Advertisement

Lessons Learned from the Chernobyl Accident

  • Valery Kashparov
Chapter
Part of the Current Topics in Environmental Health and Preventive Medicine book series (CTEHPM)

Abstract

This chapter describes the lessons learned from the Chernobyl accident on the basis of practical experience. Main characteristics of radionuclides release and consequences of radiological contamination of the environment, and also remediation actions, taken to protect workers and population against radiation at different stages of rectification of the consequences of the accident in Belarus, Russia, and Ukraine in 1986–2018 are analyzed. Criteria for applying countermeasures, such as maximum expected effective irradiation dose for the population and terrestrial density of radionuclides contamination for evacuation and resettlement, restriction of business activities, etc., and also action level of radionuclides in food to reduce the internal dose, are provided. Main positive and negative features of the decisions taken in the process of the Chernobyl nuclear disaster elimination are considered. Practically all agricultural countermeasures implemented in the large scale on contaminated lands after Chernobyl accident can be recommended for use in case of future accidents. We focus mainly on the Chernobyl exclusion zone as the territory of radiation-ecological reserves of Ukraine and Belarus for scientific research in the field of radioecology and radiobiology, as well as on the most contaminated 10-km zone around the Chernobyl nuclear power plant—a Zone for special industrial usage, not suitable for living in the near future.

By an example of the Chernobyl disaster, it is shown that in comparison with radiological consequences the socio-psychological ones have made much more influence on human life and health due to lack of urgent, objective, and truthful information on the accident and its impact on the health, in mass media.

Keywords

Radionuclides Radioecology Radiobiology Remedial action Milk contamination The Chernobyl accident Effective dose The Chernobyl exclusion zone 

References

  1. 1.
    IAEA. Environmental consequences of the Chernobyl accident and their remediation: twenty years of experience. Report of the Chernobyl forum expert group ‘environment’. Vienna: IAEA; 2006.Google Scholar
  2. 2.
    Kashparov VA, Ivanov YA, Zvarich SI, Protsak VP, Khomutinin YV, Kurepin AD, Pazukhin EM. Formation of hot particles during the Chernobyl nuclear power plant accident. Nucl Technol. 1996;114:246–53.  https://doi.org/10.13182/NT96-A35253.CrossRefGoogle Scholar
  3. 3.
    Kashparov VA, Lundin SM, Khomutinin YV, Kaminsky SP, Levtchuk SE, Protsak VP, Kadygrib AM, Zvarich SI, Yoschenko VI, Tschiersch J. Soil contamination with 90Sr in the near zone of the Chernobyl accident. J Environ Radioact. 2001;56:285–98.  https://doi.org/10.1016/S0265-931X(00)00207-1.CrossRefPubMedGoogle Scholar
  4. 4.
    Kashparov VA, Lundin SM, Zvarich SI, Yoschenko VI, Levtchuk SE, Khomutinin YV, Maloshtan IN, Protsak VP. Territory contamination with the radionuclides representing the fuel component of Chernobyl fallout. Sci Total Environ. 2003;317:105–19.  https://doi.org/10.1016/S0048-9697(03)00336-X.CrossRefPubMedGoogle Scholar
  5. 5.
    Steinhauser G, Brandl A, Johnson TE. Comparison of the Chernobyl and Fukushima nuclear accidents: a review of the environmental impacts. Sci Total Environ. 2014;470–471:800–17.  https://doi.org/10.1016/j.scitotenv.2013.10.029.CrossRefGoogle Scholar
  6. 6.
    UNSCEAR. Sources and effects of ionizing radiation (annex D). New York: United Nations; 2008.Google Scholar
  7. 7.
    Kashparov V, Levchuk S, Zhurba M, Protsak V, Khomutinin Y, Beresford NA, Chaplow JS. Spatial datasets of radionuclide contamination in the Ukrainian Chernobyl exclusion zone. ESSD. 2018;10:339–53.  https://doi.org/10.5194/essd-10-339-2018.CrossRefGoogle Scholar
  8. 8.
