Advertisement

Marine Fungal Diversity: Present Status and Future Perspectives

  • V. Venkateswara Sarma
Chapter

Abstract

Fungal diversity in marine habitats varies with the techniques adopted. The processing of water and soil samples in artificial media on Petri dishes results in those similar to terrestrial environments, whereas direct examination of decaying plant substrata results in litter fungi mostly belonging to ascomycetes. With the advent of molecular techniques and retrieval of common soil fungi from deep-sea environments, it is now believed that the definition of marine fungi hitherto was narrow, and hence, the scope and definition of what is a marine fungus need to be expanded. Till 2009, there were 530 marine fungi that were reported, but after broadening the definition of marine fungi, this number has risen to 1112 species in 472 genera by 2015. The list included marine-derived fungi, which are now considered as marine fungi. The present number of marine fungi stands at 1206. Halosphaeriales belonging to Ascomycota is the most speciose order. Marine fungi are taxonomically diverse, though they may be physiologically or ecologically a defined group. Molecular sequence studies also reveal that marine environments comprise a large diversity of forms and lineages, including chytrids, filamentous hyphal forms, and multicellular forms. Ecologically, marine fungi play saprophytic and parasitic roles. A number of bioactive compounds have been reported from marine fungi which have therapeutic potential, including antimicrobial, antioxidant, anticancer, and various other disease states. Marine fungal diversity in the light of molecular inputs and their role in human welfare are discussed in this chapter.

Keywords

Culture-dependent Culture-independent Ecology Enzymes Bioactive compounds Biodiversity Biotechnology Marine fungi Molecular diversity 

Notes

Acknowledgments

The photomicrographs included in this chapter were taken during my research pursuits with Late Prof. B.P.R. Vittal, C.A.S. in Botany, University of Madras, Chennai, India; Dr. S. Raghukumar, Microbiology Division, National Institute of Oceanography (NIO), Dona Paula, Goa, India; and Dr.K.D. Hyde, Dept. of Ecology and Biodiversity, University of Hong Kong and presently at Mae Fau Luang University, Chiang Rai, Thailand, in a collaborative work during 1998–1999 carried out at NIO, Goa, India, and they are thanked for the encouragement.

References

  1. Abdel-Wahab MA, El-Samawaty AEMA, El-Gorbani AM, Yassin AM, Alsaadi MH (2018) Khaleijomyces marinus gen. Et sp. nov. (Juncigenaceae, Torpedosporales) a new lignicolous marine fungus from Saudi Arabia. Phytotaxa 340:277–285CrossRefGoogle Scholar
  2. Aguileta G, Marthey S, Chiapello H, Lebrun MH, Rodolphe F, Fournier E, Gendrault-Jacquemard A, Giraud T (2008) Assessing the performance of single copy genes for recovering robust phylogenies. Syst Biol 57:613–627PubMedCrossRefGoogle Scholar
  3. Alexander E, Stock A, Breiner HW, Behnke A, Bunge J, Yakimov MM, Stoeck T (2009) Microbial eukaryotes in the hypersaline anoxic L’Atalante deep-sea basin. Environ Microbiol 11:360–381PubMedCrossRefGoogle Scholar
  4. Amend A (2014) From dandruff to deep-sea vents: Malassezia like fungi are ecologically hyper-diverse. PLoS Pathog 10:1004277.  https://doi.org/10.1371/journal.pat.1004277 CrossRefGoogle Scholar
  5. Amend AS, Barshis DJ, Oliver TA (2012) Coral-associated marine fungi form novel lineages and heterogeneous assemblages. ISME J 6:1291–1301PubMedCrossRefGoogle Scholar
  6. Arfi Y, Marchand C, Wartel M, Record E (2012) Fungal diversity in anoxic-sulfidic sediments in a mangrove soil. Fungal Ecol 5:282–285CrossRefGoogle Scholar
  7. Arnold AE, Henk DA, Eells RL, Lutzoni F, Vilgalys R (2007) Diversity and phylogenetic affinities of foliar fungal endophytes in loblolly pine inferred by culturing and environmental PCR. Mycologia 99:185–206PubMedCrossRefGoogle Scholar
  8. Bass D, Howe A, Brown N, Barton H, Demidova M, Michelle H, Li L, Sanders H, Watkinson SC, Willcock S, Richards TA (2007) Yeast forms dominate fungal diversity in the deep oceans. Proc R Soc B 274:3069–3077PubMedCrossRefGoogle Scholar
  9. Bhadury P, Mohammad BT, Wright PC (2006) The current status of natural products from marine fungi and their potential as anti-infective agents. J Ind Microbiol Biotechnol 33:325–337PubMedCrossRefGoogle Scholar
