Advertisement

A Tag-Based Affinity Purification Mass Spectrometry Workflow for Systematic Isolation of the Human Mitochondrial Protein Complexes

  • Zhuoran Wu
  • Ramy Malty
  • Mohamed Taha Moutaoufik
  • Qingzhou Zhang
  • Matthew Jessulat
  • Mohan BabuEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1158)

Abstract

Mitochondria (mt) are double-membraned, dynamic organelles that play an essential role in a large number of cellular processes, and impairments in mt function have emerged as a causative factor for a growing number of human disorders. Given that most biological functions are driven by physical associations between proteins, the first step towards understanding mt dysfunction is to map its protein-protein interaction (PPI) network in a comprehensive and systematic fashion. While mass-spectrometry (MS) based approaches possess the high sensitivity ideal for such an endeavor, it also requires stringent biochemical purification of bait proteins to avoid detecting spurious, non-specific PPIs. Here, we outline a tagging-based affinity purification coupled with mass spectrometry (AP-MS) workflow for discovering new mt protein associations and providing novel insights into their role in mt biology and human physiology/pathology. Because AP-MS relies on the creation of proteins fused with affinity tags, we employ a versatile-affinity (VA) tag, consisting of 3× FLAG, 6 × His, and Strep III epitopes. For efficient delivery of affinity-tagged open reading frames (ORF) into mammalian cells, the VA-tag is cloned onto a specific ORF using Gateway recombinant cloning, and the resulting expression vector is stably introduced in target cells using lentiviral transduction. In this chapter, we show a functional workflow for mapping the mt interactome that includes tagging, stable transduction, selection and expansion of mammalian cell lines, mt extraction, identification of interacting protein partners by AP-MS, and lastly, computational assessment of protein complexes/PPI networks.

Keywords

Affinity purification Protein complex Versatile-affinity tagging Lentivirus Mass spectrometry Mitochondria Protein-protein interaction 

Notes

Acknowledgments

We thank Babu’s group for their helpful comments. This work was funded by National Institutes of Health (R01GM106019) and Canadian Institutes of Health Research (MOP-125952; RSN-124512, 132191; FDN-154318) to MB. MB is a CIHR New Investigator (MSH-130178).

