Advertisement

Crosstalk Between Oxidative Stress and Mitochondrial Damage: Focus on Amyotrophic Lateral Sclerosis

  • Viviana Greco
  • Patrizia Longone
  • Alida Spalloni
  • Luisa Pieroni
  • Andrea UrbaniEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1158)

Abstract

Proteins oxidation by reactive species is implicated in the aetiology or progression of a panoply of disorders and diseases such as neurodegenerative disorders. It is becoming increasingly evident that redox imbalance in the brain mediates neurodegeneration. Free radicals, as reactive species of oxygen (ROS) but also reactive nitrogen species (RNS) and reactive sulfur species (RSS), are generated in vivo from several sources. Within the cell the mitochondria represent the main source of ROS and mitochondrial dysfunction is both the major contributor to oxidative stress (OS) as well its major consequence.

To date there are no doubts that a condition of OS added to other factors as mitochondrial damage in mtDNA or mitochondrial respiratory chain, may contribute to trigger or amplify mechanisms leading to neurodegenerative disorders.

In this chapter, we aim at illustrate the molecular interplay occurring between mitochondria and OS focusing on Amyotrophic Lateral Sclerosis, describing a phenotypic reprogramming mechanism of mitochondria in complex neurological disorder.

Keywords

ALS Mitochondrial damage Reactive species Oxidative stress Redox proteomics 

References

  1. 1.
    Ahtoniemi T, Jaronen M, Keksa-Goldsteine V, Goldsteins G, Koistinaho J (2008) Mutant SOD1 from spinal cord of G93A rats is destabilized and binds to inner mitochondrial membrane. Neurobiol Dis 32(3):479–485PubMedCrossRefGoogle Scholar
  2. 2.
    Andersen PM (2000) Genetic factors in the early diagnosis of ALS. Amyotroph Lateral Scler Other Motor Neuron Disord 1(Suppl 1):S31–S42PubMedCrossRefGoogle Scholar
  3. 3.
    Andrus PK, Fleck TJ, Gurney ME, Hall ED (1998) Protein oxidative damage in a transgenic mouse model of familial amyotrophic lateral sclerosis. J Neurochem 71(5):2041–2048PubMedCrossRefGoogle Scholar
  4. 4.
    Banci L, Bertini I, Cantini F, Kozyreva T, Massagni C, Palumaa P, Rubino JT, Zovo K (2012) Human superoxide dismutase 1 (hSOD1) maturation through interaction with human copper chaperone for SOD1 (hCCS). Proc Natl Acad Sci 109(34):13555–13560PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Bannwarth S, Ait-El-Mkadem S, Chaussenot A, Genin EC, Lacas-Gervais S, Fragaki K, Berg-Alonso L, Kageyama Y, Serre V, Moore DG (2014) A mitochondrial origin for frontotemporal dementia and amyotrophic lateral sclerosis through CHCHD10 involvement. Brain 137(8):2329–2345PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Barber SC, Shaw PJ (2010) Oxidative stress in ALS: key role in motor neuron injury and therapeutic target. Free Radic Biol Med 48(5):629–641PubMedCrossRefGoogle Scholar
  7. 7.
    Bartolome F, Wu H-C, Burchell VS, Preza E, Wray S, Mahoney CJ, Fox NC, Calvo A, Canosa A, Moglia C (2013) Pathogenic VCP mutations induce mitochondrial uncoupling and reduced ATP levels. Neuron 78(1):57–64PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Beckman JS, Chen J, Crow JP, Ye YZ (1994) Reactions of nitric oxide, superoxide and peroxynitrite with superoxide dismutase in neurodegeneration. Prog Brain Res., Elsevier 103:371–380PubMedCrossRefGoogle Scholar
  9. 9.
    Bian K, Murad F (2003) Nitric oxide (NO) – biogeneration, regulation, and relevance to human diseases. Front Biosci 8:d264–d278PubMedCrossRefGoogle Scholar
  10. 10.
    Bota DA, Davies KJ (2002) Lon protease preferentially degrades oxidized mitochondrial aconitase by an ATP-stimulated mechanism. Nat Cell Biol 4(9):674PubMedCrossRefGoogle Scholar
  11. 11.
