. Front Ecol Evol.  https://doi.org/10.3389/fevo.2014.00029
  80. Galbally IE, Kirstine W (2002) The production of methanol by flowering plants and the global cycle of methanol. J Atmos Chem.  https://doi.org/10.1023/A:1020684815474 CrossRefGoogle Scholar
  81. Gandhi Pragash M, Narayanan KB, Naik PR, Sakthivel N (2009) Characterization of Chryseobacterium aquaticum strain PUPC1 producing a novel antifungal protease from rice rhizosphere soil. J Microbiol Biotechnol 19:99–107PubMedGoogle Scholar
  82. Gans C (2005) Checklist and bibliography of the amphisbaenia of the world. Bull Am Mus Nat Hist.  https://doi.org/10.1206/0003-0090(2005)289<0001:CABOTA>2.0.CO;2
  83. Gauthier D, Jaffré T, Prin Y (2000) Abundance of Frankia from Gymnostoma spp. in the rhizosphere of Alphitonia neocaledonica, a non-nodulated Rhamnaceae endemic to New Caledonia. Eur J Soil Biol.  https://doi.org/10.1016/S1164-5563(00)01061-X CrossRefGoogle Scholar
  84. Geiger F, Bengtsson J, Berendse F et al (2010) Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic Appl Ecol.  https://doi.org/10.1016/j.baae.2009.12.001 CrossRefGoogle Scholar
  85. Geyer KM, Altrichter AE, Takacs-Vesbach CD et al (2014) Bacterial community composition of divergent soil habitats in a polar desert. FEMS Microbiol Ecol.  https://doi.org/10.1111/1574-6941.12306 PubMedCrossRefGoogle Scholar
  86. Giri B, Giang PH, Kumari R et al (2005) Microbial diversity in soils. In: Microorganisms in soils: roles in genesis and functions. Springer, pp 19–55Google Scholar
  87. Girvan MS, Bullimore J, Pretty JN et al (2003) Soil type is the primary determinant of the composition of the total and active bacterial communities in arable soils. Appl Environ Microbiol.  https://doi.org/10.1128/AEM.69.3.1800-1809.2003 PubMedPubMedCentralCrossRefGoogle Scholar
  88. Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica (Cairo).  https://doi.org/10.6064/2012/963401 CrossRefGoogle Scholar
  89. Gorecki RJ, Harman GE, Mattick LR (1985) The volatile exudates from germinating pea seeds of different viability and vigor. Can J Bot 63:1035–1039CrossRefGoogle Scholar
  90. Gorecki RJ, Ashino H, Satoh S, Esashi Y (1991) Ethylene production in pea and cocklebur seeds of differing vigour. J Exp Bot.  https://doi.org/10.1093/jxb/42.3.407 CrossRefGoogle Scholar
  91. Gu YH, Mazzola M (2003) Modification of fluorescent pseudomonad community and control of apple replant disease induced in a wheat cultivar-specific manner. Appl Soil Ecol.  https://doi.org/10.1016/S0929-1393(03)00066-0 CrossRefGoogle Scholar
  92. Gunasekera TS, Sundin GW (2006) Role of nucleotide excision repair and photoreactivation in the solar UVB radiation survival of Pseudomonas syringae pv. syringae B728a. J Appl Microbiol.  https://doi.org/10.1111/j.1365-2672.2006.02841.x PubMedCrossRefPubMedCentralGoogle Scholar
  93. Gupta, KK, Malhotra S (2009) Everyday science. Frank BrothersGoogle Scholar
  94. Haas D, Keel C (2003) Regulation of antibiotic production in root-colonizing Peudomonas spp. and relevance for biological control of plant disease. Annu Rev Phytopathol.  https://doi.org/10.1146/annurev.phyto.41.052002.095656 PubMedCrossRefGoogle Scholar
  95. Hacquard S, Garrido-Oter R, González A et al (2015) Microbiota and host nutrition across plant and animal kingdoms. Cell Host Microbe 17:603–616PubMedCrossRefGoogle Scholar
  96. Hartmann A, Rothballer M, Hense BA, Schröder P (2014) Bacterial quorum sensing compounds are important modulators of microbe-plant interactions. Front Plant Sci 5:131PubMedPubMedCentralCrossRefGoogle Scholar
  97. Hättenschwiler S, Tiunov AV, Scheu S (2005) Biodiversity and litter decomposition in terrestrial ecosystems. Annu Rev Ecol Evol Syst.  https://doi.org/10.1146/annurev.ecolsys.36.112904.151932 CrossRefGoogle Scholar
  98. Hawkes CV, DeAngelis KM, Firestone MK (2007) Root interactions with soil microbial communities and processes. In: The rhizosphere. Elsevier, pp 1–29Google Scholar
  99. Heeb S, Haas D (2001) Regulatory roles of the GacS/GacA two-component system in plant-associated and other gram-negative bacteria. Mol Plant-Microbe Interact 14:1351–1363PubMedCrossRefGoogle Scholar
  100. Helman Y, Chernin L (2015) Silencing the mob: disrupting quorum sensing as a means to fight plant disease. Mol Plant Pathol 16(3):316–329PubMedCrossRefPubMedCentralGoogle Scholar