  10. Blackwell M (2011) The fungi: 1, 2, 3 … 5.1 million species? Am J Bot 98:426–438.  https://doi.org/10.3732/ajb.1000298 CrossRefPubMedGoogle Scholar
  11. Blunt JW, Copp BR, Keyzers RA, Munro MHG, Prinsep MR (2016) Marine natural products. Nat Prod Rep 33:382–431PubMedCrossRefGoogle Scholar
  12. Bucher VVC, Hyde KD, Pointing SB, Reddy CA (2004) Production of wood decay enzymes, mass loss and lignin solubilization in wood by marine ascomycetes and their anamorphs. Fungal Divers 15:1–14Google Scholar
  13. Bugni TS, Ireland CM (2004) Marine-derivedfungi: achemicallyand biologically diverse group of microorganisms. Nat Prod Rep 21:143–163.  https://doi.org/10.1039/b301926h. CABICrossRefPubMedGoogle Scholar
  14. Collado J, Platas G, Paulus B, Bills GF (2007) High throughput culturing of fungi from plant litter by a dilution-to-extinction technique. FEMS Microbiol Ecol 60:521–533PubMedCrossRefGoogle Scholar
  15. Culligan EP, Sleator RD, Marchesi JR, Hill C (2014) Metagenomics and novel gene discovery: promise and potential for novel therapeutics. Virulence 5:399–412PubMedCrossRefGoogle Scholar
  16. Cury JC, Araujo FV, Coelho-Souza SA, Peixoto RS, Oliveira JAL, Santos HF, Davila AMR, Rosado AS (2011) Microbial diversity of a Brazilian coastal region influenced by an upwelling system and anthropogenic activity. PLoS One 6:e16553PubMedPubMedCentralCrossRefGoogle Scholar
  17. D’Souza J, Rodrigues BF (2013) Biodiversity of arbuscular mycorrhizal (AM) fungi in mangroves of Goa in West India. J For Res 24:515–523CrossRefGoogle Scholar
  18. D’Souza DT, Tiwari R, Sah AK, Raghukumar C (2006) Enhanced production of laccase by a marine fungus during treatment of colored effluents and synthetic dyes. Enzym Microb Technol 38:504–511.  https://doi.org/10.1016/j.enzmictec.2005.07.005 CrossRefGoogle Scholar
  19. Damare SR, Nagarajan M, Raghukumar C (2008) Spore germination of fungi belonging to Aspergillus species under deep-sea conditions. Deep-Sea Res 55:670–678CrossRefGoogle Scholar
  20. Dawson SC, Pace NR (2002) Novel kingdom-level eukaryotic diversity in anoxic environments. Proc Natl Acad Sci U S A 99:8324–8329PubMedPubMedCentralCrossRefGoogle Scholar
  21. de Vries RP, Riley R, Wiebenga A, Aguilar-Osorio G, Amillis S, Uchima CA, Anderluh G, Asadollahi M, Askin M, Barry K, Battaglia E, Bayram O, Benocci M, Reich A, Labes T, Braus-Stromeyer SA, Caldana C, Canovas D, Cerqueira GC, Chen FS, Chen WP, Choi C, Clum A, dos Santos RAC, Damasio ARD, Diallinas G, Emri T, Fekete E, Flipphi M, Freyberg S, Gallo A, Gournas C, Habgood R, Hainaut M, Harispe ML, Henrissat B, Hilden KS, Hope R, Hossain A, Karabika E, Karaffa L, Karanyi Z, Krasevec N, Kuo A, Kusch H, LaButti K, Lagendijk EL, Lapidus A, Levasseur A, Lindquist E, Lipzen A, Logrieco AF, MacCabe A, Makela MR, Malavazi I, Melin P, Meyer V, Mielnichuk N, Miskei M, Molnar AP, Mule G, Ngan CY, Orejas M, Orosz E, Ouedraogo JP, Overkamp KM, Park HS, Perrone G, Piumi F, Punt PJ, Ram AFJ, Ramon A, Rauscher S, Record E, Riano-Pachon DM, Robert V, Rohrig J, Ruller R, Salamov A, Salih NS, Samson RA, Sandor E, Sanguinetti M, Schutze T, Sepcic K, Shelest E, Sherlock G, Sophianopoulou V, Squina F, Sun H, Susca A, Todd RB, Tsang A, Unkles SE, van de Wiele N, van Rossen-Uffink D, Oliveira JVD, Vesth TC, Visser J, Yu JH, Zhou MM, Andersen MR, Archer DB, Baker SE, Benoit I, Brakhage AA, Braus GH, Fischer R, Frisvad JC, Goldman GH, Houbraken J, Oakley B, Pocsi I, Scazzocchio C, Seiboth B, van Kuyk PA, Wortman J, Dyer PS, Grigoriev IV (2017) Comparative genomics reveals high biological diversity and specific adaptations in the industrially and medically important fungal genus Aspergillus. Genome Biol 18:1CrossRefGoogle Scholar
  22. Debbab A, Aly AH, Lin WH, Proksch P (2010) Bioactive compounds from marine bacteria and fungi. Microb Biotechnol 3:544–563PubMedPubMedCentralCrossRefGoogle Scholar
  23. Deshmukh SK, Prakash V, Ranjan N (2018) Marine fungi: a source of potential anticancer compounds. Front Microbiol 8:2536.  https://doi.org/10.3389/fmicb.2017.02536 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Devadatha B, Sarma VV, Ariyawansa HA, Jones EBG (2018a) Deniquelatavittalii sp. nov., a novel Indian saprobic marine fungus on Suaedamonoica and two new records of marine fungi from Muthupet mangroves, east coast of India. Mycosphere 9:565–582.  https://doi.org/10.5943/mycosphere/9/3/8 CrossRefGoogle Scholar
