Advertisement

Thermophilic Fungal Diversity in Sustainable Development

  • Seema Dahiya
  • T. Satyanarayana
  • Bijender Singh
Chapter

Abstract

Thermophilic fungi inhabit a great variety of ecosystems such as soils, composts and several others. They have also been isolated from non-thermogenic environments. Both morphological and molecular approaches have been employed in identifying them. These fungi degrade a large number of lignocellulosic and other biomasses by producing a wide range of varied hydrolases. Hydrolytic enzymes of thermophilic fungi exhibit unusual properties, for example, thermostability, tolerance to organic solvents, long shelf life and others required for applications in different industrial processes. These moulds play a key role in composting, thus in mushroom production. Various antimicrobials and secondary metabolites are well known to be produced by these organisms, besides being useful in generating nanoparticles. They are also used as single cell protein and in waste treatment and bioremediation. The centre of attention in this chapter is the diversity of thermophilic fungi and their potential utility in sustainable development.

Keywords

Thermophilic fungi Degradation Lignocellulosics Enzymes Composting Single-cell protein Bioremediation 

References

  1. Ahirwar S, Soni H, Prajapati BP, KangO N (2017) Isolation and screening of thermophilic and thermotolerant fungi for production of hemicellulases from heated environments. Int J Fungal Biol 8(3):125–134Google Scholar
  2. Alexandrov VY (1977). Cells, molecules and temperature (translated from the Russian by Bernstam VA). Springer, Berlin.Google Scholar
  3. Allen PJ, Emerson R (1949) Guayule rubber, microbiological improvement by shrub retting. Ind Eng Chem 41:346–365CrossRefGoogle Scholar
  4. Alvarez-Zuniga MT, Santiago-Hernandez A, Rodriguez-Mendoza J, Campos JE, Pavon-Orozco P, Trejo-Estrada S, Hidalgo-Lara ME (2017) Taxonomic identification of the thermotolerant and fast-growing fungus Lichtheimia ramosa H71D and biochemical characterization of the thermophilic xylanase LrXynA. AMB Express 7:194PubMedPubMedCentralCrossRefGoogle Scholar
  5. Amlacher S, Sarges P, Flemming D (2011) Insight into structure and assembly of the nuclear pore complex by utilizing the genome of a eukaryotic thermophile. Cell 146:277–289PubMedCrossRefGoogle Scholar
  6. Apinis AE (1963) Occurrence of thermophilousmicrofungi in certain alluvial soils near Nottingham. Nova Hedgw 5:57–78Google Scholar
  7. Apinis AE, Pugh GJF (1967) Thermophilous fungi of birds’ nests. Mycopathol Mycol Appl 33:1–9CrossRefGoogle Scholar
  8. Awao T, Mitsugi K (1973) Notes on thermophilic fungi of Japan. Trans Mycol Soc Japan 14:145–160Google Scholar
  9. Bala A, Singh B (2016) Cost-effective production of biotechnologically important hydrolytic enzymes by Sporotrichum thermophile. Bioprocess Biosyst Eng 39:181–191PubMedCrossRefPubMedCentralGoogle Scholar
  10. Bala A, Singh B (2017) Concomitant production of cellulase and xylanase by thermophilic mould Sporotrichum thermophile in solid state fermentation and their applicability in bread making. World J Microbiol Biotechnol 33:109CrossRefGoogle Scholar
  11. Barnes TG, Eggins HOW, Smith EL (1972) Preliminary stages in the development of a process of the microbial upgrading of waste paper. Int Biodeterior Bull 8:112–116Google Scholar
  12. Barns SM, Delwiche CF, Palmer JD (1996) Perspectives on archaeal diversity, thermophily, and monophyly from environmental rRNA sequences. Proc Natl Acad Sci U S A 93:9188–9193PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bengtsson L, Johansson B, Hackett TJ (1995) Studies on the biosorption of uranium by Talaromycesemersonii CBS 814.70 biomass. Appl Microbiol Biotechnol 42:807–811PubMedCrossRefPubMedCentralGoogle Scholar
  14. Berka RM, IV& G, Otillar R (2011) Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris. Nat Biotechnol 29:922–929PubMedCrossRefPubMedCentralGoogle Scholar
  15. Blochl E, Rachel R, Burggraf S, Hafenbradl D, Jannasch HW, Stetter KO (1997) Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113°C. Extremophiles 1:14–21PubMedCrossRefPubMedCentralGoogle Scholar
  16. Bódai V, Peredi R, Bálint J (2003) Novel hydrolases from thermophilic filamentous fungi for enantiomerically and enantiotopically selective biotransformations. Adv Synth Catal 345:811–818CrossRefGoogle Scholar
  17. Brock TD (1995) The road to Yellowstone—and beyond. Annu Rev Microbiol 49:1–28PubMedCrossRefPubMedCentralGoogle Scholar
  18. Brock TD, Fred EB (1982) Biology of microorganisms. Prentice-Hall, Englewood CliffsGoogle Scholar
  19. Brown BS, Mills J, Hulse JM (1974) Chemical and biological degradation of waste plastics. Nature 250:161–163PubMedCrossRefPubMedCentralGoogle Scholar
  20. Chahal DS, Moo-Young M, Vlach D (1981) Effect of physical and physicochemical pretreatments of wood for SCP production withChaetomium cellulolyticum. Biotechnol Bioeng 23:2417–2420CrossRefGoogle Scholar