  101. Hiltner L (1904) Uber nevere Erfahrungen und Probleme auf dem Gebiet der Boden Bakteriologie und unter besonderer Beurchsichtigung der Grundungung und Broche. Arbeit Deut Landw Ges Berlin 98:59–78Google Scholar
  102. Horton MW, Bodenhausen N, Beilsmith K et al (2014) Genome-wide association study of Arabidopsis thaliana leaf microbial community. Nat Commun.  https://doi.org/10.1038/ncomms6320
  103. Howell CR (1991) Biological control of Pythium damping-off of cotton with seed-coating preparations of Gliocladium virens. Phytopathology 81:738–741CrossRefGoogle Scholar
  104. Howell CR (1998) The role of antibiosis in biocontrol. Trichoderma Gliocladium 2:173–184Google Scholar
  105. Howell CR, Stipanovic RD (1983) Gliovirin, a new antibiotic from Gliocladium virens, and its role in the biological control of Pythium ultimum. Can J Microbiol 29:321–324CrossRefGoogle Scholar
  106. Howell CR, Stipanovic RD, Lumsden RD (1993) Antibiotic production by strains of Gliocladium virens and its relation to the biocontrol of cotton seedling diseases. Biocontrol Sci Tech 3:435–441CrossRefGoogle Scholar
  107. Howie WJ, Suslow TV (1991) Role of antibiotic biosynthesis in the inhibition of Pythium ultimum in the cotton spermosphere and rhizosphere by Pseudomonas fluorescens. Mol Plant-Microbe Interact 4:393–399.  https://doi.org/10.1094/MPMI-4-393 CrossRefGoogle Scholar
  108. Humphrey PT, Nguyen TT, Villalobos MM, Whiteman NK (2014) Diversity and abundance of phyllosphere bacteria are linked to insect herbivory. Mol Ecol.  https://doi.org/10.1111/mec.12657 PubMedCrossRefPubMedCentralGoogle Scholar
  109. Izuno A, Kanzaki M, Artchawakom T et al (2016) Vertical structure of phyllosphere fungal communities in a tropical forest in Thailand uncovered by high-throughput sequencing. PLoS One 11:e0166669PubMedPubMedCentralCrossRefGoogle Scholar
  110. Jacobs JL, Sundin GW (2001) Effect of solar UV-B radiation on a phyllosphere bacterial community. Appl Environ Microbiol 67:5488–5496PubMedPubMedCentralCrossRefGoogle Scholar
  111. Jacobs JL, Carroll TL, Sundin GW (2005) The role of pigmentation, ultraviolet radiation tolerance, and leaf colonization strategies in the epiphytic survival of phyllosphere bacteria. Microb Ecol.  https://doi.org/10.1007/s00248-003-1061-4 PubMedCrossRefPubMedCentralGoogle Scholar
  112. Jakuschkin B, Fievet V, Schwaller L et al (2016) Deciphering the pathobiome: intra- and interkingdom interactions involving the pathogen Erysiphe alphitoides. Microb Ecol.  https://doi.org/10.1007/s00248-016-0777-x PubMedCrossRefPubMedCentralGoogle Scholar
  113. Jansson JK, Neufeld JD, Moran MA, Gilbert JA (2012) Omics for understanding microbial functional dynamics. Environ Microbiol 14(1):1–3PubMedCrossRefPubMedCentralGoogle Scholar
  114. Jetiyanon K, Kloepper JW (2002) Mixtures of plant growth-promoting rhizobacteria for induction of systemic resistance against multiple plant diseases. Biol Control.  https://doi.org/10.1016/S1049-9644(02)00022-1 CrossRefGoogle Scholar
  115. Jetiyanon K, Fowler WD, Kloepper JW (2003) Broad-spectrum protection against several pathogens by PGPR mixtures under field conditions in Thailand. Plant Dis.  https://doi.org/10.1094/PDIS.2003.87.11.1390 PubMedCrossRefPubMedCentralGoogle Scholar
  116. Jha BK, Pragash MG, Cletus J et al (2009) Simultaneous phosphate solubilization potential and antifungal activity of new fluorescent pseudomonad strains, Pseudomonas aeruginosa, P. plecoglossicida and P. mosselii. World J Microbiol Biotechnol 25:573–581CrossRefGoogle Scholar
  117. Joergensen RG, Emmerling C (2006) Methods for evaluating human impact on soil microorganisms based on their activity, biomass, and diversity in agricultural soils. J Plant Nutr Soil Sci 169:295–309CrossRefGoogle Scholar
  118. Jumpponen A, Jones KL (2010) Seasonally dynamic fungal communities in the Quercus macrocarpa phyllosphere differ between urban and nonurban environments. New Phytol 186:496–513PubMedCrossRefPubMedCentralGoogle Scholar
  119. Jurkevitch EJ, Shapira G (2000) Structure and colonization dynamics of epiphytic bacterial communities and of selected component strains on tomato (Lycopersicon esculentum) leaves. Microb Ecol 40:300–308PubMedPubMedCentralGoogle Scholar
  120. Kalia VC (2013) Quorum sensing inhibitors: an overview. Biotechnol Adv 31(2):224–245CrossRefGoogle Scholar