  25. Devadatha B, Sarma VV, Jeewon R, Wanasinghe DN, Hyde KD, Jones EBG (2018b) Thyridariella, a novel marine fungal genus from India: morphological characterization and phylogeny inferred from multigene DNA sequence analyses. Mycol Prog 17:791–804.  https://doi.org/10.1007/s11557-018-1387-4 CrossRefGoogle Scholar
  26. Devadatha B, Sarma VV, Jeewon R, Jones EBG (2018c) Morosphaeria muthupetensis sp. nov. (Morosphaeriaceae) from India: morphological characterisation and multigene phylogenetic inference. Bot Mar 61:395–405.  https://doi.org/10.1515/bot-2017-0124 CrossRefGoogle Scholar
  27. Ebel R (2012) Natural products from marine-derived fungi. In: Jones EBG, Pang KL (eds) Marine fungi and fungal-like organisms. Walter De Gruyter, Berlin, pp 411–440Google Scholar
  28. Edgcomb VP, Kysela DT, Teske A, de Vera Gomez A, Sogin ML (2002) Benthic eukaryotic diversity in the Guaymas Basin hydrothermal vent environment. Proc Natl Acad Sci U S A 99:7658–7662PubMedPubMedCentralCrossRefGoogle Scholar
  29. Edgcomb VP, Beaudoin D, Gast R, Biddle JF, Teske A (2011) Marine subsurface eukaryotes: the fungal majority. Environ Microbiol 13:172–183PubMedCrossRefGoogle Scholar
  30. Feau N, Decourcelle T, Husson C, Desprez-Loustau ML, Dutech C (2011) Finding single copy genes out of sequenced genomes for multilocus phylogenetics in non-model Fungi. PLoS One 6:e18803PubMedPubMedCentralCrossRefGoogle Scholar
  31. Fell JW, Boekhout T, Fonseca A, Scorzetti G, Statzell-Tallman A (2000) Biodiversity and systematics of basidiomycetous yeasts as determined by large-subunit rDNA D1/D2 domain sequence analysis. Int J Syst Evol Microbiol 50:1351–1371PubMedCrossRefGoogle Scholar
  32. Gao Z, Li BL, Zheng CC, Wang G (2008) Molecular detection of fungal communities in the Hawaiian marine sponges Suberiteszeteki and Mycale armata. Appl Environ Microbiol 74:6091–6101PubMedPubMedCentralCrossRefGoogle Scholar
  33. Gao Z, Johnson ZI, Wang G (2010) Molecular characterization of the spatial diversity and novel lineages of mycoplankton in Hawaiian coastal waters. ISME J 4:111–120PubMedCrossRefGoogle Scholar
  34. Glass NL, Donaldson GC (1995) Development of primer setsdesigned for use with the PCR to amplified conserved genes from filamentous ascomycetes. Appl Environ Microbiol 61:1323–1330PubMedPubMedCentralGoogle Scholar
  35. Grigoriev IV, Nikitin R, Haridas S, Kuo A, Ohm R, Otillar R, Riley R, Salamov A, Zhao XL, Korzeniewski F, Smirnova T, Nordberg H, Dubchak I, Shabalov I (2014) MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res 42:D699–D704PubMedCrossRefGoogle Scholar
  36. Grossar HP, Wurzbacher C, James TY, Kagami M (2016) Discovery of dark matter fungi in aquatic ecosystems demands a reappraisal of the phylogeny and ecology of zoosporic fungi. Fungal Ecol 19:28–38.  https://doi.org/10.1016/j.funeco.2015.06.004 CrossRefGoogle Scholar
  37. Gutierrez MH, Jara AM, Pantoja S (2016) Fungal parasites infect marine diatoms in the upwelling ecosystem of the Humboldt current system off Central Chile. Environ Microbiol 18:1646–1653PubMedCrossRefGoogle Scholar
  38. Hassett BT, Gradinger R (2016) Chytrids dominate arctic marine fungal communities. Environ Microbiol 18:2001–2009PubMedCrossRefGoogle Scholar
  39. Hassett BT, Ducluzeau A-LL, Collins RE, Gradinger R (2017) Spatial distribution of aquatic marine fungi across western Arctic and sub-Arctic. Environ Microbiol 19:475–484PubMedCrossRefGoogle Scholar
  40. Hawksworth DL (1991) The fungal dimension of biodiversity: magnitude, significance and conservation. Mycol Res 95:641–655CrossRefGoogle Scholar
  41. Hawksworth DL (2001) The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol Res 105:1422–1432CrossRefGoogle Scholar
  42. Hubka V, Kolarik M (2012) Beta-tubulin paralogue tubC is frequently misidentified as the benA gene in Aspergillus section Nigri taxonomy: primer specificity testing ad taxonomic consequences. Persoonia 29:1–10PubMedPubMedCentralCrossRefGoogle Scholar
  43. Hyde KD, Alias SA (2000) Biodiversity and distribution of fungi associated with decomposing. Biodivers Conserv 9:393–402CrossRefGoogle Scholar
  44. Hyde KD, Jones EBG (1988) Marine mangrove fungi. PSZNI Mar Ecol 9:15–38CrossRefGoogle Scholar