References

  1. 1.
    Jiang Y, Wang X (2012) Comparative mitochondrial proteomics: perspective in human diseases. J Hematol Oncol 5:11.  https://doi.org/10.1186/1756-8722-5-11CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Cassarino DS, Bennett JP (1999) An evaluation of the role of mitochondria in neurodegenerative diseases: mitochondrial mutations and oxidative pathology, protective nuclear responses, and cell death in neurodegeneration. Brain Res Rev 29:1–25.  https://doi.org/10.1016/S0165-0173(98)00046-0CrossRefPubMedGoogle Scholar
  3. 3.
    Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nat Lond 443:787–795.  https://doi.org/10.1038/nature05292CrossRefGoogle Scholar
  4. 4.
    Ren J, Pulakat L, Whaley-Connell A, Sowers JR (2010) Mitochondrial biogenesis in the metabolic syndrome and cardiovascular disease. J Mol Med 88:993–1001.  https://doi.org/10.1007/s00109-010-0663-9CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Ballinger SW (2005) Mitochondrial dysfunction in cardiovascular disease. Free Radic Biol Med 38:1278–1295.  https://doi.org/10.1016/j.freeradbiomed.2005.02.014CrossRefPubMedGoogle Scholar
  6. 6.
    Wallace DC (2005) A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 39:359–407.  https://doi.org/10.1146/annurev.genet.39.110304.095751CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Floyd BJ, Wilkerson EM, Veling MT et al (2016) Mitochondrial protein interaction mapping identifies regulators of respiratory chain function. Mol Cell 63:621–632.  https://doi.org/10.1016/j.molcel.2016.06.033CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Malty RH, Aoki H, Kumar A et al (2017) A map of human mitochondrial protein interactions linked to neurodegeneration reveals new mechanisms of redox homeostasis and NF-κB signaling. Cell Syst 5:564–577.e12.  https://doi.org/10.1016/j.cels.2017.10.010CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Basso M, Giraudo S, Corpillo D et al (2004) Proteome analysis of human substantia nigra in Parkinson’s disease. Proteomics 4:3943–3952.  https://doi.org/10.1002/pmic.200400848CrossRefPubMedGoogle Scholar
  10. 10.
    Sokolina K, Kittanakom S, Snider J et al (2017) Systematic protein-protein interaction mapping for clinically relevant human GPCRs. Mol Syst Biol 13:918CrossRefGoogle Scholar
  11. 11.
    Yao Z, Darowski K, St-Denis N et al (2017) A global analysis of the receptor tyrosine kinase-protein phosphatase interactome. Mol Cell 65:347–360.  https://doi.org/10.1016/j.molcel.2016.12.004CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Havugimana PC, Hart GT, Nepusz T et al (2012) A census of human soluble protein complexes. Cell 150:1068–1081.  https://doi.org/10.1016/j.cell.2012.08.011CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Wan C, Borgeson B, Phanse S et al (2015) Panorama of ancient metazoan macromolecular complexes. Nature 525:339–344.  https://doi.org/10.1038/nature14877CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Hein MY, Hubner NC, Poser I et al (2015) A human interactome in three quantitative dimensions organized by stoichiometries and abundances. Cell 163:712–723.  https://doi.org/10.1016/j.cell.2015.09.053CrossRefPubMedGoogle Scholar
  15. 15.
    Huttlin EL, Ting L, Bruckner RJ et al (2015) The BioPlex network: a systematic exploration of the human interactome. Cell 162:425–440.  https://doi.org/10.1016/j.cell.2015.06.043CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Krogan NJ, Cagney G, Yu H et al (2006) Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440:637–643.  https://doi.org/10.1038/nature04670CrossRefPubMedGoogle Scholar
  17. 17.
    Morgenstern M, Stiller SB, Lübbert P et al (2017) Definition of a high-confidence mitochondrial proteome at quantitative scale. Cell Rep 19:2836–2852.  https://doi.org/10.1016/j.celrep.2017.06.014CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    ten Have S, Boulon S, Ahmad Y, Lamond AI (2011) Mass spectrometry-based immuno-precipitation proteomics – the user’s guide. Proteomics 11:1153–1159.  https://doi.org/10.1002/pmic.201000548CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Mak AB, Ni Z, Hewel JA et al (2010) A lentiviral functional proteomics approach identifies chromatin remodeling complexes important for the induction of pluripotency. Mol Cell Proteomics MCP 9:811–823.  https://doi.org/10.1074/mcp.M000002-MCP201CrossRefPubMedGoogle Scholar
  20. 20.
    Encinas M, Iglesias M, Liu Y et al (2000) Sequential treatment of SH-SY5Y cells with retinoic acid and brain-derived neurotrophic factor gives rise to fully differentiated, neurotrophic factor-dependent, human neuron-like cells. J Neurochem 75:991–1003CrossRefGoogle Scholar
  21. 21.
    Clayton DA, Shadel GS (2014) Purification of mitochondria by sucrose step density gradient centrifugation. Cold Spring Harb Protoc 2014:pdb.prot080028.  https://doi.org/10.1101/pdb.prot080028CrossRefPubMedGoogle Scholar
  22. 22.
    Kislinger T, Cox B, Kannan A et al (2006) Global survey of organ and organelle protein expression in mouse: combined proteomic and transcriptomic profiling. Cell 125:173–186.  https://doi.org/10.1016/j.cell.2006.01.044CrossRefPubMedGoogle Scholar
  23. 23.
    Sowa ME, Bennett EJ, Gygi SP, Harper JW (2009) Defining the human deubiquitinating enzyme interaction landscape. Cell 138:389–403.  https://doi.org/10.1016/j.cell.2009.04.042CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Leung HCM, Xiang Q, Yiu SM, Chin FYL (2009) Predicting protein complexes from PPI data: a core-attachment approach. J Comput Biol J Comput Mol Cell Biol 16:133–144.  https://doi.org/10.1089/cmb.2008.01TTCrossRefGoogle Scholar
  25. 25.
    van Dongen S, Abreu-Goodger C (2012) Using MCL to extract clusters from networks. Methods Mol Biol Clifton NJ 804:281–295.  https://doi.org/10.1007/978-1-61779-361-5_15CrossRefGoogle Scholar
  26. 26.
    Westermarck J, Ivaska J, Corthals GL (2013) Identification of protein interactions involved in cellular signaling. Mol Cell Proteomics MCP 12:1752–1763.  https://doi.org/10.1074/mcp.R113.027771CrossRefPubMedGoogle Scholar
  27. 27.
    Sahni N, Yi S, Taipale M et al (2015) Widespread macromolecular interaction perturbations in human genetic disorders. Cell 161:647–660.  https://doi.org/10.1016/j.cell.2015.04.013CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Yang B, Tang S, Ma C et al (2017) Spontaneous and specific chemical cross-linking in live cells to capture and identify protein interactions. Nat Commun 8:2240.  https://doi.org/10.1038/s41467-017-02409-zCrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Vlasblom J, Jin K, Kassir S, Babu M (2014) Exploring mitochondrial system properties of neurodegenerative diseases through interactome mapping. J Proteome 100:8–24.  https://doi.org/10.1016/j.jprot.2013.11.008CrossRefGoogle Scholar
  30. 30.
    Hyung S-J, Ruotolo BT (2012) Integrating mass spectrometry of intact protein complexes into structural proteomics. Proteomics 12:1547–1564.  https://doi.org/10.1002/pmic.201100520CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Zhuoran Wu
    • 1
  • Ramy Malty
    • 1
  • Mohamed Taha Moutaoufik
    • 1
  • Qingzhou Zhang
    • 1
  • Matthew Jessulat
    • 1
  • Mohan Babu
    • 1
    Email author
  1. 1.Department of BiochemistryUniversity of ReginaReginaCanada

Personalised recommendations