  121. Kamilova F, Kravchenko LV, Shaposhnikov AI et al (2006) Organic Acids, Sugars, and L-tryptophane in exudates of vegetables growing on stonewool and their effects on activities of rhizosphere bacteria. Mol Plant-Microbe Interact.  https://doi.org/10.1094/MPMI-19-0250 PubMedCrossRefPubMedCentralGoogle Scholar
  122. Kawaguchi K, Yurimoto H, Oku M, Sakai Y (2011) Yeast methylotrophy and autophagy in a methanol-oscillating environment on growing Arabidopsis thaliana leaves. PLoS One.  https://doi.org/10.1371/journal.pone.0025257 PubMedPubMedCentralCrossRefGoogle Scholar
  123. Kazerooni EA, Maharachchikumbura SSN, Rethinasamy V et al (2017) Fungal diversity in tomato rhizosphere soil under conventional and desert farming systems. Front Microbiol 8:1462PubMedPubMedCentralCrossRefGoogle Scholar
  124. Kelley CJ, Mahajan JR, Brooks LC et al (1975) Polyphenolic acids of Lithospermum ruderale (Boraginaceae). I Isolation and structure determination of lithospermic acid. J Org Chem 40:1804–1815CrossRefGoogle Scholar
  125. Kelley CJ, Harruff RC, Carmack M (1976) Polyphenolic acids of Lithospermum ruderale. II. Carbon-13 nuclear magnetic resonance of lithospermic and rosmarinic acids. J Org Chem 41:449–455CrossRefGoogle Scholar
  126. Kemen E (2014) Microbe-microbe interactions determine oomycete and fungal host colonization. Curr Opin Plant Biol 20:75–81PubMedCrossRefPubMedCentralGoogle Scholar
  127. Khan MS, Zaidi A, Wani PA, Oves M (2009) Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ Chem Lett 7:1–19CrossRefGoogle Scholar
  128. Kim KK, Fravel DR, Papavizas GC (1990) Production, purification, and properties of glucose oxidase from the biocontrol fungus Talaromyces flavus. Can J Microbiol 36:199–205CrossRefGoogle Scholar
  129. Kim M, Singh D, Lai-Hoe A et al (2012) Distinctive phyllosphere bacterial communities in tropical trees. Microb Ecol 63:674–681PubMedCrossRefPubMedCentralGoogle Scholar
  130. Kirubakaran SI, Sakthivel N (2007) Cloning and overexpression of antifungal barley chitinase gene in Escherichia coli. Protein Expr Purif 52:159–166PubMedCrossRefPubMedCentralGoogle Scholar
  131. Kirubakaran SI, Begum SM, Ulaganathan K, Sakthivel N (2008) Characterization of a new antifungal lipid transfer protein from wheat. Plant Physiol Biochem 46:918–927PubMedCrossRefPubMedCentralGoogle Scholar
  132. Kloepper JW, Schroth MN (1981) Relationship of in vitro antibiosis of plant growth-promoting rhizobacteria to plant growth and the displacement of root microflora. Phytopathology 71:1020-1024CrossRefGoogle Scholar
  133. Kobayashi DY, Crouch JA (2009) Bacterial/fungal interactions: from pathogens to mutualistic endosymbionts. Annu Rev Phytopathol.  https://doi.org/10.1146/annurev-phyto-080508-081729 PubMedCrossRefPubMedCentralGoogle Scholar
  134. Koch B, Nielsen TH, Sørensen D et al (2002) Lipopeptide production in Pseudomonas sp. strain DSS73 is regulated by components of sugar beet seed exudate via the Gac two-component regulatory system. Appl Environ Microbiol 68(9):4509–4516PubMedPubMedCentralCrossRefGoogle Scholar
  135. Koskella B (2013) Phage-mediated selection on microbiota of a long-lived host. Curr Biol.  https://doi.org/10.1016/j.cub.2013.05.038 PubMedCrossRefPubMedCentralGoogle Scholar
  136. Koskella B, Parr N (2015) The evolution of bacterial resistance against bacteriophages in the horse chestnut phyllosphere is general across both space and time. Philos Trans R Soc B Biol Sci.  https://doi.org/10.1098/rstb.2014.0297 CrossRefGoogle Scholar
  137. Kraus J, Loper JE (1995) Characterization of a genomic region required for production of the antibiotic pyoluteorin by the biological control agent Pseudomonas fluorescens Pf-5. Appl Environ Microbiol 61(3):849–854PubMedPubMedCentralGoogle Scholar
  138. Lacombe S, Rougon-Cardoso A, Sherwood E et al (2010) Interfamily transfer of a plant pattern-recognition receptor confers broad-spectrum bacterial resistance. Nat Biotechnol.  https://doi.org/10.1038/nbt.1613 PubMedCrossRefPubMedCentralGoogle Scholar
  139. Lauber CL, Hamady M, Knight R, Fierer N (2009) Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol.  https://doi.org/10.1128/AEM.00335-09 PubMedPubMedCentralCrossRefGoogle Scholar
  140. Lemanceau P, Barret M, Mazurier S et al (2017) Plant communication with associated microbiota in the spermosphere, rhizosphere and phyllosphere. In: Advances in botanical research. Elsevier, pp 101–133Google Scholar
  141. Leveau JHJ, Lindow SE (2001) Appetite of an epiphyte: quantitative monitoring of bacterial sugar consumption in the phyllosphere. Proc Natl Acad Sci.  https://doi.org/10.1073/pnas.061629598 CrossRefGoogle Scholar