  21. Champman ES, Evans E, Jacobelli MC, Logan AA (1975) The cellulolytic and amylolytic activity of Papulaspora thermophila. Mycologia 67:608–615CrossRefGoogle Scholar
  22. Chang Y, Hudson HJ (1967) Fungi of wheat straw compost I. Ecological studies. Trans Br Mycol Soc 50:649–666CrossRefGoogle Scholar
  23. Christakopoulos P, Katapodis P, Kalogeris E (2003) Antimicrobial activity of acidic xylo-oligosaccharides produced by family 10 and 11 endoxylanases. Int J Biol Macromol 31:171–175PubMedCrossRefPubMedCentralGoogle Scholar
  24. Christensen CM (1957) Deterioration of stored grains by fungi. Bot Rev 23:108–134CrossRefGoogle Scholar
  25. Chu YS, Niu XM, Wang YL (2010) Isolation of putative biosynthetic intermediates of prenylated indole alkaloids from a thermophilic fungus Talaromyces thermophilus. Org Lett 12:4356–4359PubMedCrossRefPubMedCentralGoogle Scholar
  26. Clarke JH, Hill ST, Niles EV, Howard MAR (1969) Ecology of microflora of moist barley, barley in sealed silos on farms. Pest Infest Res 1966:14–16Google Scholar
  27. Cooney DG, Emerson R (1964) Thermophilic fungi. an account of their biology, activities and classification. W. H. Freeman & Co, San Francisco, CalifGoogle Scholar
  28. Córdova RS, Baratti J, Nungaray J, Loera O (2003) Identification of mexican thermophilic and thermotolerant fungal isolates. Micol Appl Int 15(2):37–44Google Scholar
  29. Crisan EV (1959) The isolation and identifi cation of thermophilic fungi. Mycologia 63:1171–1198Google Scholar
  30. Crisan EV (1969) The proteins of thermophilic fungi. In: Grunckel JE (ed) Current topics in plant science. Academic Press, New York/London, pp 32–33Google Scholar
  31. Czikkely M, Bálint Á (2016) Study of the degradation patterns of thermophilic fungi from special digested wastewater sludge samples. J Agric Environ Sci 3(2).  https://doi.org/10.18380/SZIE.COLUM.2016.3.2.47
  32. Davis ND, Wagener RE, Morgan-Jones G, Diener UL (1975) Toxigenic thermophilic and thermotolerant fungi. Appl Micobiol 29:455–457Google Scholar
  33. dos Santos E, Piovan T, Roberto IC et al (2003) Kinetics of the solid state fermentation of sugarcane bagasse by Thermoascus aurantiacus for the production of xylanase. Biotechnol Lett 25:13–16PubMedCrossRefGoogle Scholar
  34. Eggins HOW, Mills J (1971) Talaromyces emersonii—a possible biodeteriogen. Int Biodet Bull 7:105–108Google Scholar
  35. Ellis DH (1980a) Thermophilic fungi isolated from a heated aquatic habitat. Mycologia 72:1030–1033CrossRefGoogle Scholar
  36. Ellis DH (1980b) Thermophilous fungi isolated from some Antarctic and Sub-Antarctic soils. Mycologia 72:1033–1036CrossRefGoogle Scholar
  37. Evans HC (1971a) Thermophilous fungi of coal spoil tips. II. Occurrence, distribution and temperature relationships. Trans Br Mycol Soc 57:255–266CrossRefGoogle Scholar
  38. Evans HC (1971b) Thermophilic fungi of coal spoil tips I. Taxonomy. Trans Br Mycol Soc 57:241–254CrossRefGoogle Scholar
  39. Evans HC (1972) Thermophilic fungi of coal spoil tips II. Occurrence and temperature relations. Trans Br MycolSoc 57:255–266CrossRefGoogle Scholar
  40. Fergus CL (1964) Thermophilic and thermotolerant molds in mushroom compost during peak heating. Mycologia 56:267–284CrossRefGoogle Scholar
  41. Fergus CL, Amelung RM (1971) The heat resistance of some thermophilic fungi in mushroom compost. Mycologia 63:675–679CrossRefGoogle Scholar
  42. Fergus CL, Sinden JW (1969) A new thermophilic fungus in mushroom compost, Thielavia thermophila sp. nov. Can J Bot 47:1635CrossRefGoogle Scholar
  43. Flanningan B (1974) Distribution of seed-borne microorganisms in naked barley and wheat before harvest. Trans Br Mycol Soc 62:51–58CrossRefGoogle Scholar
  44. Friedman EI, Galum M (1974) In: Brown GW (ed) Desert biology, vol 2. Academic Press, London, pp 165–212CrossRefGoogle Scholar
  45. Fujii T, Koike H, Sawayama S (2015) Draft genome sequence of Talaromyces cellulolyticus strain Y-94, a source of lignocellulosic biomass-degrading enzymes. Genome Announc 3:e00014–e00015PubMedPubMedCentralGoogle Scholar
  46. Ghotara SK, Chadha BS, Bandhan AK, Saini HS, Bhat MK (2006) Identification and characterization of diverse xylanases from thermiphilic and thermotolerant fungi. BioResour 1(1):18–33Google Scholar
  47. Gibson JD, Khanal BP, Zubarev ER (2007) Paclitaxel-functionalized gold nanoparticles. J Am Chem Soc 29(37):11653–11661CrossRefGoogle Scholar
  48. Gomes I, Saha RK, Mohiuddin G, Hoq MM (1992) Isolation and characterization of a cellulase-free pectinolytic and hemicellulolytic thermophilic fungus. World J Microbiol Biotectnol 8:589–592CrossRefGoogle Scholar
  49. Gomes J, Gomes I, Kreiner W, Esterbauer H, Sinner M, Steiner W (1993) Production of high level of cellulase-free and thermostable xylanase by a wild strain of Thermomyces lanuginosus using beechwood xylan. J Biotechnol 30(3):283–297CrossRefGoogle Scholar