  45. Hyde KD, Lee SY (1995) Ecology of mangrove fungi and their role in nutrient cycling: what gaps occur in our knowledge? Hydrobiologia 295:107–118CrossRefGoogle Scholar
  46. Hyde KD, Sarma VV (2000) Marine mycology – a practical approach. Fungal Diversity Press, Hong Kong, pp 201–264Google Scholar
  47. Hyde KD, Jones EBG, Leano E, Pointing SB, Poonyth AD, Vrijmoed LLP (1998) Role of marine fungi in marine ecosystems. Biodivers Conserv 7:1147–1161CrossRefGoogle Scholar
  48. Hyde KD, Sarma VV, Jones EBG (2000) Morphology and taxonomy of higher marine fungi. In: Hyde KD, Pointing SB (eds) Marine mycology – a practical approach. Fungal Diversity Press, Hong Kong University, Hong KongGoogle Scholar
  49. Hyde KD, McKenzie EHC, KoKo TW (2011) Towards incorporating anamorphic fungi in a natural classification –checklist and notes for 2010. Mycosphere 2:1–88Google Scholar
  50. Imhoff JF (2016) Natural products from marine fungi – still an under represented resource. Mar Drugs 14Google Scholar
  51. James TY, Pelin A, Bonen L, Ahrendt S, Sain D, Corradi N, Stajich JE (2013) Shared signatures of parasitism and phylogenomics unite Cryptomycota and microsporidia. Curr Biol 23:1548–1553PubMedCrossRefGoogle Scholar
  52. Jebaraj CS, Raghukumar C, Behnke A, Stoeck T (2010) Fungal diversity in oxygen-depleted regions of the Arabian Sea revealed by targeted environmental sequencing combined with cultivation. FEMS Microbiol Ecol 71:399–412PubMedCrossRefGoogle Scholar
  53. Jones EBG (1994) Fungal adhesion. Mycol Res 98:961–981CrossRefGoogle Scholar
  54. Jones EBG (1995) Ultrastructure and taxonomy of the aquatic ascomycetous order Halosphaeriales. Can J Bot 73(S1):790–801CrossRefGoogle Scholar
  55. Jones EBG (2000) Marine fungi: some factors influencing biodiversity. Fungal Divers 4:53–73Google Scholar
  56. Jones EBG (2011) Are there more marine fungi to be described? Bot Mar 54:343–354CrossRefGoogle Scholar
  57. Jones EBG, Alias SA (1997) Biodiversity of mangrove fungi. In: Hyde KD (ed) Biodiversity of tropical microfungi. Hong Kong University Press, Hong KongGoogle Scholar
  58. Jones EBG, Hyde KD (1988) Methods for the study of marine fungi from the mangroves. In: Agate AD, Subramanian CV, Vanucci M (eds) Mangrove microbiology. Role of microorganisms in nutrient cycle of mangrove soils and waters. UNDP/UNESCO, New Delhi, pp 9–27Google Scholar
  59. Jones EBG & Mitchell JI (1996) Biodiversity of marine fungi. In: Cimerman A, Gunde-Cimerman N (eds) Biodiversity: international biodiversity seminar. National Inst. Chemistry and Slovenia National Commission for UNESCO, Ljubljana, pp 31±42Google Scholar
  60. Jones EBG, Sakayaroj J, Suetrong S, Somrithipol S, Pang KL (2009) Classification of marine Ascomycota, anamorphic taxa and Basidiomycota. Fungal Divers 35:1–187Google Scholar
  61. Jones MDM, Forn I, Gadelha C, Egan MJ, Bass D, Massana R, Richards TA (2011) Discovery of novel intermediate forms redefines the fungal tree of life. Nature 474:200–U234PubMedCrossRefGoogle Scholar
  62. Jones EBG, Suetrong S, Sakayaroj J, Bahkali AH, Abdel-Wahab MA, Boekhout T, Pang K-L (2015) Classification of marine Ascomycota, Basidiomycota, Blastocladiomycota and Chytridiomycota. Fungal Divers 73:1–72CrossRefGoogle Scholar
  63. Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008) Dictionary of the fungi, 10th edn. CABI Europe, OxonGoogle Scholar
  64. Kohlmeyer J, Kohlmeyer E (1979) Marine mycology: the higher fungi. Academic Press, LondonGoogle Scholar
  65. Kohlmeyer J, Volkmann-Kohlmeyer B (1991) Illustrated key to the filamentous higher marine fungi. Bot Mar 34:1–64CrossRefGoogle Scholar
  66. Kohlmeyer J, Volkmann-Kohlmeyer B (2001) The biodiversity of fungi on Juncus roemerianus. Mycol Res 105:1411–1412CrossRefGoogle Scholar
  67. Kristensen R, Torp M, Kosiak B, Holst-Jensen A (2005) Phylogeny and toxigenic potential is correlated in Fusarium species as revealed by partial translation elongation factor 1 alpha gene sequences. Mycol Res 109:173–186PubMedCrossRefGoogle Scholar
  68. Kuhnert E, Fournier J, Peršoh D, Luangsa-ard JJD, Stadler M (2014) New Hypoxylon species from Martinique and new evidence on the molecular phylogeny of Hypoxylon based on ITS rDNA and β-tubulindata. Fungal Divers 64:181–203CrossRefGoogle Scholar