    Kashparov VA. Hot particles at Chernobyl. Environ Sci Pollut Res. 2003;10(1):21–30.  https://doi.org/10.1007/BF02980879.CrossRefGoogle Scholar
  9. 9.
    Kuriny VD, Ivanov YA, Kashparov VA, Loshchilov NA, Protsak VP, Yudin EB, Zhyrba MA, Parshakov AE. Particle-associated Chernobyl fall-out in the local and intermediate zones. Ann Nucl Energy. 1993;20(6):415–20.CrossRefGoogle Scholar
  10. 10.
    Salbu B, Kashparov V, Lind OC, Garcia-Tenorio R, Johansen MP, Child DP, Roos P, Sancho CM. Challenges associated with the behaviour of radioactive particles in the environment. J Environ Radioact. 2018;186(1):101–15.  https://doi.org/10.1016/j.jenvrad.2017.09.001.CrossRefPubMedGoogle Scholar
  11. 11.
    Kashparov VA, Oughton DH, Zvarich SI, Protsak VP, Levchuk SE. Kinetics of fuel particle weathering and 90Sr mobility in the Chernobyl 30-km exclusion zone. Health Phys. 1999;76:251–9.CrossRefGoogle Scholar
  12. 12.
    Kashparov VA, Protsak VP, Ahamdach N, Stammose D, Peres JM, Yoschenko VI, Zvarich SI. Dissolution kinetics of particles of irradiated Chernobyl nuclear fuel: influence of pH and oxidation state on the release of radionuclides in the contaminated soil of Chernobyl. J Nucl Mater. 2000;279:225–33.CrossRefGoogle Scholar
  13. 13.
    Kashparov VA, Ahamdach N, Zvarich SI, Yoschenko VI, Maloshtan IN, Dewiere L. Kinetics of dissolution of Chernobyl fuel particles in soil in natural conditions. J Environ Radioact. 2004;72:335–53.  https://doi.org/10.1016/j.jenvrad.2003.08.002.CrossRefPubMedGoogle Scholar
  14. 14.
    Fesenko SV, Alexakhin RM, Balonov MI, Bogdevich IM, Howard BJ, Kashparov VA, Sanzharova NI, Panov AV, Voigt G, Zhuchenka YM. Twenty years’ application of agricultural countermeasures following the Chernobyl accident: lessons learned. J Radiol Prot. 2006;26:351–9.  https://doi.org/10.1088/0952-4746/26/4/R01.CrossRefPubMedGoogle Scholar
  15. 15.
    Fesenko SV, Alexakhin RM, Balonov MI, Bogdevitch IM, Howard BJ, Kashparov VA, Sanzharova NI, Panov AV, Voigt G, Zhuchenka YM. An extended critical review of twenty years of countermeasures used in agriculture after the Chernobyl accident. Sci Total Environ. 2007;383(1):1–24.  https://doi.org/10.1016/j.scitotenv.2007.05.011.CrossRefPubMedGoogle Scholar
  16. 16.
    Balonov M, Kashparov V, Nikolaenko E, Berkovsky V, Fesenko S. Harmonization of standards for permissible radionuclide activity concentrations in foodstuffs in the long term after the Chernobyl accident. J Radiol Prot. 2018;38:854–67.  https://doi.org/10.1088/1361-6498/aabe34.CrossRefPubMedGoogle Scholar
  17. 17.
    IAEA. Handbook of parameter values for the prediction of radionuclide transfer in terrestrial and freshwater environments. Technical reports series no. 472. Vienna: IAEA; 2010.Google Scholar
  18. 18.
    Bazyka DA, Tronko MD, Antypkin YG, Serdiuk A, Sushko VO, editors. Thirty years of Chornobyl catastrophe: radiological and health effects: national report of Ukraine, National Academy of Medical Sciences of Ukraine, National Research Centre for Radiation Medicine, Kyiv, Ukraine. 2016. https://drive.google.com/file/d/0B1bUIW1YACgZelRkWmhEMVVIdGc/view.