  50. Grajek W (1987) Production of D-xylanases by thermophilic fungi using different methods of culture. Biotechnol Lett 9:353–356CrossRefGoogle Scholar
  51. Grishkan I (2018) Thermotolerant mycobiota of Israeli soils. J Basic Microbiol 58:30–40PubMedCrossRefGoogle Scholar
  52. Guo JP, Tan JL, Wang YL (2011) Isolation of talathermophilins from the thermophilic fungus Talaromyces thermophilus YM3-4. J Nat Prod 74:2278–2281PubMedCrossRefGoogle Scholar
  53. Guo JP, Zhu CY, Zhang CP (2012) Thermolides, potent nematocidal PKS-NRPS hybrid metabolites from thermophilic fungus Talaromyces thermophilus. J Am Chem Soc 134:20306–20309PubMedCrossRefGoogle Scholar
  54. Hahn-Hägerdal B, Karhumaa K, Fonseca C, Spencer-Martins I, Gorwa-Grauslund MF (2007) Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol 74:937–953PubMedCrossRefGoogle Scholar
  55. Hassouni H, Smaili-Alaoui IM, Gaime-Perraud I, Augur C, Roussos S (2006) Effect of culture media and fermentation parameters on phytase production by the thermophilic fungus Myceliophthora thermophila in solid state fermentation. Mycol Apli Int 18:29–36Google Scholar
  56. Hawksworth DL, Crous PW, Redhead SA (2011) The Amsterdam declaration on fungal nomenclature. IMA Fungus 2(1):105–112.  https://doi.org/10.5598/imafungus.2011.02.01.14 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Hibbett DS, Taylor JW (2013) Fungal systematics: is a new age of enlightenment at hand? Nat Rev Microbiol 11(2):129–133.  https://doi.org/10.1038/nrmicro2963 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Hibbett DS, Binder M, Bischoff JF (2007) A higher-level phylogenetic classification of the Fungi. Mycol Res 111:509–547.  https://doi.org/10.1016/j.mycres.2007.03.004 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Houbraken J, Samson RA (2011) Phylogeny of Penicillium and the segregation of Trichocomaceae into three families. Stud Mycol 70:1–51.  https://doi.org/10.3114/sim.2011.70.01 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Houbraken J, Spierenburg H, Frisvad JC (2012) Rasamsonia, a new genus comprising thermotolerant and thermophilic Talaromyces and Geosmithia species. Antonie Van Leeuwenhoek 101:403–421.  https://doi.org/10.1007/s10482-011-9647-1 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Houbraken J, de Vries RP, Samson RA (2014) Modern taxonomy of biotechnologically important Aspergillus and Penicillium species. Adv Appl Microbiol 86:199–249.  https://doi.org/10.1016/B978-0-12-800262-9.00004-4 CrossRefPubMedGoogle Scholar
  62. Hughes WT, Crosier JW (1973) Thermophilic fungi in the microflora of man and environmental air. Mycopathol Mycol Appl 49:147–152PubMedCrossRefGoogle Scholar
  63. Hunter AC, Mills PW, Dedi C (2008) Predominant allylic hydroxylation at carbons 6 and 7 of 4 and 5-ene functionalized steroids by the thermophilic fungus Rhizomucor tauricus IMI23312. J Steroid Biochem Mol Biol 108:155–163PubMedCrossRefGoogle Scholar
  64. Hunter AC, Watts KR, Dedi C (2009) An unusual ring-a opening and other reactions in steroid transformation by the thermophilic fungus Myceliophthora thermophila. J Steroid Biochem Mol Biol 116:171–177PubMedCrossRefGoogle Scholar
  65. Hwu JR, Yu SL, Thainashmuthu J, Ming-Hua H, Fong-Yu C, Chen-Sheng Y, Wu-Chou S, Dar-Bin S (2009) Targeted paclitaxel by conjugation to iron oxide and gold nanoparticles. J Am Chem Soc 131:66–68PubMedCrossRefGoogle Scholar
  66. Jaitly AK, Rai JN (1982) Thermophilic and thermotolerant fungi from mangrove swamps. Mycologia 74:1021–1022CrossRefGoogle Scholar
  67. Javed MM, Ikram-ul-Haq MI, Latif F (2011) Distribution of cellulolytic-thermophilic fungi on various substrates and geographic locations in Pakistan. Pak J Bot 43(5):2621–2625Google Scholar
  68. Johri BN, Thakre RP (1975) Soil amendments and enrichment media in the ecology of thermophilic fungi. Ind Natl Sci Acad 41:564–570Google Scholar
  69. Johri BN, Satyanarayana T, Olsen J (1999) Thermophilic moulds in biotechnology. Kluwer Academic Publishers, DordrechtCrossRefGoogle Scholar
  70. Kalogeris E, Christakopoulos P, Kekos D (1998) Studies on the solid state production of thermostable endoxylanases from Thermoascus aurantiacus, characterization of two isozymes. J Biotechnol 60:155–163CrossRefGoogle Scholar
  71. Kalogeris E, Christakopoulos P, Katapodis P et al (2003) Production and characterization of cellulolytic enzymes from the thermophilic fungus Thermoascus aurantiacus under solid state cultivation of agricultural wastes. Process Biochem 38:1099–1104CrossRefGoogle Scholar
  72. Kamra P, Satyanarayana T (2004) Xylanase production by the thermophilic mold Humicola lanuginosa in solid-state fermentation. Appl Biochem Biotechnol 119:145–157PubMedCrossRefGoogle Scholar
  73. Katapodis P, Vrsanská M, Kekos D (2003) Biochemical and catalytic properties of an endoxylanase purified from the culture filtrate of Sporotrichum thermophile. Carbohydr Res 338:1881–1890PubMedCrossRefGoogle Scholar