    Bruening W, Roy J, Giasson B, Figlewicz DA, Mushynski WE, Durham HD (1999) Up-regulation of protein chaperones preserves viability of cells expressing toxic Cu/Zn-superoxide dismutase mutants associated with amyotrophic lateral sclerosis. J Neurochem 72(2):693–699PubMedCrossRefGoogle Scholar
  12. 12.
    Butterfield DA, Hensley K, Cole P, Subramaniam R, Aksenov M, Aksenova M, Bummer PM, Haley BE, Carney JM (1997) Oxidatively induced structural alteration of glutamine synthetase assessed by analysis of spin label incorporation kinetics: relevance to Alzheimer’s disease. J Neurochem 68(6):2451–2457PubMedCrossRefGoogle Scholar
  13. 13.
    Butterfield DA, Perluigi M (2017) Redox proteomics: a key tool for new insights into protein modification with relevance to disease. Mary Ann Liebert, New RochelleGoogle Scholar
  14. 14.
    Butterfield DA, Perluigi M, Reed T, Muharib T, Hughes CP, Robinson RA, Sultana R (2012) Redox proteomics in selected neurodegenerative disorders: from its infancy to future applications. Antioxid Redox Signal 17(11):1610–1655PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Calabrese L, Federici G, Rotilio G, Finazzi-Agrò A, Bannister WH, Bannister JV (1975) Labile sulfur in human superoxide dismutase. FEBS J 56(1):305–309Google Scholar
  16. 16.
    Carrì MT, Valle C, Bozzo F, Cozzolino M (2015) Oxidative stress and mitochondrial damage: importance in non-SOD1 ALS. Front Cell Neurosci 9:41PubMedPubMedCentralGoogle Scholar
  17. 17.
    Cozzolino M, Ferri A, Teresa Carri M (2008) Amyotrophic lateral sclerosis: from current developments in the laboratory to clinical implications. Antioxid Redox Signal 10(3):405–444PubMedCrossRefGoogle Scholar
  18. 18.
    Culotta VC, Klomp LW, Strain J, Casareno RLB, Krems B, Gitlin JD (1997) The copper chaperone for superoxide dismutase. J Biol Chem 272(38):23469–23472PubMedCrossRefGoogle Scholar
  19. 19.
    Davies MJ (2016) Protein oxidation and peroxidation. Biochem J 473(7):805–825PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Davoli A, Greco V, Spalloni A, Guatteo E, Neri C, Rizzo GR, Cordella A, Romigi A, Cortese C, Bernardini S (2015) Evidence of hydrogen sulfide involvement in amyotrophic lateral sclerosis. Ann Neurol 77(4):697–709PubMedCrossRefGoogle Scholar
  21. 21.
    de Beus MD, Chung J, Colón W (2004) Modification of cysteine 111 in Cu/Zn superoxide dismutase results in altered spectroscopic and biophysical properties. Protein Sci 13(5):1347–1355PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Ferrante RJ, Browne SE, Shinobu LA, Bowling AC, Baik MJ, MacGarvey U, Kowall NW, Brown RH, Beal MF (1997) Evidence of increased oxidative damage in both sporadic and familial amyotrophic lateral sclerosis. J Neurochem 69(5):2064–2074PubMedCrossRefGoogle Scholar
  23. 23.
    Fitzmaurice P, Shaw I, Kleiner H, Miller R, Monks T, Lau S, Mitchell J, Lynch P (1996) Evidence for DNA damage in amyotrophic lateral sclerosis. Muscle Nerve 19(6):797–798PubMedGoogle Scholar
  24. 24.
    Fu M, Zhang W, Wu L, Yang G, Li H, Wang R (2012) Hydrogen sulfide (H2S) metabolism in mitochondria and its regulatory role in energy production. Proc Natl Acad Sci 109(8):2943–2948PubMedCrossRefGoogle Scholar
  25. 25.
    Gadoth N, Göbel HH (2011) Oxidative stress and free radical damage in neurology. Springer, New YorkCrossRefGoogle Scholar
  26. 26.
    Gerő D, Torregrossa R, Perry A, Waters A, Le-Trionnaire S, Whatmore JL, Wood M, Whiteman M (2016) The novel mitochondria-targeted hydrogen sulfide (H2S) donors AP123 and AP39 protect against hyperglycemic injury in microvascular endothelial cells in vitro. Pharmacol Res 113:186–198PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Giles GI, Tasker KM, Jacob C (2001) Hypothesis: the role of reactive sulfur species in oxidative stress. Free Radic Biol Med 31(10):1279–1283PubMedCrossRefGoogle Scholar