  142. Limtong S, Koowadjanakul N (2012) Yeasts from phylloplane and their capability to produce indole-3-acetic acid. World J Microbiol Biotechnol.  https://doi.org/10.1007/s11274-012-1144-9 PubMedCrossRefPubMedCentralGoogle Scholar
  143. Lindow SE, Brandl MT (2003) Microbiology of the phyllosphere. Appl Environ Microbiol 69:1875–1883PubMedPubMedCentralCrossRefGoogle Scholar
  144. Lopez-Velasco G, Carder PA, Welbaum GE, Ponder MA (2013) Diversity of the spinach (Spinacia oleracea) spermosphere and phyllosphere bacterial communities. FEMS Microbiol Lett 346:146–154PubMedCrossRefPubMedCentralGoogle Scholar
  145. Lugtenberg BJ, Kravchenko LV, Simons M (1999) Tomato seed and root exudate sugars: composition, utilization by Pseudomonas biocontrol strains and role in rhizosphere colonization. Environ Microbiol.  https://doi.org/10.1046/j.1462-2920.1999.00054.x PubMedCrossRefPubMedCentralGoogle Scholar
  146. Lundberg DS, Lebeis SL, Paredes SH et al (2012) Defining the core Arabidopsis thaliana root microbiome. Nature.  https://doi.org/10.1038/nature11237 PubMedPubMedCentralCrossRefGoogle Scholar
  147. Lynch JM (1990) The rhizosphere. Wiley, New York.  https://doi.org/10.1017/S0014479700019700 CrossRefGoogle Scholar
  148. Makoi JHJR, Ndakidemi PA (2007) Biological, ecological and agronomic significance of plant phenolic compounds in rhizosphere of the symbiotic legumes. Afr J Biotechnol 6:1358–1368Google Scholar
  149. Mandal S, Mandal M, Das A et al (2009) Stimulation of indoleacetic acid production in a Rhizobium isolate of Vigna mungo by root nodule phenolic acids. Arch Microbiol.  https://doi.org/10.1007/s00203-008-0455-6 PubMedCrossRefPubMedCentralGoogle Scholar
  150. Manuel EU, Ramos JL (2001) Expression of a Pseudomonas putida aminotransferase involved in lysine catabolism is induced in the rhizosphere. Appl Environ Microbiol.  https://doi.org/10.1128/AEM.67.11.5219-5224.2001 PubMedPubMedCentralCrossRefGoogle Scholar
  151. Martínez-Viveros O, Jorquera MA, Crowley DE et al (2010) Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. J Soil Sci Plant Nutr.  https://doi.org/10.4067/S0718-95162010000100006
  152. Marzano SYL, Domier LL (2016) Novel mycoviruses discovered from metatranscriptomics survey of soybean phyllosphere phytobiomes. Virus Res.  https://doi.org/10.1016/j.virusres.2016.05.012 PubMedCrossRefPubMedCentralGoogle Scholar
  153. Mastouri F, Björkman T, Harman GE (2010) Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings. Phytopathology 100(11):1213–1221PubMedPubMedCentralCrossRefGoogle Scholar
  154. Melotto M, Underwood W, He SY (2008) Role of stomata in plant innate immunity and foliar bacterial diseases. Annu Rev Phytopathol.  https://doi.org/10.1146/annurev.phyto.121107.104959 PubMedPubMedCentralCrossRefGoogle Scholar
  155. Mendes R, Kruijt M, De Bruijn I et al (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science (80).  https://doi.org/10.1126/science.1203980 PubMedPubMedCentralCrossRefGoogle Scholar
  156. Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663CrossRefGoogle Scholar
  157. Miche L, Belkin S, Rozen R, Balandreau J (2003) Rice seedling whole exudates and extracted alkylresorcinols induce stress-response in Escherichia coli biosensors. Environ Microbiol 5:403–411PubMedCrossRefPubMedCentralGoogle Scholar
  158. Miller WG, Brandl MT, Quiñones B, Lindow SE (2001) Biological sensor for sucrose availability: relative sensitivities of various reporter genes. Appl Environ Microbiol.  https://doi.org/10.1128/AEM.67.3.1308-1317.2001 PubMedPubMedCentralCrossRefGoogle Scholar
  159. Milner JL, Raffel SJ, Lethbridge BJ, Handelsman J (1995) Culture conditions that influence accumulation of zwittermicin A by Bacillus cereus UW85. Appl Microbiol Biotechnol.  https://doi.org/10.1007/BF00164774 PubMedCrossRefGoogle Scholar
  160. Milner JL, Silo-Suh L, Lee JC et al (1996) Production of kanosamine by Bacillus cereus UW85. Appl Environ Microbiol 62(8):3061–3065PubMedPubMedCentralGoogle Scholar
  161. Mohanty SR, Dubey G, Ahirwar U et al (2016) Prospect of phyllosphere microbiota: a case study on bioenergy crop Jatropha Curcas. In: Plant-microbe interaction: an approach to sustainable agriculture, pp 453–462CrossRefGoogle Scholar
  162. Morris CE (2001) Phyllosphere. In: Encyclopedia of life sciences. Nature Publishing Group, London.  https://doi.org/10.1038/npg.els.0000400