  74. Kaur G, Satyanarayana T (2004) Production of extracellular pectinolytic, cellulolytic and xylanolytic enzymes by a thermophilic mould Sporotrichum thermophile Apinis in solid state fermentation. Indian J Biotechnol 3:552–557Google Scholar
  75. Kaur G, Kumar S, Satyanarayana T (2004) Production, characterization and application of a thermostable polygalacturonase of a thermophilic mould Sporotrichum thermophile Apinis. Bioresour Technol 94:239–243PubMedCrossRefGoogle Scholar
  76. Khan SA, Ahmad A (2013) Fungus mediated synthesis of biomedically important cerium oxide nanoparticles. Mater Res Bull 48(10):4134–4138CrossRefGoogle Scholar
  77. Khan SA, Gambhir S, Ahmad A (2014) Extracellular biosynthesis of gadolinium oxide (Gd2O3) nanoparticles, their biodistribution and bioconjugation with the chemically modified anticancer drug taxol. Beilstein J Nanotechnol 5:249–257PubMedPubMedCentralCrossRefGoogle Scholar
  78. Korniłłowicz-Kowalska T, Kitowski I (2013) Aspergillus fumigatus and other thermophilic fungi in nests of wetland birds. Mycopathologia 175:43–56PubMedCrossRefGoogle Scholar
  79. Kumar S, Satyanarayana T (2003) Purification and kinetics of a raw starch-hydrolyzing, thermostable, and neutral glucoamylase of the thermophilic mold Thermomucor indicae-seudaticae. Biotechnol Prog 19:936–944PubMedCrossRefGoogle Scholar
  80. Kumar P, Satyanarayana T (2007) Optimization of culture variables for improving glucoamylase production by alginate-entrapped Thermomucor indicae-seudaticae using statistical methods. Bioresour Technol 98(6):1252–1259PubMedCrossRefGoogle Scholar
  81. Kumar SS, Sujatha E, Pabba SK (2014) Optimization and characterization of thermostable endo and exocellulases by Humicola sp.SKESMBKU03. Int J Wollega Univ 3(4):107–115.  https://doi.org/10.4314/star.v3i4.16 CrossRefGoogle Scholar
  82. Kumari A, Satyanarayana T, Singh B (2015) Mixed substrate fermentation for enhanced phytase production by thermophilic mould Sporotrichum thermophile and its application in beneficiation of poultry feed. Appl Biochem Biotechnol.  https://doi.org/10.1007/s12010-015-1868-8 PubMedCrossRefGoogle Scholar
  83. Le Goff O, Bru-Adan V, Bacheley H, Godon JJ, Wéry N (2010) The microbial signature of aerosols produced during the thermophilic phase of composting. J Appl Microbiol 108(1):325–340.  https://doi.org/10.1111/j.1365-2672.2009.04427.x CrossRefPubMedPubMedCentralGoogle Scholar
  84. Lee H, Lee YM, Jang Y, Lee S, Lee H, Ahn BJ, Gyu-Hyeok K, Jae-Jin K (2014) Isolation and analysis of the enzymatic properties of thermophilic fungi from compost. Mycobiology 42(2):181–184PubMedPubMedCentralCrossRefGoogle Scholar
  85. Ma LJ, Ibrahim AS, Skory C, Grabherr MG, Burger G, Butler M, Elias M, Idnurm A, Lang BF, Sone T, Abe A, Calvo SE, Corrochano LM, Engels R, Fu J, Hansberg W, Kim JM, Kodira CD, Koehrsen MJ, Liu B, Miranda-Saavedra D, O’Leary S, Ortiz-Castellanos L, Poulter R, Rodriguez-Romero J, Ruiz-Herrera J, Shen YQ, Zeng Q, Galagan J, Birren BW, Cuomo CA, Wickes BL (2009) Genomic analysis of the basal lineage fungus Rhizopus oryzae reveals a whole-genome duplication. PLoS Genet 5:e1000549PubMedPubMedCentralCrossRefGoogle Scholar
  86. Mahajan MK, Johri BN, Gupta RK (1986) Influence of desiccation stress in a xerophilic thermophile Humicola sp. Curr Sci 55:928–930Google Scholar
  87. Maheshwari R, Kamalam PT, Balasubrahamanyam PL (1985) The biogeography of thermophilic fungi. Curr Sci 56:151–155Google Scholar
  88. Maheshwari R, Balasubramanyam PV, Palanivelu P (1988) Distinctive behaviour of invertase in a thermophilic fungus, Thermomyceslanuginosus. Arch Microbiol 134:255–260CrossRefGoogle Scholar
  89. Maheshwari R, Bharadwaj G, Bhat MB (2000) Thermophilic fungi: their physiology and enzymes. Microbiol Mol Biol Rev 64:461–488PubMedPubMedCentralCrossRefGoogle Scholar
  90. Malik KA, Eggins HOW (1972) Some studies on the effect of pH on the ecology of cellulolytic thermophilic fungi using a perfusion technique. Biologia 18:277–279Google Scholar
  91. Matsuo M, Yasui T (1985) Properties of xylanase of Malbranchea pulchella var. sulfurea no. 48. Agric Biol Chem 49:839–841Google Scholar
  92. Matsuo M, Yasui T, Kobayashi T (1977) Purification and some properties of β-xylosidase from Malbranchea pulchella var. sulfurea no. 48. Agric Biol Chem 41:1593–1599Google Scholar
  93. McClendon SD, Batth T, Petzold CJ (2012) Thermoascus aurantiacus is a promising source of enzymes for biomass deconstruction under thermophilic conditions. Biotechnol Biofuels 5:54PubMedPubMedCentralCrossRefGoogle Scholar
  94. Mchunu NP, Permaul K, Abdul RAY (2013) Xylanase superproducer: genome sequence of a compost-loving thermophilic fungus, Thermomyces lanuginosus strain SSBP. Genome Announc 1:e00388–e00313PubMedPubMedCentralCrossRefGoogle Scholar