  69. Kumaresan V, Suryanarayanan TS (2002) Endophyte assemblages in young, mature and senescent leaves of Rhizophoraapiculata: evidence for the role of endophytes in mangrove litter degradation. Fungal Divers 9:81–91Google Scholar
  70. Kurtzman CP, Fell JW, Boekhout T (2011) The yeasts, a taxonomic study, vol 3. Elsevier, AmsterdamGoogle Scholar
  71. Lai XT, Cao LX, Tan HM, Fang S, Huang YL, Zhou SN (2007) Fungal communities from methane hydrate-bearing deep-sea marine sediments in South China Sea. ISME J 1(8):756–762PubMedCrossRefGoogle Scholar
  72. Le Calvez T, Burgaud G, Mahe S, Barbier G, Vandenkoornhuyse P (2009) Fungal diversity in deep-sea hydrothermal ecosystems. Appl Environ Microbiol 75:6415–6421.  https://doi.org/10.1128/AEM.00653-09 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Lefèvre E, Bardot C, Noël C, Carrias JF, Viscogliosi E, Amblard C, Sime-Ngando T (2007) Unveiling fungal zooflagellates as members of freshwater picoeukaryotes: evidence from a molecular diversity study in a deep meromictic lake. Environ Microbiol 9:61–71.  https://doi.org/10.1111/j.1462-2920.2006.01111.x CrossRefPubMedGoogle Scholar
  74. Lefranc M, Thénot A, Lepère C, Debroas D (2005) Genetic diversity of small eukaryotes in lakes differing by their trophic status. Appl Environ Microbiol 71:5935–5942.  https://doi.org/10.1128/AEM.71.10.5935-5942.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Liu YJ, Whelen S, Hall BD (1999) Phylogenetic relationships among ascomycetes: evidence from an RNA polymerase II subunit. Mol Biol Evol 16:1799–1808PubMedCrossRefGoogle Scholar
  76. Liu KL, Porras-Alfaro A, Kuske CR, Eichorst SA, Xie G (2012) Accurate, rapid taxonomic classification of fungal large-subunit rRNA genes. Appl Environ Microbiol 78:1523–1533PubMedPubMedCentralCrossRefGoogle Scholar
  77. Lopez-Garcia P, Rodriguez-Valera F, Pedros-Allo C, Moreira D (2001) Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 409:603–607PubMedCrossRefGoogle Scholar
  78. Lopez-Garcıa P, Philippe H, Gail F, Moreira D (2003) Autochthonous eukaryotic diversity in hydrothermal sediment and experimental microcolonizers at the mid-Atlantic ridge. Proc Natl Acad Sci U S A 100:697–702PubMedPubMedCentralCrossRefGoogle Scholar
  79. López-Garcia P, Vereshchaka A, Moreira D (2007) Eukaryotic diversity associated with carbonates and fluid-seawater interface in lost City hydrothermal field. Environ Microbiol 9:546–554.  https://doi.org/10.1111/j.1462-2920.2006.01158.x CrossRefPubMedGoogle Scholar
  80. Lucking R, Hawksworth DL (2018) Formal description of sequence-based voucherless fungi: promises, pitfalls, and how to resolve them. IMA Fungus 9:143–166PubMedPubMedCentralCrossRefGoogle Scholar
  81. Lutzoni F, Kauff F, Cox CJ, McLaughlin D, Celio G, Dentinger B, Padamsee M, Hibbett D, James TY, Baloch E, Grube M, Reeb V, Hofstetter V, Schoch C, Arnold AE, Miadlikowska J, Spatafora J, Johnson D, Hambleton S, Crockett M, Shoemaker R, Hambleton S, Crockett M, Shoemaker R, Sung GH, Lucking R, Lumbsch T, O’Donnell K, Binder M, Diederich P, Ertz D, Gueidan C, Hansen K, Harris RC, Hosaka K, Lim YW, Matheny B, Nishida H, Pfister D, Rogers J, Rossman A, Schmitt I, Sipman H, Stone J, Sugiyama J, Yahr R, Vilgalys R (2004) Assembling the fungal tree of life: progress, classification and evolution of subcellular traits. Am J Bot 91:1446–1480PubMedCrossRefGoogle Scholar
  82. Manohar CS, Raghukumar C (2013) Fungal diversity from various marine habitats deduced through culture-independent studies. FEMS Microbiol Lett 341:69–78PubMedCrossRefGoogle Scholar
  83. Massana R, Pedrós-Alió C (2008) Unveiling new microbial eukaryotes in the surface ocean. Curr Opin Microbiol 11:213–218.  https://doi.org/10.1016/j.mib.2008.04.004 CrossRefPubMedGoogle Scholar
  84. Massana R et al (2015) Marine protist diversity in European coastal waters and sediments asrevealed by high-throughput sequencing. Environ Microbiol 17:4035–4049.  https://doi.org/10.1111/1462-2920.12955 CrossRefPubMedGoogle Scholar
  85. Nagahama T, Takahashi E, Nagano Y, Abdel-Wahab MA, Miyazaki M (2011) Molecular evidence that deep-branching fungi are major fungal components in deep-sea methane. Environ Microbiol 13:2359–2370PubMedCrossRefGoogle Scholar
  86. Nagano Y, Nagahama T, Hatada Y, Nunoura T, Takami H, Miyazaki J, Takai K, Horikoshi K (2010) Fungal diversity in deep-sea sediments – the presence of novel fungal groups. Fungal Ecol 3:316–325CrossRefGoogle Scholar