  163. Muegge BD, Kuczynski J, Knights D et al (2011) Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science (80).  https://doi.org/10.1126/science.1198719 PubMedPubMedCentralCrossRefGoogle Scholar
  164. Naik PR, Sakthivel N (2006) Functional characterization of a novel hydrocarbonoclastic Pseudomonas sp. strain PUP6 with plant-growth-promoting traits and antifungal potential. Res Microbiol 157:538–546PubMedCrossRefGoogle Scholar
  165. Naik PR, Raman G, Narayanan KB, Sakthivel N (2008a) Assessment of genetic and functional diversity of phosphate solubilizing fluorescent pseudomonads isolated from rhizospheric soil. BMC Microbiol 8:230PubMedPubMedCentralCrossRefGoogle Scholar
  166. Naik PR, Sahoo N, Goswami D et al (2008b) Genetic and functional diversity among fluorescent pseudomonads isolated from the rhizosphere of banana. Microb Ecol 56:492–504PubMedCrossRefPubMedCentralGoogle Scholar
  167. Nelson EB (2004) Microbial dynamics and interactions in the spermosphere. Annu Rev Phytopathol.  https://doi.org/10.1146/annurev.phyto.42.121603.131041 PubMedCrossRefPubMedCentralGoogle Scholar
  168. Nelson EB, Craft CM (1989) Comparative germination of culture-produced and plant-produced sporangia of Pythium ultimum in response to soluble seed exudates and exudate components. Phytopathology.  https://doi.org/10.1094/Phyto-79-1009 CrossRefGoogle Scholar
  169. Nielsen TH, Sørensen J (2003) Production of cyclic lipopeptides by Pseudomonas fluorescens strains in bulk soil and in the sugar beet rhizosphere. Appl Environ Microbiol.  https://doi.org/10.1128/AEM.69.2.861-868.2003 PubMedPubMedCentralCrossRefGoogle Scholar
  170. Notz R, Maurhofer M, Dubach H et al (2002) Fusaric acid-producing strains of Fusarium oxysporum alter 2,4-diacetylphloroglucinol biosynthetic gene expression in Pseudomonas fluorescens CHA0 in vitro and in the rhizosphere of wheat. Appl Environ Microbiol 68:2229–2235PubMedPubMedCentralCrossRefGoogle Scholar
  171. O’brien RD, Lindow SE (1989) Effect of plant species and environmental conditions on epiphytic population sizes of Pseudomonas syringae and other bacteria. Phytopathology 79:619–627CrossRefGoogle Scholar
  172. Paulitz TC, Anas O, Fernando DG (1992) Biological control of Pythium damping-off by seed-treatment with Pseudomonas putida: relationship with ethanol production by pea and soybean seeds. Biocontrol Sci Tech.  https://doi.org/10.1080/09583159209355233 CrossRefGoogle Scholar
  173. Philippot L, Raaijmakers JM, Lemanceau P, Van Der Putten WH (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11(11):789–799CrossRefGoogle Scholar
  174. Podile AR, Kishore GK (2007) Plant growth-promoting rhizobacteria. In: Plant-associated bacteria. Springer, pp 195–230Google Scholar
  175. Poplawsky AR, Urban SC, Chun W (2000) Biological role of xanthomonadin pigments in Xanthomonas campestris pv. campestris. Appl Environ Microbiol.  https://doi.org/10.1128/AEM.66.12.5123-5127.2000 PubMedPubMedCentralCrossRefGoogle Scholar
  176. Prasanna R, Jaiswal P, Nayak S et al (2009) Cyanobacterial diversity in the rhizosphere of rice and its ecological significance. Indian J Microbiol.  https://doi.org/10.1007/s12088-009-0009-x PubMedPubMedCentralCrossRefGoogle Scholar
  177. Qin S, Yeboah S, Xu X et al (2017) Analysis on fungal diversity in rhizosphere soil of continuous cropping potato subjected to different furrow-ridge mulching managements. Front Microbiol 8:845PubMedPubMedCentralCrossRefGoogle Scholar
  178. Quesada-Moraga E, López-Díaz C, Landa BB (2014) The hidden habit of the entomopathogenic fungus Beauveria bassiana: first demonstration of vertical plant transmission. PLoS One.  https://doi.org/10.1371/journal.pone.0089278 PubMedPubMedCentralCrossRefGoogle Scholar
  179. Quiñones B, Pujol CJ, Lindow SE (2004) Regulation of AHL production and its contribution to epiphytic fitness in Pseudomonas syringae. Mol Plant-Microbe Interact.  https://doi.org/10.1094/MPMI.2004.17.5.521 PubMedCrossRefGoogle Scholar
  180. Quiñones B, Dulla G, Lindow SE (2005) Quorum sensing regulates exopolysaccharide production, motility, and virulence in Pseudomonas syringae. Mol Plant-Microbe Interact.  https://doi.org/10.1094/MPMI-18-0682 PubMedCrossRefGoogle Scholar
  181. Raaijmakers JM, Vlami M, de Souza JT (2002) Antibiotic production by bacterial biocontrol agents. Antonie Van Leeuwenhoek 81(1–4):537–547.  https://doi.org/10.1023/A:1020501420831 CrossRefPubMedGoogle Scholar