  19. 19.
    Kashparov V, Levchuk S, Khomutynyn Y, Morozova V, Znurba M. Report of UIAR. Chernobyl: 30 years of radioactive contamination legacy. Kiev: UIAR of NUBiP of Ukraine, Commissioned by Greenpeace Belgium; 2016.Google Scholar
  20. 20.
    Verkhovna Rada of Ukraine. On the legal regime of the territories exposed to radioactive contamination in consequence of the catastrophe at the Chernobyl NPP. Kyiv: Bulletin of Verkhovna Rada; 1991. p. 16.Google Scholar
  21. 21.
    Labunska I, Kashparov V, Levchuk S, Santillo D, Johnston P, Polishchuk S, Lazarev N, Khomutinin Y. Current radiological situation in areas of Ukraine contaminated by the Chernobyl accident: part 1. Human dietary exposure to Caesium-137 and possible mitigation measures. Environ Int. 2018;117:250–9.  https://doi.org/10.1016/j.envint.2018.04.053.CrossRefPubMedGoogle Scholar
  22. 22.
    Maloshtan I, Polishchuk S, Kashparov V, Yoschenko V. Assessment of radiological efficiency of countermeasures on peat-bog soils of Ukrainian Polissya. J Environ Radioact. 2017;175–176:52–9.  https://doi.org/10.1016/j.jenvrad.2017.03.026.CrossRefPubMedGoogle Scholar
  23. 23.
    Lihtarov IA, Kovgan LM, Vasylenko VV. General dosimetry certification and results of whole body counter monitoring in the settlements contaminated after the Chernobyl accident. Data on 2012. Collection 15 (in Ukrainian). Kyiv: Ministry of Health Protection of Ukraine; 2013.Google Scholar
  24. 24.
    Izrael Y, Bogdevich I, editors. The atlas of recent and predictable aspects of consequences of Chernobyl accident on polluted territories of Russia and Belarus (ARPA Russia-Belarus). Moscow-Minsk: Foundation “Infosphere” - NIA-Nature; 2009.Google Scholar
  25. 25.
  26. 26.
    Kashparov V, Lazarev N, Polishchuk S. Current problems of agricultural radiology in Ukraine. Agroecol J. 2005;3:31–41.Google Scholar
  27. 27.
    Fesenko S, Jacob P, Ulanovsky A, Chupov A, Bogdevich I, Sanzharova N, Kashparov V, Panov A, Zhuchenka Y. Justification of remediation strategies in the long term after the Chernobyl accident. J Environ Radioact. 2013;119:39–47.  https://doi.org/10.1016/j.jenvrad.2010.08.012.CrossRefPubMedGoogle Scholar
  28. 28.
    Jacob P, Fesenko S, Bogdevitch I, Kashparov V, Sanzharova N, Grebenshikova N, Isamov N, Lazarev N, Panov A, Ulanovsky A, Zhuchenk Y, Zhurba M. Rural areas affected by the Chernobyl accident: radiation exposure and remediation strategies. Sci Total Environ. 2009;408(1):14–25.  https://doi.org/10.1016/j.scitotenv.2009.09.006.CrossRefPubMedGoogle Scholar
  29. 29.
    Ulanovsky A, Jacob P, Fesenko S, Bogdevitch I, Kashparov V, Sanzharova N. ReSCA: decision support tool for remediation planning after the Chernobyl accident. Radiat Environ Biophys. 2011;50:67–83.  https://doi.org/10.1007/s00411-010-0344-7.CrossRefPubMedGoogle Scholar
  30. 30.
    MEU. Twenty-five years after Chornobyl accident: safety for the future. National Report of Ukraine. Ministry of Emergencies of Ukraine. Kyiv: KIM; 2011.Google Scholar
  31. 31.
    Kashparov VA, Protsak VP, Ivanov YA, Nicholson KW. Resuspension of radionuclides and the contamination of village areas around Chernobyl. J Aerosol Sci. 1994;25(5):755–9.CrossRefGoogle Scholar
  32. 32.