  95. Mc Neill J, Barrie FR, Buck WR, Demoulin V, Greuter W, Hawksworth DL, Herendeen PS, Knapp S, Marhold K, Prado J, van Reine Prud’homme WF, Smith GE, Wiersema JH, Turland NJ (eds) (2012) International code of nomenclature for algae, fungi, and plants (Melbourne Code) adopted by the Eighteenth International Botanical Congress Melbourne, Australia, July 2011 [Regnum Vegetabile no. 154.]. A.R.G. Ganter Verlag, RuggellGoogle Scholar
  96. Mehrotra B, Basu M (1975) Survey of microorganism associated with cereal grains and other milling fractions in India, Pt. I, imported wheat. Int Biodeter Bull 11:56–63Google Scholar
  97. Mene S, Naz S (2016) Isolation and identification of thermophillic fungi from storage rice products. Int J Sci Res 5(11):336–338Google Scholar
  98. Meyer RD, Armstrong D (1970) Mucormycosis-changing status. Critical Rev Clinical Lab Sci 4:421–451CrossRefGoogle Scholar
  99. Miehe H (1907) Die Selbsterhitzung des Heus. In: Eine biologische Studie. Gustav Fischer Verlag, JenaGoogle Scholar
  100. Miller HM, Sullivan PA, Shepherd MG (1974) Intracellular protein breakdown in thermophilic and mesophilic fungi. Biochem J 144:209–214PubMedPubMedCentralCrossRefGoogle Scholar
  101. Mills J, Eggins HOW (1974) The biodeterioration of pasticisers by thermophilic fungi. Int Biodeterior Bull 10:39–44Google Scholar
  102. Molnár Z, Bódai V, George S, Balázs E, Zsolt F, György S, Tamás V, Zoltán K, Tóth-Szeles E, Rózsa S, István L (2018) Green synthesis of gold nanoparticles by thermophilic filamentous fungi. Sci Rep 8:3943PubMedPubMedCentralCrossRefGoogle Scholar
  103. Moretti MMS, Daniela A, Bocchini-Martins DSR, André R, Lara DS, Gomes E (2012) Selection of thermophilic and thermotolerant fungi for the production of cellulases and xylanases under solid-state fermentation. Braz J Microbiol 43:1062–1071PubMedPubMedCentralCrossRefGoogle Scholar
  104. Morgan-Jones (1974) Notes on hypomycetes V. A new thermophilic species of Acremonium. Can J Bot 52:429–431CrossRefGoogle Scholar
  105. Morgenstern I, Powlowski J, Ishmael N, Darmond C, Marqueteau S, Moisan M, Quenneville G, Tsang A (2012) A molecular phylogeny of thermophilic fungi. Fungal Biol 116(4):489–502.  https://doi.org/10.1016/j.funbio.2012.01.010 CrossRefPubMedPubMedCentralGoogle Scholar
  106. Moubasher AH, Hafez SII, Aboelfattah HM, Moharrarh AM (1982) Fungi of wheat and broad bean straw composts 2, Thermophilic fungi. Mycopathologia 84:61–72Google Scholar
  107. Mouchacca J (1997) Thermophilic fungi: biodiversity and taxonomic status. Cryptogam Mycol 18:19–69Google Scholar
  108. Mouchacca J (2000) Thermophilic fungi and applied research: A synopsis of name changes and synonymies. World J Microbiol Biotechnol 16:881–888CrossRefGoogle Scholar
  109. Mulings SL, Chesters CGC (1970) Ecology of fungi associated with moist stored barley grains. Ann Appl Biol 65:277–284CrossRefGoogle Scholar
  110. Nageswara RJS, Cherayil JD (1979) Minor nucleotides in the ribosomal RNA of Thermomyces lanuginosus. Curr Sci 48:983–987Google Scholar
  111. Noack K (1920) Der Betriebstoffwechsel der thermophilen. Pilze Jahrb Wiss Bot 59:593–648Google Scholar
  112. Oliveira TB, Gomes E, Andre R (2014) Thermophilic fungi in the new age of fungal taxonomy. Extremophiles.  https://doi.org/10.1007/s00792-014-0707-0 PubMedCrossRefGoogle Scholar
  113. Oriente A, Tramontina R, de Andrades D, Henn C, Silva JLC, RCG S˜a, Maller A, de Lourdes MT, Polizeli M, Kadowaki MK (2015) Characterization of a novel Aspergillus niger beta-glucosidase tolerant to saccharification of lignocellulosic biomass products and fermentation inhibitors. Chem Pap 69(8):1050–1057CrossRefGoogle Scholar
  114. Pan WZ, Huang XW, Wei KB (2010) Diversity of thermophilic fungi in Tengchong Rehai National Park revealed by ITS nucleotide sequence analyses. J Microbiol 48:146–152PubMedCrossRefPubMedCentralGoogle Scholar
  115. Pereira JC, Marques NP, Rodrigues A, Oliveira TB, Boscolo M, da Silva R, Gomes E, Martins DAB (2015) Thermophilic fungi as new sources for production of cellulases and xylanases with potential use in sugarcane bagasse saccharification. J Appl Microbiol 118:928–939CrossRefGoogle Scholar
  116. Powell AJ, Parchert KJ, Bustamante JM, Ricken JB, Hutchinson MI, Natvig DO (2012) Thermophilic fungi in an aridland ecosystem. Mycologia 104(4):813–825.  https://doi.org/10.3852/11-298 CrossRefPubMedGoogle Scholar
  117. Prabhu KA, Maheshwari R (1999) Biochemical properties of xylanases from a thermophilic fungus, Melanocarpus albomyces, and their action on plant cell walls. J Biosci 24:461–470CrossRefGoogle Scholar
  118. Prasad ARS, Maheshwari R (1978) Growth and trehalase activity in the thermophilic fungus Thermomyces lanuginosus. Proc Indian Acad Sci 87B(Exp. Biol. -4):231–241Google Scholar
  119. Prasad GS, Girisham S, Reddy SM (2011) Potential of thermophilic fungus Rhizomucor pusillus NRRL 28626 in biotransformation of antihelmintic drug albendazole. Appl Biochem Biotechnol 165:1120–1128PubMedCrossRefGoogle Scholar
  120. Rajasekaran AK, Maheshwari R (1993) Thermophilic fungi: an assessment of their potential for growth in soil. J Biosci 18:345–354CrossRefGoogle Scholar