  182. Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28(3):142–149CrossRefGoogle Scholar
  183. Rastogi G, Sbodio A, Tech JJ et al (2012) Leaf microbiota in an agroecosystem: spatiotemporal variation in bacterial community composition on field-grown lettuce. ISME J 6:1812PubMedPubMedCentralCrossRefGoogle Scholar
  184. Redford AJ, Bowers RM, Knight R et al (2010) The ecology of the phyllosphere: geographic and phylogenetic variability in the distribution of bacteria on tree leaves. Environ Microbiol 12:2885–2893PubMedPubMedCentralCrossRefGoogle Scholar
  185. Remus-Emsermann MNP, Leveau JHJ (2010) Linking environmental heterogeneity and reproductive success at single-cell resolution. ISME J.  https://doi.org/10.1038/ismej.2009.110 PubMedCrossRefGoogle Scholar
  186. Robson TM, Pancotto VA, Scopel AL et al (2005) Solar UV-B influences microfaunal community composition in a Tierra del Fuego peatland. Soil Biol Biochem.  https://doi.org/10.1016/j.soilbio.2005.04.002 CrossRefGoogle Scholar
  187. Roesch LFW, Fulthorpe RR, Riva A et al (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J 1:283PubMedPubMedCentralCrossRefGoogle Scholar
  188. Rousk J, Bååth E, Brookes PC et al (2010) Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J.  https://doi.org/10.1038/ismej.2010.58 PubMedCrossRefPubMedCentralGoogle Scholar
  189. Ruttledge TR, Nelson EB (1997) Extracted fatty acids from Gossypium hirsutum stimulatory to the seed-rotting fungus, Pythium ultimum. Phytochemistry 46:77–82CrossRefGoogle Scholar
  190. Ryan J, Sommer R (2012) Soil fertility and crop nutrition research at an international center in the Mediterranean region: achievements and future perspective. Arch Agron Soil Sci 58:s41–s54CrossRefGoogle Scholar
  191. Sakthivel N, Gnanamanickam SS (1987) Evaluation of Pseudomonas fluorescens for suppression of sheath rot disease and for enhancement of grain yields in rice (Oryza sativa L.). Appl Environ Microbiol 53:2056–2059PubMedPubMedCentralGoogle Scholar
  192. Scher FM, Kloepper JW, Singleton CA (1985) Chemotaxis of fluorescent Pseudomonas spp to soybean seed exudates in vitro and in soil. Can J Microbiol 31(6):570–574CrossRefGoogle Scholar
  193. Schiltz S, Gaillard I, Pawlicki-Jullian N et al (2015) A review: what is the spermosphere and how can it be studied? J Appl Microbiol 119(6):1467–1481PubMedCrossRefPubMedCentralGoogle Scholar
  194. Shang H, Chen J, Handelsman J, Goodman RM (1999) Behavior of Pythium torulosum zoospores during their interaction with tobacco roots and Bacillus cereus. Curr Microbiol.  https://doi.org/10.1007/PL00006787 PubMedCrossRefPubMedCentralGoogle Scholar
  195. Silo-Suh LA, Lethbridge BJ, Raffel SJ et al (1994) Biological activities of two fungistatic antibiotics produced by Bacillus cereus UW85. Appl Environ Microbiol.  https://doi.org/10.1093/ecam/neq025 Google Scholar
  196. Silo-Suh LA, Stabb EV, Raffel SJ, Handelsman J (1998) Target range of Zwittermicin A, an aminopolyol antibiotic from Bacillus cereus. Curr Microbiol.  https://doi.org/10.1007/s002849900328
  197. Singh A, Kirubakaran SI, Sakthivel N (2007) Heterologous expression of new antifungal chitinase from wheat. Protein Expr Purif 56:100–109PubMedCrossRefPubMedCentralGoogle Scholar
  198. Singh BK, Dawson LA, Macdonald CA, Buckland SM (2009) Impact of biotic and abiotic interaction on soil microbial communities and functions: a field study. Appl Soil Ecol.  https://doi.org/10.1016/j.apsoil.2008.10.003 CrossRefGoogle Scholar
  199. Singh D, Shi L, Adams JM (2013) Bacterial diversity in the mountains of South-West China: climate dominates over soil parameters. J Microbiol.  https://doi.org/10.1007/s12275-013-2446-9 CrossRefGoogle Scholar
  200. Slykhuis JT (1947) Studies on Fusarium culmorum blight of crested wheat and brome grass seedlings. Can J Res 25:155–180CrossRefGoogle Scholar
  201. Smirnova A, Li H, Weingart H et al (2001) Thermoregulated expression of virulence factors in plant-associated bacteria. Arch Microbiol.  https://doi.org/10.1007/s002030100344 PubMedCrossRefGoogle Scholar
  202. Smith VL, Wilcox WF, Harman GE (1990) Potential for biological control of Phytophthora root and crown rots of apple by Trichoderma and Gliocladium spp. Phytopathology 80:880–885CrossRefGoogle Scholar
  203. Stabb EV, Jacobson LM, Handelsman J (1994) Zwittermicin A-producing strains of Bacillus cereus from diverse soils. Appl Environ Microbiol 60(12):4404–4412Google Scholar