    Kashparov VA, Protsak VP, Yoschenko VI, Watterson JD. Inhalation of radionuclides during agricultural work in areas contaminated as a result of the Chernobyl reactor accident. J Aerosol Sci. 1994;25(5):761–6.CrossRefGoogle Scholar
  33. 33.
    Mamikhin S, Tikhomirov F, Shcheglov A. Dynamics of 137Cs in the forests of the 30-km zone around the Chernobyl nuclear power plant. Sci Total Environ. 1997;193:169–77.CrossRefGoogle Scholar
  34. 34.
    Shcheglov A, Tsvetnova O, Klyashtorin A. Biogeochemical cycles of Chernobyl-born radionuclides in the contaminated forest ecosystems. Long-term dynamics of the migration processes. J Geochem Explor. 2014;144:260–6.CrossRefGoogle Scholar
  35. 35.
    Thiry Y, et al. Impact of Scots pine (Pinus sylvestris L.) plantings on long term 137Cs and 90Sr recycling from a waste burial site in the Chernobyl Red Forest. J Environ Radioact. 2009;100:1062–8.CrossRefGoogle Scholar
  36. 36.
    Yoschenko V, Ohkubo T, Kashparov V. Radioactive contaminated forests in Fukushima and Chernobyl. J For Res. 2017;23:1–12.  https://doi.org/10.1080/13416979.2017.1356681.CrossRefGoogle Scholar
  37. 37.
    Bugai D, Kashparov V, Dewiére L, Khomutinin Y, Levchuk S, Yoschenko V. Characterization of subsurface geometry and radioactivity distribution in the trench containing Chernobyl clean-up wastes. Environ Geol. 2005;47:869–81.CrossRefGoogle Scholar
  38. 38.
    Kashparov V, Yoschenko V, Levchuk S, Bugai D, Van Meir N, Simonucci C, Martin-Garin A. Radionuclide migration in the experimental polygon of the red Forest waste site in the Chernobyl zone – part 1: characterization of the waste trench, fuel particle transformation processes in soils, biogenic fluxes and effects on biota. Appl Geochem. 2012;27:1348–58.  https://doi.org/10.1016/j.apgeochem.2011.11.004.CrossRefGoogle Scholar
  39. 39.
    Evangeliou N, Zibtsev S, Myroniuk V, Zhurba M, Hamburger T, Stohl A, Balkanski Y, Paugam R, Mousseau TA, Møller AP, Kireev SI. Resuspension and atmospheric transport of radionuclides due to wildfires near the Chernobyl nuclear power plant in 2015: an impact assessment. Sci Rep. 2016;6:26062. https://www.nature.com/articles/srep26062.CrossRefGoogle Scholar
  40. 40.
    Kashparov V, Zhurba MA, Kireev SI, Zibtsev SV, Myroniuk VV. Evaluation of the expected doses of fire brigades at the Chornobyl exclusion zone in April 2015. Nucl Phys Atom Energy. 2015;16(4):399–407. http://jnpae.kinr.kiev.ua/16.4/Articles_PDF/jnpae-2015-16-0399-Kashparov.pdf.CrossRefGoogle Scholar
  41. 41.
    Kashparov V, Myronіuk VV, Zhurba MA, Zibtsev SV, Glukhovskiy AS, Zhukova OM. Radiological consequences of the fire in the Chernobyl exclusion zone in April 2015. Radiat Biol Radioecol. 2017;57(5):512–27.Google Scholar
  42. 42.
    Kashparov V, et al. Forest fires in the territory contaminated as a result of the Chernobyl accident: radioactive aerosol resuspension and exposure of firefighters. J Environ Radioact. 2000;51:281–98.CrossRefGoogle Scholar
  43. 43.