  28. 28.
    Greco V, Spalloni A, Corasolla Carregari V, Pieroni L, Persichilli S, Mercuri N, Urbani A, Longone P (2018) Proteomics and toxicity analysis of spinal-cord primary cultures upon hydrogen sulfide treatment. Antioxidants 7(7):87PubMedCentralCrossRefGoogle Scholar
  29. 29.
    Higgins CM, Jung C, Ding H, Xu Z (2002) Mutant Cu, Zn superoxide dismutase that causes motoneuron degeneration is present in mitochondria in the CNS. J Neurosci 22(6):RC215PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Ihara Y, Nobukuni K, Takata H, Hayabara T (2005) Oxidative stress and metal content in blood and cerebrospinal fluid of amyotrophic lateral sclerosis patients with and without a Cu, Zn-superoxide dismutase mutation. Neurol Res 27(1):105–108PubMedCrossRefGoogle Scholar
  31. 31.
    Ince P, Shaw P, Candy J, Mantle D, Tandon L, Ehmann W, Markesbery W (1994) Iron, selenium and glutathione peroxidase activity are elevated in sporadic motor neuron disease. Neurosci Lett 182(1):87–90PubMedCrossRefGoogle Scholar
  32. 32.
    Islam MT (2017) Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders. Neurol Res 39(1):73–82PubMedCrossRefGoogle Scholar
  33. 33.
    Jaarsma D, Rognoni F, van Duijn W, Verspaget HW, Haasdijk ED, Holstege JC (2001) CuZn superoxide dismutase (SOD1) accumulates in vacuolated mitochondria in transgenic mice expressing amyotrophic lateral sclerosis-linked SOD1 mutations. Acta Neuropathol 102(4):293–305PubMedGoogle Scholar
  34. 34.
    Karch CM, Prudencio M, Winkler DD, Hart PJ, Borchelt DR (2009) Role of mutant SOD1 disulfide oxidation and aggregation in the pathogenesis of familial ALS. Proc Natl Acad Sci 106(19):7774–7779PubMedCrossRefGoogle Scholar
  35. 35.
    Kawamata H, Manfredi G (2008) Different regulation of wild-type and mutant Cu, Zn superoxide dismutase localization in mammalian mitochondria. Hum Mol Genet 17(21):3303–3317PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Khalil B, Liévens J-C (2017) Mitochondrial quality control in amyotrophic lateral sclerosis: towards a common pathway? Neural Regen Res 12(7):1052PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Kiernan MC, Vucic S, Cheah BC, Turner MR, Eisen A, Hardiman O, Burrell JR, Zoing MC (2011) Amyotrophic lateral sclerosis. Lancet 377(9769):942–955PubMedCrossRefGoogle Scholar
  38. 38.
    Lehmer C, Schludi MH, Ransom L, Greiling J, Junghänel M, Exner N, Riemenschneider H, van der Zee J, Van Broeckhoven C, Weydt P (2018) A novel CHCHD10 mutation implicates a Mia40-dependent mitochondrial import deficit in ALS. EMBO Mol Med;10(6)Google Scholar
  39. 39.
    Leveugle B, Spik G, Perl DP, Bouras C, Fillit HM, Hof PR (1994) The iron-binding protein lactotransferrin is present in pathologic lesions in a variety of neurodegenerative disorders: a comparative immunohistochemical analysis. Brain Res 650(1):20–31PubMedCrossRefGoogle Scholar
  40. 40.
    Libiad M, Yadav PK, Vitvitsky V, Martinov M, Banerjee R (2014) Organization of the human mitochondrial hydrogen sulfide oxidation pathway. J Biol Chem 289(45):30901–30910PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Liochev SI, Fridovich I (2000) Copper-and zinc-containing superoxide dismutase can act as a superoxide reductase and a superoxide oxidase. J Biol Chem 275(49):38482–38485PubMedCrossRefGoogle Scholar
  42. 42.
    Liu Q, D’silva P, Walter W, Marszalek J, Craig EA (2003) Regulated cycling of mitochondrial Hsp70 at the protein import channel. Science 300(5616):139–141PubMedCrossRefGoogle Scholar
  43. 43.