  204. Stosz SK, Fravel DR, Roberts DP (1996) In vitro analysis of the role of glucose oxidase from Talaromyces flavus in biocontrol of the plant pathogen Verticillium dahliae. Appl Environ Microbiol 62(9):3183–3186PubMedPubMedCentralGoogle Scholar
  205. Stotzky G, Schenck S, Papavizas GC (1976) Volatile organic compounds and microorganisms. CRC Crit Rev Microbiol 4:333–382PubMedCrossRefGoogle Scholar
  206. Stukenbrock EH, McDonald BA (2008) The origins of plant pathogens in agro-ecosystems. Annu Rev Phytopathol.  https://doi.org/10.1146/annurev.phyto.010708.154114 PubMedCrossRefGoogle Scholar
  207. Suding KN, Collins SL, Gough L et al (2005) Functional- and abundance-based mechanisms explain diversity loss due to N fertilization. Proc Natl Acad Sci.  https://doi.org/10.1073/pnas.0408648102 CrossRefGoogle Scholar
  208. Sundin GW, Jacobs JL (1999) Ultraviolet radiation (UVR) sensitivity analysis and UVR survival strategies of a bacterial community from the phyllosphere of field-grown peanut (Arachis hypogeae L.). Microb Ecol.  https://doi.org/10.1007/s002489900152 PubMedCrossRefGoogle Scholar
  209. Sy A, Timmers ACJ, Knief C, Vorholt JA (2005) Methylotrophic metabolism is advantageous for Methylobacterium extorquens during colonization of Medicago truncatula under competitive conditions. Appl Environ Microbiol.  https://doi.org/10.1128/AEM.71.11.7245-7252.2005 PubMedPubMedCentralCrossRefGoogle Scholar
  210. Tan S, Yang C, Mei X et al (2013) The effect of organic acids from tomato root exudates on rhizosphere colonization of Bacillus amyloliquefaciens T-5. Appl Soil Ecol 64:15–22CrossRefGoogle Scholar
  211. Teixeira LCRS, Peixoto RS, Cury JC et al (2010) Bacterial diversity in rhizosphere soil from Antarctic vascular plants of Admiralty Bay, maritime Antarctica. ISME J 4:989PubMedCrossRefPubMedCentralGoogle Scholar
  212. Thompson IP, Bailey MJ, Fenlon JS et al (1993) Quantitative and qualitative seasonal changes in the microbial community from the phyllosphere of sugar beet (Beta vulgaris). Plant Soil 150:177–191CrossRefGoogle Scholar
  213. Tian-Shung W, Li-Fei O, Che-Ming T (1994) Aristolochic acids, aristolactam alkaloids and amides from Aristolochia kankauensis. Phytochemistry 36:1063–1068CrossRefGoogle Scholar
  214. Tisdall JM (1996) Formation of soil aggregates and accumulation of soil organic matter. Struct Org Matter Storage Agric soils:57–96Google Scholar
  215. Toju H, Peay KG, Yamamichi M et al (2018) Core microbiomes for sustainable agroecosystems. Nat Plants 4(5):247–257PubMedCrossRefPubMedCentralGoogle Scholar
  216. Torres-Rubio MG, Valencia-Plata SA, Bernal-Castillo J, Martínez-Nieto P (2000) Isolation of Enterobacteria, Azotobacter sp. and Pseudomonas sp., producers of indole-3-acetic acid and siderophores, from Colombian rice rhizosphere. Rev Latinoam Microbiol 42:171–176Google Scholar
  217. Truyens S, Weyens N, Cuypers A, Vangronsveld J (2015) Bacterial seed endophytes: genera, vertical transmission and interaction with plants. Environ Microbiol Rep.  https://doi.org/10.1111/1758-2229.12181 CrossRefGoogle Scholar
  218. Tukey HB Jr (1970) The leaching of substances from plants. Annu Rev Plant Physiol 21:305–324CrossRefGoogle Scholar
  219. Umesha S, Singh KP, Singh RP (2018) Microbial biotechnology and sustainable agriculture. In: Biotechnology for sustainable agriculture. Elsevier. pp 185–205. ISBN: 9780128121603CrossRefGoogle Scholar
  220. van der Heijden MGA, Hartmann M (2016) Networking in the plant microbiome. PLoS Biol.  https://doi.org/10.1371/journal.pbio.1002378 PubMedPubMedCentralCrossRefGoogle Scholar
  221. Van Dijk K, Nelson EB (2000) Fatty acid competition as a mechanism by which Enterobacter cloacae suppresses Pythium ultimum sporangium germination and damping-off. Appl Environ Microbiol.  https://doi.org/10.1128/AEM.66.12.5340-5347.2000 PubMedPubMedCentralCrossRefGoogle Scholar
  222. Van Loon LC (1997) Induced resistance in plants and the role of pathogenesis-related proteins. Eur J Plant Pathol 103:753–765CrossRefGoogle Scholar
  223. Velmourougane K, Saxena G, Prasanna R (2017) Plant-microbe interactions in the rhizosphere: mechanisms and their ecological benefits. In: Plant-microbe interactions in agro-ecological perspectives. Springer, pp 193–219Google Scholar
  224. Verona O (1958) The spermosphere. In: Annales de l’Institut Pasteur, pp 795–798Google Scholar