    Yoschenko VI, Kashparov VA, Protsak VP, Lundin SM, Levchuk SE, Kadygrib AM, Zvarich SI, Khomutinin YV, Maloshtan IM, Lanshin VP, Kovtun MV, Tschiersch J. Resuspension and redistribution of radionuclides during grassland and forest fires in the Chernobyl exclusion zone: part I. Fire experiments. J Environ Radioact. 2006;86(2):143–63.  https://doi.org/10.1016/j.jenvrad.2005.08.003.CrossRefPubMedGoogle Scholar
  44. 44.
    Yoschenko VI, Kashparov VA, Levchuk SE, Glukhovskiy AS, Khomutinin YV, Protsak VP, Lundin SM, Tschiersch J. Resuspension and redistribution of radionuclides during grassland and forest fires in the Chernobyl exclusion zone: part II. Modeling the transport process. J Environ Radioact. 2006;87(3):260–78.  https://doi.org/10.1016/j.jenvrad.2005.12.003.CrossRefPubMedGoogle Scholar
  45. 45.
    Dewiere L, Bugai D, Kashparov V, Barthès V. Validation of the global model for 90Sr migration from the waste burial in the Chernobyl exclusion zone. Radioprotection. 2005;40(1):S245–51.CrossRefGoogle Scholar
  46. 46.
    Levchuk S, Kashparov V, Maloshtan I, Yoschenko V, Van Meir N. Migration of transuranic elements in groundwater from the near-surface radioactive waste site. Appl Geochem. 2012;27(7):1339–47.  https://doi.org/10.1016/j.apgeochem.2012.01.002.CrossRefGoogle Scholar
  47. 47.
    Kashparov V, Colle C, Zvarich S, Yoschenko V, Levchuk S, Lundin S. Soil-to-plant halogens transfer studies 1. Root uptake of radioiodine by plants. J Environ Radioact. 2005;79(2):187–204.  https://doi.org/10.1016/j.jenvrad.2004.06.005.CrossRefPubMedGoogle Scholar
  48. 48.
    Kashparov V, Colle C, Zvarich S, Yoschenko V, Levchuk S, Lundin S. Soil-to-plant halogens transfer studies 2. Root uptake of radiochlorine by plants. J Environ Radioact. 2005;79(3):233–53.  https://doi.org/10.1016/j.jenvrad.2004.07.001.CrossRefPubMedGoogle Scholar
  49. 49.
    Beresford NA, Barnett CL, Gashchak S, Maksimenko A, Guliaichenko E, Woodb MD, Izquierdo M. Radionuclide transfer to wildlife at a ‘reference site’ in the Chernobyl exclusion zone and resultant radiation exposures. J Environ Radioact. 2018. (In press).  https://doi.org/10.1016/j.jenvrad.2018.02.007.
  50. 50.
    Fuller N, Smith JT, Nagorskaya LL, Gudkov DI, Ford AT. Does Chernobyl-derived radiation impact the developmental stability of Asellus aquaticus 30 years on? Sci Total Environ. 2017;576:242–50.  https://doi.org/10.1016/j.scitotenv.2016.10.097.CrossRefPubMedGoogle Scholar
  51. 51.
    Fuller N, Ford AT, Nagorskaya LL, Gudkov DI, Smith JT. Reproduction in the freshwater crustacean Asellus aquaticus along a gradient of radionuclide contamination at Chernobyl. Sci Total Environ. 2018;628–629:11–7.  https://doi.org/10.1016/j.scitotenv.2018.01.309.CrossRefPubMedGoogle Scholar
  52. 52.
    Geras’kin S. Ecological effects of exposure to enhanced levels of ionizing radiation. J Environ Radioact. 2016;162–163:347–57.  https://doi.org/10.1016/j.jenvrad.2016.06.012.CrossRefPubMedGoogle Scholar
  53. 53.
    Geras’kin S, Volkova P. Genetic diversity in Scots pine populations along a radiation exposure gradient. Sci Total Environ. 2014;496:317–27.  https://doi.org/10.1016/j.scitotenv.2014.07.020.CrossRefPubMedGoogle Scholar
  54. 54.