    Longen S, Richter F, Köhler Y, Wittig I, Beck K-F, Pfeilschifter J (2016) Quantitative persulfide site identification (qPerS-SID) reveals protein targets of H 2 S releasing donors in mammalian cells. Sci Rep 6:29808PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Magrane J, Cortez C, Gan W-B, Manfredi G (2013) Abnormal mitochondrial transport and morphology are common pathological denominators in SOD1 and TDP43 ALS mouse models. Hum Mol Genet 23(6):1413–1424PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Magrané J, Hervias I, Henning MS, Damiano M, Kawamata H, Manfredi G (2009) Mutant SOD1 in neuronal mitochondria causes toxicity and mitochondrial dynamics abnormalities. Hum Mol Genet 18(23):4552–4564PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Mishanina TV, Libiad M, Banerjee R (2015) Biogenesis of reactive sulfur species for signaling by hydrogen sulfide oxidation pathways. Nat Chem Biol 11(7):457PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417(1):1–13PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Olson KR, Gao Y, Arif F, Arora K, Patel S, DeLeon ER, Sutton TR, Feelisch M, Cortese-Krott MM, Straub KD (2018) Metabolism of hydrogen sulfide (H2S) and production of reactive sulfur species (RSS) by superoxide dismutase. Redox Biol 15:74–85PubMedCrossRefGoogle Scholar
  49. 49.
    Orsini M, Oliveira AB, Nascimento OJ, Reis CHM, Leite MAA, de Souza JA, Pupe C, de Souza OG, Bastos VH, de Freitas MR (2015) Amyotrophic lateral sclerosis: new perpectives and update. Neurol Int 7(2):5885PubMedPubMedCentralGoogle Scholar
  50. 50.
    Pasinelli P, Belford ME, Lennon N, Bacskai BJ, Hyman BT, Trotti D, Brown RH Jr (2004) Amyotrophic lateral sclerosis-associated SOD1 mutant proteins bind and aggregate with Bcl-2 in spinal cord mitochondria. Neuron 43(1):19–30PubMedCrossRefGoogle Scholar
  51. 51.
    Paul BD, Snyder SH (2017) Gasotransmitter hydrogen sulfide signaling in neuronal health and disease. Biochem Pharmacol 149:101–109PubMedCrossRefGoogle Scholar
  52. 52.
    Pieragostino D, Del Boccio P, Di Ioia M, Pieroni L, Greco V, De Luca G, D’Aguanno S, Rossi C, Franciotta D, Centonze D (2013) Oxidative modifications of cerebral transthyretin are associated with multiple sclerosis. Proteomics 13(6):1002–1009PubMedCrossRefGoogle Scholar
  53. 53.
    Raha S, Robinson BH (2000) Mitochondria, oxygen free radicals, disease and ageing. Trends Biochem Sci 25(10):502–508PubMedCrossRefGoogle Scholar
  54. 54.
    Rakhit R, Cunningham P, Furtos-Matei A, Dahan S, Qi X-F, Crow JP, Cashman NR, Kondejewski LH, Chakrabartty A (2002) Oxidation-induced misfolding and aggregation of superoxide dismutase and its implications for amyotrophic lateral sclerosis. J Biol Chem 277(49):47551–47556PubMedCrossRefGoogle Scholar
  55. 55.
    Rowland LP, Shneider NA (2001) Amyotrophic lateral sclerosis. N Engl J Med 344(22):1688–1700PubMedCrossRefGoogle Scholar
  56. 56.
    Sasaki S, Iwata M (2007) Mitochondrial alterations in the spinal cord of patients with sporadic amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 66(1):10–16PubMedCrossRefGoogle Scholar
  57. 57.
    Sasaki S, Warita H, Murakami T, Shibata N, Komori T, Abe K, Kobayashi M, Iwata M (2005) Ultrastructural study of aggregates in the spinal cord of transgenic mice with a G93A mutant SOD1 gene. Acta Neuropathol 109(3):247–255PubMedCrossRefGoogle Scholar
  58. 58.
    Sbodio JI, Snyder SH, Paul BD (2018) Redox mechanisms in neurodegeneration: from disease outcomes to therapeutic opportunities. Antioxid Redox SignalGoogle Scholar
  59. 59.
    Searcy DG, Whitehead JP, Maroney MJ (1995) Interaction of Cu, Zn superoxide dismutase with hydrogen sulfide. Arch Biochem Biophys 318(2):251–263PubMedCrossRefGoogle Scholar
  60. 60.
    Shaw PJ, Ince PG, Falkous G, Mantle D (1995) Oxidative damage to protein in sporadic motor neuron disease spinal cord. Ann Neurol 38(4):691–695PubMedCrossRefGoogle Scholar