  121. Rawat S, Agarwal PK, Chaudhary DK, Johri BN (2005) Microbial diversity and community dynamics of mushroom compost ecosystem. In: Satyanarayana T, Johri BN (eds) Microbial diversity: current perspectives and applications. I.K. International Pvt. Ltd., New Delhi, pp 181–206Google Scholar
  122. Rosenberg SL (1975) Temperature and pH optima for 21 species of thermophilic and thermotolerant fungi. Can J Microbiol 21:1535–1540PubMedCrossRefGoogle Scholar
  123. Sadaf A, Khare SK (2014) Production of Sporotrichum thermophile xylanase by solid state fermentation utilizing deoiled Jatropha curcas seed cake and its application in xylooligosachharide synthesis. Bioresour Technol 153:126–130PubMedCrossRefGoogle Scholar
  124. Salar RK (2018) Thermophilic fungi basic concepts and biotechnological applications. CRC press/Taylor and Francis group, Boco Raton/London/NewYorkCrossRefGoogle Scholar
  125. Salar RK, Aneja KR (2006) Thermophilous fungi from temperate soils of Northern India. J Agric Technol 2:49–58Google Scholar
  126. Salar RK, Aneja KR (2007) Thermophilic fungi: taxonomy and biogeography. J Agri Technol 3:77–107Google Scholar
  127. Sandhu DK, Singh S (1981) Distribution of thermophilous microfungi in forest soils of Darjeeling (Eastern Himalayas). Mycopathologia 74:79–81CrossRefGoogle Scholar
  128. Saroj P, Manasa P, Narasimhulu K (2018) Characterization of thermophilic fungi producing extracellular lignocellulolytic enzymes for lignocellulosic hydrolysis under solid-state fermentation. Bioresour Bioprocess 5:31.  https://doi.org/10.1186/s40643-018-0216-6 CrossRefGoogle Scholar
  129. Satyanarayana T, Chavant L (1987) Bioconversion and binding of sterols by thermophilic moulds. Folia Microbiol (Praha) 32:354–359CrossRefGoogle Scholar
  130. Satyanarayana T, Johri BN (1984) Thermophilic fungi of paddy straw compost: growth, nutrition and temperature relationships. J Indian Bot Soc 63:164–170Google Scholar
  131. Satyanarayana T, Johri BN, Saksena SB (1977) Seasonal variation in mycoflora of nesting materials of birds with special reference to thermophilic fungi. Trans Br Mycol Soc 62:307–309CrossRefGoogle Scholar
  132. Satyanarayana T, Johri BN, Klein J (1992) Biotechnological potential of thermophilicfungi. In: Arora DK, Elander RP, Mukerji KG (eds) Handbook of applied mycology. Marcel Dekker, New York, pp 729–761Google Scholar
  133. Seifert KA, Samson RA, Boekhout T, Louis-Seize G (1997) Remersonia, a new genus for Stilbella thermophila, a thermophilic mould from compost. Can J Bot 75(7):1158–1165.  https://doi.org/10.1139/b97-828 CrossRefGoogle Scholar
  134. Seymour RS, Bradford DF (1992) Temperature regulation in the incubation mounds of the Australian brush-turkey. Condor 94:134–150CrossRefGoogle Scholar
  135. Shaik YB (2006) Inflammatory thermophilic fungi are used in biotechnology applications. European J Inflam 4(3):147–155CrossRefGoogle Scholar
  136. ShanthiPriya A, Girisham S, Shyam PG, Chandra SRD (2017) Biotransformation of diclofenac by thermophilic coprophilous fungus Scytalidium thermophilum isolated from sheep dung. Int J Curr Adv Res 6(7):4594–4597Google Scholar
  137. Sharma HSS (1989) Economic importance of thermophilous fungi. Appl Microbiol Biotechnol 31:1–10Google Scholar
  138. Sharma HA, Johri BN (1992) The role of thermophilic fungi in agriculture. Handb Appl Mycol 4:707–728Google Scholar
  139. Sharma M, Chadha BS, Kaur M (2008) Molecular characterization of multiple xylanase producing thermophilic/thermotolerant fungi isolated from composting materials. Lett Appl Microbiol 46:526–535PubMedCrossRefGoogle Scholar
  140. Sharma M, Mahajan C, Bhatti MS, Chadha BS (2016) Profiling and production of hemicellulases by thermophilic fungus Malbranchea flava and the role of xylanases in improved bioconversion of pretreated lignocellulosics to ethanol. 3 Biotech 6:30PubMedPubMedCentralCrossRefGoogle Scholar
  141. Singh B (2007). Production, characterization and applications of extracellular phytase of the thermophilic mold Sporotrichum thermophile Apinis. PhD. Thesis, University of Delhi South Campus, New Delhi, India.Google Scholar
  142. Singh B (2016) Myceliophthora thermophila syn.: a thermophilic mould of biotechnological potential. Crit Rev Biotechnol 39:59–69Google Scholar
  143. Singh B, Satyanarayana T (2006) Phytase production by thermophilic mold Sporotrichum thermophile in solid-state fermentation and its application in dephytinization of sesame oil cake. Appl Biochem Biotechnol 133:239–250PubMedCrossRefPubMedCentralGoogle Scholar
  144. Singh B, Satyanarayana T (2008) Phytase production by Sporotrichumthermophilein a cost-effective cane molasses medium in submerged fermentation and its application in bread. J Appl Microbiol 105:1858–1865PubMedCrossRefGoogle Scholar
  145. Singh B, Satyanarayana T (2009a) Characterization of a HAP-phytase from a thermophilic mould Sporotrichum thermophile. Bioresour Technol 100:2046–2051PubMedCrossRefPubMedCentralGoogle Scholar