  87. O’Brien HE, Parrent JL, Jackson JA, Moncalvo JM, Vilgalys R (2005) Fungal community analysis by large-scale sequencing of environmental samples. Appl Environ Microbiol 71:5544–5550.  https://doi.org/10.1128/AEM.71.9.5544-5550.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  88. Orsi W, Biddle JF, Edgcomb V (2013a) Deep sequencing of subseafloor eukaryotic rRNA reveals active fungi across marine subsurface provinces. PLoS One 8:e56335.  https://doi.org/10.1371/journal.pone.0056335 CrossRefPubMedPubMedCentralGoogle Scholar
  89. Orsi WD, Edgcomb VP, Christman GD, Biddle JF (2013b) Gene expression in the deep biosphere. Nature 499:205–208.  https://doi.org/10.1038/nature12230 CrossRefPubMedGoogle Scholar
  90. Overy DP, Bayman P, Kerr RG, Bills GF (2014) An assessment of natural product discovery from marine (sensustrictu) and marine-derived fungi. Mycology 5:145–167PubMedPubMedCentralCrossRefGoogle Scholar
  91. Pang K-L, Jones EBG (2017) Recent advances in marine mycology. Bot Mar 60:361–362CrossRefGoogle Scholar
  92. Pang KL, Overy DP, Jones EBG, Calado MDL, Burgaud G, Walker AK, Johnson JA, Kerr RG, Cha HJ, Bills GF (2016) ‘Marine fungi’ and ‘marine-derived fungi’ in natural product chemistry research: toward a new consensual definition. Fungal Biol Rev 30:163–175CrossRefGoogle Scholar
  93. Panzer K, Yilmaz P, Weiß M, Reich L, Richter M, Wiese J, Schmaljohann R, Labes A, Imhoff JF, Glöckner FO, Reich M (2015) Identification of habitatspecific biomes of aquatic fungal communities using a comprehensive nearly fulllength 18S rRNA dataset enriched with contextual data. PLoS One 10:10134377Google Scholar
  94. Passarini MRZ, Rodrigues MVN, DaSilva M, Sette LD (2011) Marine derived filamentous fungi and their potential application for polycyclic aromatic hydrocarbon bioremediation. Mar Pollut Bull 62:364–370.  https://doi.org/10.1016/j.marpolbul.2010.10.003 CrossRefPubMedGoogle Scholar
  95. Picard KT (2017) Coastal marine habitats harbor novel early-diverging fungal diversity. Fungal Ecol 25:1–13CrossRefGoogle Scholar
  96. Pointing SB (1999) Qualitative methods for the determination of lignocellulolytic enzyme production by tropical fungi. Fungal Divers 2:17–33Google Scholar
  97. Raghukumar C, Raghukumar S, Chinnaraj A, Chandramohan D, D’Souza TM, Reddy CA (1994) Laccase and other lignocellulose modifying enzymes of marine fungi isolated from the coast of India. Bot Mar 37:515–523CrossRefGoogle Scholar
  98. Raghukumar C, Chandramohan D, Michel FC, Reddy CA (1996) Degradation of lignin and decolorization of paper mill bleach plant effluent (BPE) by marine fungi. Biotechnol Lett 18:105–106.  https://doi.org/10.1007/bf00137820 CrossRefGoogle Scholar
  99. Raghukumar C, Muraleedharan U, Gaud VR, Mishra R (2004) Simultaneous detoxification and decolorization of molasses spent wash bythe immobilized white-rot fungus Flavodonflavus isolated from a marine habitat. Enzym Microb Technol 35:197–202.  https://doi.org/10.1016/j.enzmictec.2004.04.010 CrossRefGoogle Scholar
  100. Raghukumar C, Shailaja MS, Parameswaran PS, Singh SK (2006) Removal of polycyclic aromatic hydrocarbons from aqueous media by the marinefungus NIOCC#312: involvement of lignin-degrading enzymes and exopolysaccharides. Indian J Mar Sci 35:373–379Google Scholar
  101. Raghukumar C, D’souza-Ticlo D, Verma AK (2008) Treatmentofcolored effluents with lignin- degrading enzymes: an emerging role of marine- derived fungi. Crit Rev Microbiol 34:189–206.  https://doi.org/10.1080/10408410802526044 CrossRefPubMedGoogle Scholar
  102. Rämä T, Davey M, Norden J, Halvorsen R, Blaalid R, Mathiassen G, Alsos I, Kauserud H (2016) Fungi sailing the Arctic Ocean: speciose communities in North Atlantic driftwood as revealed by high-throughput amplicon sequencing. Microb Ecol 72:295–304PubMedCrossRefGoogle Scholar
  103. Redou V, Navari M, Meslet-Cladlere L, Barbler G, Burgaud G (2015) Species richness and adaptation of marine fungi from deep-subsea floor sediments. Appl Environ Microbiol 81:3571–3583PubMedPubMedCentralCrossRefGoogle Scholar
  104. Rehner SA (2001) Primers for elongation factor 1-a (EF1-a). http://ocid.NACSE.ORG/research/deephyphae/EF1primer.pdf
  105. Reich M, Labes A (2017) How to boost marine fungal research: a first step towards a multidisciplinary approach by combining molecular fungal ecology and natural products chemistry. Mar Genomics 36:57–75PubMedCrossRefGoogle Scholar