  225. Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 225:571–576CrossRefGoogle Scholar
  226. Vorholt JA (2012) Microbial life in the phyllosphere. Nat Rev Microbiol 10(12):828–840PubMedCrossRefPubMedCentralGoogle Scholar
  227. Voříšková J, Baldrian P (2013) Fungal community on decomposing leaf litter undergoes rapid successional changes. ISME J 7:477PubMedCrossRefPubMedCentralGoogle Scholar
  228. Waldor MK, Tyson G, Borenstein E et al (2015) Where next for microbiome research? PLoS Biol.  https://doi.org/10.1371/journal.pbio.1002050 PubMedPubMedCentralCrossRefGoogle Scholar
  229. Wang X, Wang Z, Jiang P et al (2018) Bacterial diversity and community structure in the rhizosphere of four Ferula species. Sci Rep 8:5345PubMedPubMedCentralCrossRefGoogle Scholar
  230. Watson AG (1966a) The effect of soil fungicide treatments on the inoculum potentials of spermosphere fungi and damping-off. New Zeal J Agric Res 9:931–955CrossRefGoogle Scholar
  231. Watson AG (1966b) Seasonal variation in the inoculum potentials of spermosphere fungi. New Zeal J Agric Res 9:956–963CrossRefGoogle Scholar
  232. Weinert N, Piceno Y, Ding G-C et al (2011) PhyloChip hybridization uncovered an enormous bacterial diversity in the rhizosphere of different potato cultivars: many common and few cultivar-dependent taxa. FEMS Microbiol Ecol 75:497–506PubMedCrossRefPubMedCentralGoogle Scholar
  233. Whipps JM, Hand P, Pink D, Bending GD (2008) Phyllosphere microbiology with special reference to diversity and plant genotype. J Appl Microbiol 105(6):1744–1755PubMedCrossRefPubMedCentralGoogle Scholar
  234. Windstam S, Nelson EB (2008) Temporal release of fatty acids and sugars in the spermosphere: impacts on Enterobacter cloacae-induced biological control. Appl Environ Microbiol 74:4292–4299PubMedPubMedCentralCrossRefGoogle Scholar
  235. Wu H-S, Liu D-Y, Ning-Ling et al (2008a) Effects of vanillic acid on the growth and development of Fusarium oxysporum f. sp niveum. Allelopath J 22:111–121Google Scholar
  236. Wu H-S, Raza W, Fan J-Q et al (2008b) Antibiotic effect of exogenously applied salicylic acid on in vitro soilborne pathogen, Fusarium oxysporum f. sp. niveum. Chemosphere 74:45–50PubMedCrossRefPubMedCentralGoogle Scholar
  237. Yang CH, Crowley DE, Menge JA (2001) 16S rDNA fingerprinting of rhizosphere bacterial communities associated with healthy and Phytophthora infected avocado roots. FEMS Microbiol Ecol 35:129–135PubMedCrossRefPubMedCentralGoogle Scholar
  238. Youssef D, Frahm AW (1995) Constituents of the Egyptian Centaurea scoparia; III. Phenolic constituents of the aerial parts. Planta Med 61:570–573PubMedCrossRefPubMedCentralGoogle Scholar
  239. Zhalnina K, Dias R, de Quadros PD et al (2014) Soil pH Determines Microbial Diversity and Composition in the Park Grass Experiment. Microb Ecol 69(2):395–406PubMedCrossRefPubMedCentralGoogle Scholar
  240. Zhang W, Bao W (2000) Studies on the chemical constituents of Xanthoceras sorbifolia Bunge. Acta Pharm Sin 35:124–127Google Scholar
  241. Zhang B, Bai Z, Hoefel D et al (2010) Microbial diversity within the phyllosphere of different vegetable species. Curr Res Technol Educ Top Appl Microbiol Microb Biotechnol 2:1067–1077Google Scholar
  242. Zhang XF, Zhao L, Xu SJ et al (2013) Soil moisture effect on bacterial and fungal community in Beilu River (Tibetan Plateau) permafrost soils with different vegetation types. J Appl Microbiol 114(4):1054–1065PubMedCrossRefPubMedCentralGoogle Scholar
  243. Zhang Y, Cong J, Lu H et al (2014) Community structure and elevational diversity patterns of soil Acidobacteria. J Environ Sci 26:1717–1724CrossRefGoogle Scholar
  244. Zhang Z, Ci D, Zhang G et al (2017) Diversity of microbial community structure in the spermosphere of saline-alkali soil in shandong area. Acta Microbiol Sin 57:582–596Google Scholar
  245. Zheng XY, Sinclair JB (2000) The effects of traits of Bacillus megaterium on seed and root colonization and their correlation with the suppression of Rhizoctonia root rot of soybean. BioControl 45:223–243CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Indramani Kumar
    • 1
  • Moumita Mondal
    • 1
  • Raman Gurusamy
    • 2
  • Sundarakrishnan Balakrishnan
    • 1
  • Sakthivel Natarajan
    • 1
  1. 1.Department of Biotechnology, School of Life SciencesPondicherry UniversityPuducherryIndia
  2. 2.Department of Life SciencesYeungnam UniversityGyeongsanRepublic of Korea

Personalised recommendations