  146. Singh B, Satyanarayana T (2009b) Thermophilic moulds in environmental management. In: Mishra JK, Deshmukh SK (eds) Progress in mycological research. Vol I. Fungi from different environments. Environmental mycology. Science Publishers, New Hampshire, pp 352–375Google Scholar
  147. Singh B, Satyanarayana T (2014) Thermophilic fungi: their ecology and biocatalyst. Kavka 42:37–51Google Scholar
  148. Singh B, Satyanarayana T (2016) Ubiquitous occurrence of thermophilic fungi in various substrates. In: Fungi from different substrates. CRC Press, Boca Raton, pp 201–216Google Scholar
  149. Singh B, Pocas-Fonseca MJ, Johri BN, Satyanarayana T (2016) Thermophilic molds: biology and applications. Crit Rev Biotechnol 42:985–1006Google Scholar
  150. Singhania S, Satyanarayana T, Rajam MV (1991) Polyamines of thermophilic moulds: distribution and effect of polyamine biosynthesis inhibitors on growth. Mycol Res 95:915–917CrossRefGoogle Scholar
  151. Souza FHM, NNascimento CV, Rosa JC, Masui DC, Leone FA, Jorge JA, Furriel RPM (2010) Purification and biochemical characterization of a mycelial glucose- and xylose-stimulated β-glucosidase from the thermophilic fungus Humicola insolens. Process Biochem 45(2):272–278CrossRefGoogle Scholar
  152. Souza TP, Marques SC, Silveira d, Santos DM (2014) Analysis of thermophilic fungal populations during phase II of composting for the cultivation of Agaricus subrufescens. World J Microbiol Biotechnol 30:2419–2425PubMedCrossRefGoogle Scholar
  153. Sreelatha B, ShyamPrasad G, Koteshwar V, Rao SG (2018) Microbial synthesis of mammalian metabolites of spironolactone by thermophilic fungus Thermomyces lanuginosus. Steroids 136:1–7CrossRefGoogle Scholar
  154. Straatsma G, Samson RA (1993) Taxonomy of Scytalidiumthermophilum, an important thermophilic fungus in mushroom compost. Mycol Res 97:321–328CrossRefGoogle Scholar
  155. Straatsma G, Gerrits JPG, Augustin APAM, Camp HJM, Van GLJLD (1991) Growth kinetics of Agaricus bisporus mycelium on solid substrate (mushroom compost). J Gen Microbiol 137:1471–1477CrossRefGoogle Scholar
  156. Straatsma G, Samson RA, Olijnsma TW, Den Camp HJMO, Gerrits JPG, Van Griensven LJLD (1994) Ecology of thermophilic fungi in mushroom compost, with emphasis on Scytalidium thermophilum and growth stimulation of Agaricus bisporus mycelium. Appl Environ Microbiol 60(2):454–458Google Scholar
  157. Subrahmanyam A (1977) Nutritional requirements of Torula thermophila Cooney & Emerson at two different temperatures. Nova Hedwigia 19:85–89Google Scholar
  158. Subrahmanyam A (1978) Isolation of thermophilic fungi from dust on books. Curr Sci 47:817–819Google Scholar
  159. Subrahmanyam A (1980) Studies on morphology and biochemical activities of some thermophilicfungi. DSc thesis, Kumaun University, Nainital, IndiaGoogle Scholar
  160. Subrahmanyam A (1997) Ecology and distribution. In: Johri BN, Satyanarayana T, Olsen J (eds) Thermophilic moulds in biotechnology. Kluwer Academic, Dordrecht, pp 13–20Google Scholar
  161. Subrahmanyam A (1999) Ecology and distribution. In: Johri BN, Satyanarayana T, Olsen J (eds) Thermophilic moulds in biotechnology. Kluwer Academic Publishers, Dordrecht, pp 13–42CrossRefGoogle Scholar
  162. Subrahmanyam A, Mehrotra BS, Thirumalacher MJ (1977) Thermomucor, a new genus of mucorales. Geor J Sci 35:1–6Google Scholar
  163. Svahn KS, Göransson U, El-Seedi H (2012) Antimicrobial activity of filamentous fungi isolated from highly antibioticcontaminated river sediment. Infect Ecol Epidemiol 2.  https://doi.org/10.3402/iee.v2i0.11591 CrossRefGoogle Scholar
  164. Syed A, Saraswati S, Kundu GC (2013) Biological synthesis of silver nanoparticles using the fungus Humicola sp. and evaluation of their cytoxicity using normal and cancer cell lines. Spectrochim Acta A Mol Biomol Spectrosc 114:144–147PubMedCrossRefGoogle Scholar
  165. Taber RA, Pattit RE (1975) Occurrence of thermophilic microorganism in peanuts and peanut soil. Mycologia 67:157–161PubMedCrossRefGoogle Scholar
  166. Taha M, Adetutua EM, Shahsavaria E (2014) Azo and anthraquinone dye mixture decolourization at elevated temperature and concentration by a newly isolated thermophilic fungus, Thermomucor indicae-seudaticae. J Environ Chem Eng 2:415–423CrossRefGoogle Scholar
  167. Tambor JH, Ren H, Ushinsky S (2012) Recombinant expression, activity screening and functional characterization identifies three novel endo-1,4-b-glucanases that efficiently hydrolyse cellulosic substrates. Appl Microbiol Biotechnol 93:203–214PubMedCrossRefGoogle Scholar
  168. Tansey MR (1971) Isolation of thermophilic fungi from self-heated, industrial wood chip piles. Mycologia 63:537–547CrossRefGoogle Scholar
  169. Tansey MR (1973) Isolation of thermophilic fungi from alligator nesting materials. Mycologia 65:594–601PubMedCrossRefGoogle Scholar