  106. Reich M, Wicheis A, Panzer K, Krause E, Gimenez L, Gerdts G (2017) Impacts of a reduction in seawater pH mimicking ocean acidification on the structure and diversity of mycoplankton communities. Aquat Microb Ecol 79:221–233CrossRefGoogle Scholar
  107. Richards TA, Bass D (2005) Molecular screening of freeliving microbial eukaryotes: diversity and distribution using a meta-analysis. Curr Opin Microbiol 8:240–252.  https://doi.org/10.1016/j.mib.2005.04.010 CrossRefPubMedGoogle Scholar
  108. Richards TA, Jones MDM, Leonard G, Bass D (2012) Marine fungi: their ecology and molecular diversity. Annu Rev Mar Sci 4:495–522CrossRefGoogle Scholar
  109. Richards TA, Leonard G, Mahé F, Del Campo J, Romac S, Jones MD, Maguire F, Dunthorn M, De Vargas C, Massana R et al (2015) Molecular diversity and distribution of marine fungi across 130 European environmental samples. Proc R Soc B 282:2015–2043CrossRefGoogle Scholar
  110. Rohrmann S, Molitoris P (1992) Screening of wood degrading enzymes in marine fungi. Can J Bot 70:2116–2123CrossRefGoogle Scholar
  111. Sakayaroj J, Pang K-L, Jones EBG (2011) Multi-gene phylogeny of the halosphaeriaceae: its ordinal status, relationships between genera and morphological character evolution. Fungal Divers 46:87–109.  https://doi.org/10.1007/s13225-010-0072-y CrossRefGoogle Scholar
  112. Saleem M, Ali MS, Hussain S, Jabbar A, Ashraf M, Lee YS (2007) Marine natural products of fungal origin. Nat Prod Rep 24:1142–1152PubMedCrossRefGoogle Scholar
  113. Sarma VV, Hyde KD (2001) A review on frequently occurring fungi in mangroves. Fungal Divers 8:1–34Google Scholar
  114. Sarma VV, Vittal BPR (2001) Biodiversity of fungi on selected mangrove plants in the Godavari and Krishna deltas, east coast of India. Fungal Divers 6:113–129Google Scholar
  115. Schadt EE, Turner S, Kasarskis A (2010) A window into third-generation sequencing. Hum Mol Genet 19:R227–R240PubMedCrossRefGoogle Scholar
  116. Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W, Bolchacova E, Voigt K, Crous PW, Miller AN, Wingfield MJ, Aime MC, An KD, Bai FY, Barreto RW, Begerow D, Bergeron MJ, Blackwell M, Boekhout T, Bogale M, Boonyuen N, Burgaz AR, Buyck B, Cai L, Cai Q, Cardinali G, Chaverri P, Coppins BJ, Crespo A, Cubas P, Cummings C, Damm U, de Beer ZW, de Hoog GS, Del-Prado RBD, Dieguez-Uribeondo J, Divakar PK, Douglas B, Duenas M, Duong TA, Eberhardt U, Edwards JE, Elshahed MS, Fliegerova K, Furtado M, Garcia MA, Ge ZW, Griffith GW, Griffiths K, Groenewald JZ, Groenewald M, Grube M, Gryzenhout M, Guo LD, Hagen F, Hambleton S, Hamelin RC, Hansen K, Harrold P, Heller G, Herrera G, Hirayama K, Hirooka Y, Ho HM, Hoffmann K, Hofstetter V, Hognabba F, Hollingsworth PM, Hong SB, Hosaka K, Houbraken J, Hughes K, Huhtinen S, Hyde KD, James T, Johnson EM, Johnson JE, Johnston PR, Jones EBG, Kelly LJ, Kirk PM, Knapp DG, Koljalg U, Kovács GM, Kurtzman CP, Landvik S, Leavitt SD, Liggenstoffer AS, Liimatainen K, Lombard L, Luangsa-Ard JJ, Lumbsch HT, Maganti H, Maharachchikumbura SS, Martin MP, May TW, McTaggart AR, Methven AS, Meyer W, Moncalvo JM, Mongkolsamrit S, Nagy LG, Nilsson RH, Niskanen T, Nyilasi I, Okada G, Okane I, Olariaga I, Otte J, Papp T, Park D, Petkovits T, Pino-Bodas R, Quaedvlieg W, Raja HA, Redecker D, Rintoul TL, Ruibal C, Sarmiento-Ramirez JM, Schmitt I, Schussler A, Shearer C, Sotome K, Stefani FO, Stenroos S, Stielow B, Stockinger H, Suetrong S, Suh SO, Sung GH, Suzuki M, Tanaka K, Tedersoo L, Telleria MT, Tretter E, Untereiner WA, Urbina H, Vagvolgyi C, Vialle A, Vu TD, Walther G, Wang QM, Wang Y, Weir BS, Weiss M, White MM, Xu J, Yahr R, Yang ZL, Yurkov A, Zamora JC, Zhang N, Zhuang WY, Schindel D, Consortium FB (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proc Natl Acad Sci U S A 109:6241–6246.  https://doi.org/10.1073/pnas.1117018109 CrossRefPubMedPubMedCentralGoogle Scholar
  117. Seifert KA (2009) Progress towards DNA barcoding of fungi. Mol Ecol Resour 9:83–89PubMedCrossRefGoogle Scholar
  118. Sengupta A, Chaudhuri S (2002) Arbuscular mycorrhizal relations of mangrove plant community at the Ganges river estuary in India. Mycorrhiza 12:169–174PubMedCrossRefGoogle Scholar