    Kashparova E, Levchuk S, Morozova V, Kashparov V. A dose rate causes no fluctuating asymmetry indexes changes in silver birch (Betula pendula (L.) Roth.) leaves and Scots pine (Pinus sylvestris L.) needles in the Chernobyl exclusion zone. J Environ Radioact. 2018. (In press).  https://doi.org/10.1016/j.jenvrad.2018.05.015.
  55. 55.
    Morozova VS, Kashparov VA, Levchuk SY, Umanska AO, Bishchuk YV, Otreshko LM. The functional state of cellular antioxidant defence system of shoots of Arabidopsis Thaliana exposed to the chronic ionizing radiation in the Chornobyl exclusion zone. Nucl Phys Atom Energy. 2016;17(3):302–7.. http://jnpae.kinr.kiev.ua/17.3/Articles_PDF/jnpae-2016-17-0302-Morozova.pdfCrossRefGoogle Scholar
  56. 56.
    Yoschenko V, Kashparov V, Melnychuk M, Levchuk S, Bondar Y, Lazarev M, Yoschenko M, Farfán E, Jannik G. Chronic irradiation of scots pine trees (Pinus sylvestris) in the Chernobyl exclusion zone: dosimetry and radiobiological effects. Health Phys. 2011;101:393–408.  https://doi.org/10.1097/HP.0b013e3182118094.CrossRefPubMedGoogle Scholar
  57. 57.
    Henner P, Hurtevent P, Thiry Y, Levchuk S, Yoschenko V, Kashparov V. Translocation of 125I, 75Se and 36Cl to edible parts of radish, potato and green bean following wet foliar contamination under field conditions. J Environ Radioact. 2013;124:171–84.  https://doi.org/10.1016/j.jenvrad.2013.05.012.CrossRefPubMedGoogle Scholar
  58. 58.
    Hurtevent P, Thiry Y, Levchuk S, Yoschenko V, Henner P, Madoz-Escande C, Leclerc E, Colle C, Kashparov V. Translocation of 125I, 75Se and 36Cl to wheat edible parts following wet foliar contamination under field conditions. J Environ Radioact. 2013;121:43–54.  https://doi.org/10.1016/j.jenvrad.2012.04.013.CrossRefPubMedGoogle Scholar
  59. 59.
    Kashparov V, Colle C, Levchuk S, Yoschenko V, Zvarich S. Radiochlorine concentration ratios for agricultural plants in various soil conditions. J Environ Radioact. 2007;95(1):10–22.  https://doi.org/10.1016/j.jenvrad.2007.01.008.CrossRefPubMedGoogle Scholar
  60. 60.
    Kashparov V, Colle C, Levchuk S, Yoschenko V, Svydynuk N. Transfer of chlorine from the environment to agricultural foodstuffs. J Environ Radioact. 2007;94(1):1–15.  https://doi.org/10.1016/j.jenvrad.2006.12.006.CrossRefPubMedGoogle Scholar
  61. 61.
    Roux C, Le Gal La Salle C, Simonucci C, Van Meir N, Fifield LK, Diez O, Bassot S, Simler R, Bugai D, Kashparov V, Lancelot J. High 36Cl/Cl ratios in Chernobyl groundwater. J Environ Radioact. 2014;138:19–32.  https://doi.org/10.1016/j.jenvrad.2014.07.008.CrossRefPubMedGoogle Scholar
  62. 62.
    Sheppard SC. An index of radioecology, what has been important. J Environ Radioact. 2003;68:1–10.CrossRefGoogle Scholar
  63. 63.
    Ivanov V. Likvidatory. Radiologicheskiye posledstviya Chernobylya – Tsentr sodeystviya sotsial’no-ekologicheskim initsiativam atomnoy otrasli. 2010.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Valery Kashparov
    • 1
    • 2
  1. 1.Ukrainian Institute of Agricultural RadiologyNational University of Life and Environmental Sciences of UkraineKyivUkraine
  2. 2.CERAD CoE Environmental Radioactivity/Department of Environmental SciencesNorwegian University of Life SciencesAasNorway

Personalised recommendations