  170. Tansey MR, Brock TD (1972) The upper temperature limit for eukaryotic organisms. Proc Natl Acad Sci U S A 69:2426–2428PubMedPubMedCentralCrossRefGoogle Scholar
  171. Tansey MR, Brock TD (1973) Dactylaria gallopoya—a cause of avian encephalitis in hot spring effl uents, thermal soils and self heated coal waste piles. Nature 242:202–205PubMedCrossRefGoogle Scholar
  172. Tansey MR, Brock TD (1978) Microbial life at high temperatures: ecological aspects. In: Kushner DJ (ed) Life in extreme environments. Academic Press, Ltd. United Kingdom, London, pp 159–216Google Scholar
  173. Tansey MR, Jack MA (1976) Thermophilic fungi in sun heated soils. Mycologia 68:1061–1075PubMedCrossRefGoogle Scholar
  174. Tansey MR, Jack MA (1977) Growth of thermophilic fungi in soil in situ and vitro. Mycologia 69:563–578CrossRefGoogle Scholar
  175. Taylor JW (2011) One fungus = one name: DNA and fungal nomenclature 20 years after PCR. IMA Fungus 2(2):113–120.  https://doi.org/10.5598/imafungus.2011.02.02.01 CrossRefPubMedPubMedCentralGoogle Scholar
  176. Thakur IS, Rana BK, Johri BN (1992) Multiplicity of xylanase in Humicola grisea var. thermoidea. In: Visser J, Beldman G, Kaustwersvan-Someren MA (eds) Xylan and xylanases. Elsevier Applied Science, Amsterdam, pp 511–514Google Scholar
  177. Thakur M S, Karanth NG, Nand K (1993) Downstream processing of microbial rennet from solid state fermented moldy bran. Biotechnol Adv 11:399–440PubMedCrossRefGoogle Scholar
  178. Trent JD, Gabrielsen M, Jensen B (1994) Acquired thermotolerance and heat shock proteins in thermophiles from the three phylogenetic domains. J Bacteriol 176:6148–6152PubMedPubMedCentralCrossRefGoogle Scholar
  179. Tubaki K, Ito T, Matsuda Y (1974) Aquatic sediments as a habitat of thermophilic fungi. Ann Microbiol 24:199–207Google Scholar
  180. Vafiadi C, Topakas E, Biely P (2009) Purification, characterization and mass spectrometric sequencing of a thermophilic glucuronoyl esterase from Sporotrichum thermophile. FEMS Microbiol Lett 296:178–184PubMedCrossRefPubMedCentralGoogle Scholar
  181. van den Brink J, Samson RA, Hagen F, Boekhout T, De Vries RP (2012) Phylogeny of the industrial relevant, thermophilic genera Myceliophthora and Corynascus. Fungal Divers 52:197–207.  https://doi.org/10.1007/s13225-011-0107-z CrossRefGoogle Scholar
  182. van den Brink J, van Muiswinkel GCJ, Theelen B (2013) Efficient plant biomass degradation by thermophilic fungus Myceliophthora heterothallica. Appl Environ Microbiol 79:1316–1324PubMedPubMedCentralCrossRefGoogle Scholar
  183. Van Noort V, Bradatsch B, Arumugam M, Amlacher S, Bange G, Creevey C, Falk S, Mende DR, Sinning I, Hurt E, Bork P (2013) Consistent mutational paths predict eukaryotic thermostability. BMC Evol Biol.  https://doi.org/10.1186/1471-2148-13-7 PubMedPubMedCentralCrossRefGoogle Scholar
  184. Vartaja O (1949) High surface soil temperature. Oikos 1:6–28CrossRefGoogle Scholar
  185. Waksman SA, Umbreit WW, Cordon TC (1939) Thermophilic actinomycetes and fungi in soils and in composts. Soil Sci 47:37–61CrossRefGoogle Scholar
  186. Wali AS, Mattoo AK, Modi VV (1978) Stimulation of growth and glucoe catabolite enzymes by succinate in some thermophilic fungi. Arch Microbiol 118:49–53PubMedCrossRefPubMedCentralGoogle Scholar
  187. Ward JE, Cowley GT (1972) Thermophilic fungi of some central South Carolina forest soils. Mycologia 64:200–205PubMedCrossRefPubMedCentralGoogle Scholar
  188. Wiegant WM, Wery J, Britenhmis ET, De Bount JA (1992) Growth promoting effect of thermophilic fungi on mycelium of edible mushroom Agaricusbisporus. Appl Environ Microbiol 58:2644–2659Google Scholar
  189. Wingfield MJ, De Beer ZW, Slippers B, Wingfield BD, Groenewald JZ, Lombard L, Crous PW (2012) One fungus, one name promotes progressive plant pathology. Mol Plant Pathol 13(6):604–613.  https://doi.org/10.1111/j.1364-3703.2011.00768.x CrossRefPubMedPubMedCentralGoogle Scholar
  190. Wright C, Alkewitz D, Somberg EW (1983) Eucaryote thermophily: role of lipids in the growth of Talaromyces thermophilus. J Bacteriol 156:493–497PubMedPubMedCentralGoogle Scholar
  191. Zhang Y, Wu WP, Hu DM, Su YY, Cai L (2014) A new thermophilic species of Myceliophthora from China. Mycol Prog 13(1):165–170.  https://doi.org/10.1007/s11557-013-0904-8 CrossRefGoogle Scholar
  192. Zhou P, Zhang G, Chen S (2014) Genome sequence and transcriptome analyses of the thermophilic zygomycete fungus Rhizomucor miehei. BMC Genomics 15:294PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Seema Dahiya
    • 1
  • T. Satyanarayana
    • 3
  • Bijender Singh
    • 1
    • 2
  1. 1.Laboratory of Bioprocess Technology, Department of MicrobiologyMaharshi Dayanand UniversityRohtakIndia
  2. 2.Department of Biotechnology, School of Interdisciplinary and Applied Life SciencesCentral University of HaryanaMahendergarhIndia
  3. 3.Division of Biological Sciences & EngineeringNetaji Subhas University of TechnologyNew DelhiIndia

Personalised recommendations