  119. Singh P, Raghukumar C, Verma P, Shouche Y (2010) Phylogenetic diversity of culturable fungi from the deep-sea sediments of the central Indian Basin and their growth characteristics. Fungal Divers 40:89–102CrossRefGoogle Scholar
  120. Singh P, Raghukumar C, Verma P, Shouche Y (2011) Fungal community analysis in the deep-sea sediments of the central Indian Basin by culture-independent approach. Microb Ecol 61:507–517PubMedCrossRefGoogle Scholar
  121. Singh P, Raghukumar C, Verma P, Shouche Y (2012) Assessment of fungal diversity in deep-sea sediments by multiple primer approach. World J Microbiol Biotechnol 28:659–667PubMedCrossRefGoogle Scholar
  122. Stockinger H, Peyret-Guzzon M, Koegel S, Bouffaud ML, Redecker D (2014) The largest subunit of RNA polymerase II as a new marker gene to study assemblages of arbuscularmycorrhizal fungi in the field. PLoS One 9:e107783PubMedPubMedCentralCrossRefGoogle Scholar
  123. Suetrong S, Schoch CL, Spatafora JW, Kohlmeyer J, Volkmann-Kohlmeyer B, Sakayaroj J, Jones EBG (2009) Molecular systematics of the marine Dothideomycetes. Stud Mycol 64:155–173.  https://doi.org/10.3114/sim.2009.64.09 CrossRefPubMedPubMedCentralGoogle Scholar
  124. Suryanarayanan TS, Kumaresan V, Johnson JA (1998) Foliar fungal endophytes from two species of the mangrove Rhizophora. Can J Microbiol 44:1003–1006CrossRefGoogle Scholar
  125. Suryanarayanan TS, Thirunavukkarasu N, Govindarajulu MB, Sasse F, Jansen R, Murali TS (2009) Fungal endophytes and bioprospecting. Fungal Biol Rev 23:9–19CrossRefGoogle Scholar
  126. Takishita K, Tsuchiya M, Reimer JD, Maruyama T (2006) Molecular evidence demonstrating the basidiomycetous fungus Cryptococcus curvatus is the dominant microbial eukaryote in sediment at the Kuroshima knoll methane seep. Extremophiles 10:165–169.  https://doi.org/10.1007/s00792-005-0495-7 CrossRefPubMedGoogle Scholar
  127. Taylor JD, Cunliffe M (2016) Multi-year assessment of coastal planktonic fungi reveals environmental drivers of diversity and abundance. ISME J 10:2118–2128PubMedPubMedCentralCrossRefGoogle Scholar
  128. Taylor JW, Jacobson DJ, Kroken S, Kasuga T, Geiser DM, Hibbett DS, Fisher MC (2000) Phylogenetic speciesrecognition and species concepts in fungi. Fungal Genet Biol 31:21–32.  https://doi.org/10.1006/fgbi.2000.1228 CrossRefPubMedGoogle Scholar
  129. Taylor DL, Hollingsworth TN, McFarland JW, Lennon NJ, Nusbaum C, Ruess RW (2014) A first comprehensive census of fungi in soil reveals both hyperdiversity and finescale. Ecol Monogr 84:3–20CrossRefGoogle Scholar
  130. Thaler AD, Dover CLV, Vilgalys R (2012) Ascomycete phylotypes recovered from a Gulf of Mexico methane seep are identical to an uncultured deep-sea fungal clade from the Pacific. Fungal Ecol 5:270–273CrossRefGoogle Scholar
  131. Thines M, Crouss PW, Aime MC, Aoki T, Cai L, Hyde KD, Miller AN, Zhang N, Stadler M (2018) Ten reasons why a sequence based nomenclature is not useful for fungi anytime soon. IMA Fungus 9:177–183PubMedPubMedCentralCrossRefGoogle Scholar
  132. Vetrovsky T, Kolarik M, Zifcakova L, Zelenka T, Baldrian P (2016) The rpb2 gene represents a viable alternative molecular marker for the analysis of environmental fungal communities. Mol Ecol Resour 16:388–401PubMedCrossRefGoogle Scholar
  133. Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 172:4238–4246PubMedPubMedCentralCrossRefGoogle Scholar
  134. Wang H, Xu Z, Gao L, Hao BL (2009) A fungal phylogeny based on 82 complete genomes using the composition vector method. BMC Evol Biol 9:195PubMedPubMedCentralCrossRefGoogle Scholar
  135. Wegley L, Edwards R, Rodriguez-Brito B, Liu H, Rohwer F (2007) Metagenomic analysis of the microbial communityassociated with the coral Porites astreoides. Environ Microbiol 9:2707–2719PubMedCrossRefGoogle Scholar
  136. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322Google Scholar
  137. Wu Y-R, He T-T, Lun J-S, Maskaoui K, Huang T-W, Hu Z (2009) Removal of benzoapyrene by a fungus Aspergillus sp. BAP14. World J Microbiol Biotechnol 25:1395–1401.  https://doi.org/10.1007/s11274-009-0026-2 CrossRefGoogle Scholar
  138. Xu J (2016) Fungal DNA barcoding. Genome 59:913–932.  https://doi.org/10.1139/gen-2016-0046 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • V. Venkateswara Sarma
    • 1
  1. 1.Department of Biotechnology, School of Life SciencesPondicherry UniversityPondicherryIndia

Personalised recommendations