  61. 61.
    Sheehan D, McDonagh B, Bárcena JA (2010) Redox proteomics. Expert Rev Proteomics 7(1):1–4PubMedCrossRefGoogle Scholar
  62. 62.
    Shibata N, Nagai R, Uchida K, Horiuchi S, Yamada S, Hirano A, Kawaguchi M, Yamamoto T, Sasaki S, Kobayashi M (2001) Morphological evidence for lipid peroxidation and protein glycoxidation in spinal cords from sporadic amyotrophic lateral sclerosis patients. Brain Res 917(1):97–104PubMedCrossRefGoogle Scholar
  63. 63.
    Smith EF, Shaw PJ, De Vos KJ (2017) The role of mitochondria in amyotrophic lateral sclerosis. Neurosci Lett Jun 30Google Scholar
  64. 64.
    Sturtz LA, Diekert K, Jensen LT, Lill R, Culotta VC (2001) A fraction of yeast cu, zn-superoxide dismutase and its metallochaperone, ccs, localize to the intermembrane space of mitochondria a physiological role for sod1 in guarding against mitochondrial oxidative damage. J Biol Chem 276(41):38084–38089PubMedGoogle Scholar
  65. 65.
    Tafuri F, Ronchi D, Magri F, Comi GP, Corti S (2015) SOD1 misplacing and mitochondrial dysfunction in amyotrophic lateral sclerosis pathogenesis. Front Cell Neurosci 9:336PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Tan W, Pasinelli P, Trotti D (2014) Role of mitochondria in mutant SOD1 linked amyotrophic lateral sclerosis. Biochim Biophys Acta (BBA)-Mol Basis Dis 1842(8):1295–1301CrossRefGoogle Scholar
  67. 67.
    Taylor JP, Hardy J, Fischbeck KH (2002) Toxic proteins in neurodegenerative disease. Science 296(5575):1991–1995PubMedCrossRefGoogle Scholar
  68. 68.
    Vandiver MS, Snyder SH (2012) Hydrogen sulfide: a gasotransmitter of clinical relevance. J Mol Med 90(3):255–263PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Vehviläinen P, Koistinaho J, Gundars G (2014) Mechanisms of mutant SOD1 induced mitochondrial toxicity in amyotrophic lateral sclerosis. Front Cell Neurosci 8:126PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Velde CV, McDonald KK, Boukhedimi Y, McAlonis-Downes M, Lobsiger CS, Hadj SB, Zandona A, Julien J-P, Shah SB, Cleveland DW (2011) Misfolded SOD1 associated with motor neuron mitochondria alters mitochondrial shape and distribution prior to clinical onset. PLoS One 6(7):e22031CrossRefGoogle Scholar
  71. 71.
    Voos W (2013) Chaperone–protease networks in mitochondrial protein homeostasis. Biochim Biophys Acta (BBA)-Mol Cell Res 1833(2):388–399CrossRefGoogle Scholar
  72. 72.
    Wang J, Xu G, Borchelt DR (2002) High molecular weight complexes of mutant superoxide dismutase 1: age-dependent and tissue-specific accumulation. Neurobiol Dis 9(2):139–148PubMedCrossRefGoogle Scholar
  73. 73.
    Wei Y-H, Lu C-Y, Wei C-Y, Ma Y-S, Lee H-C (2001) Oxidative stress in human aging and mitochondrial disease-consequences of defective mitochondrial respiration and impaired antioxidant enzyme system. Chin J Physiol 44(1):1–12PubMedGoogle Scholar
  74. 74.
    Zetterström P, Stewart HG, Bergemalm D, Jonsson PA, Graffmo KS, Andersen PM, Brännström T, Oliveberg M, Marklund SL (2007) Soluble misfolded subfractions of mutant superoxide dismutase-1s are enriched in spinal cords throughout life in murine ALS models. Proc Natl Acad Sci 104(35):14157–14162PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Viviana Greco
    • 1
    • 2
  • Patrizia Longone
    • 3
  • Alida Spalloni
    • 3
  • Luisa Pieroni
    • 4
  • Andrea Urbani
    • 1
    • 2
    Email author
  1. 1.Institute of Biochemistry and Clinical BiochemistryUniversità Cattolica del Sacro CuoreRomeItaly
  2. 2.Fondazione Policlinico Universitario A. Gemelli – IRCCSRomeItaly
  3. 3.Molecular Neurobiology UnitFondazione Santa Lucia-IRCCSRomeItaly
  4. 4.Proteomics and Metabonomics UnitFondazione Santa Lucia-IRCCSRomeItaly

Personalised recommendations