Advertisement

Biogas Upgrading

  • Sirichai KoonaphapdeelertEmail author
  • Pruk Aggarangsi
  • James Moran
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

Many end use applications require a high quality of biogas, which means the gas must contain a higher percentage of methane than found in raw biogas. In such situations, it is common to improve the quality of the biogas by reducing the contaminants and unwanted gases. Contaminants, in this case, are defined as any substances that are not methane. For example, if used in natural gas vehicles, the raw biogas heating value should increase from \(23\ \text {MJ}/{\text {m}}^{3}\) to \(37{-}42\ \text {MJ}/{\text {m}}^{3}\). Upgrading involves two key steps, biogas cleaning, which is a pretreatment process readying the gas for the second process. This second process, calling upgrading, purifies the low methane, high carbon dioxide biogas into high methane, low carbon dioxide—biomethane.

References

  1. 1.
    Authur W, Anna L (2006) Biogas upgrading and utilization. Technical report, IEA BioenergyGoogle Scholar
  2. 2.
    Krich K, Augenstein D, Batmale JP, Benemann J, Rutledge B, Salour D (2005) Technologies for removal of carbon dioxide in biomethane from dairy waste, a sourcebook for the production and use of renewable natural gas in California. USDA Rural DevelopmentGoogle Scholar
  3. 3.
    Yang H, Xu Z, Fan M, Gupta R, Slimane RB, Bland AE, Wright I (2008) Progress in carbon dioxide separation of CO2 from flue gas using hollow fiber membrane contactors without wetting. J Environ Sci 20:14–27CrossRefGoogle Scholar
  4. 4.
    Kapdi SS, Vijay VK, Rajesh SK, Rajendra R (2004) Biogas upgradation and utilization as vehicle fuel. In: The joint international conference on “Sustainable energy and environment (SEE)”, Hua Hin, ThailandGoogle Scholar
  5. 5.
    Onda K, Takeuchi H, Okumoto Y (1968) Mass transfer coefficients between gas and liquid phases in packed columns. J Chem Enginering JpnGoogle Scholar
  6. 6.
    Nock William J, Walker Mark, Kapoor Rimika, Heaven Sonia (2014) Modeling the water scrubbing process and energy requirements for CO2 capture to upgrade biogas to biomethane. Ind Eng Chem Res 53:12783–12792CrossRefGoogle Scholar
  7. 7.
    Persson M (2003) Evaluation of upgrading techniques for biogas. Technical report report SGC 142, Swedish gas centerGoogle Scholar
  8. 8.
    Kapdi SS, Vijay VK, Rajesh SK, Prasad R (2005) Biogas scrubbing, compression and storage : perspective and prospectus in Indian context. Renew Energy 30:1195–1202CrossRefGoogle Scholar
  9. 9.
    Persson M (2007) Biogas upgrading and utilization as vehicle fuel. In: European biogas workshop, Esbjerk, Denmark, June 2007Google Scholar
  10. 10.
    Electrigaz Technologies (2008) Feasibility study - biogas upgrading and grid injection in the fraser valley. Technical report, BC Innovation Council, British ColumbiaGoogle Scholar
  11. 11.
  12. 12.
    Rasi S (2009) Biogas composition and upgrading to biomethane. Master’s thesis, University of Jyvaskyla, Jyvaskyla FinlandGoogle Scholar
  13. 13.
    Bansal Pradeep, Marshall Nick (2009) Feasibility of hydraulic power recovery from waste energy in biogas scrubbing processes. Appl Energy 87(3):1048–1053CrossRefGoogle Scholar
  14. 14.
    Cavenati S, Grande CA, Rodrigues AE (2005) Upgrade of methane from landfill gas by pressure swing adsorption. Energy Fuels 19(6):2545–2555CrossRefGoogle Scholar
  15. 15.
    Miltner M, Makaruk A, Harasek M (2017) Review on available biogas upgrading technologies and innovations towards advanced solutions. J Clean Prod. https://doi.org/10.1016/j.jclepro.2017.06.045CrossRefGoogle Scholar
  16. 16.
    Skarstrom CW (1960) Method and apparatus for fractionating gaseous mixtures by adsorptionGoogle Scholar
  17. 17.
    Peterssen A, Wellinger A (2009) Biogas upgrading technologies - developments and innovations. Technical report, IEA BioenergyGoogle Scholar
  18. 18.
    Reynolds AJ, Verheyen TV, Adeloju SB, Meuleman E, Feron P (2012) Towards commercial scale postcombustion capture of CO2 with monoethanolamine solvent: key considerations for solvent management and environmental impacts. Environ Sci Technol 46:3643–3654CrossRefGoogle Scholar
  19. 19.
    Lepaumier H, Picq D, Carrette PL (2009) New amines for CO2 capture. I. Mechanisms of amine degradation in the presence of CO2. Ind Eng Chem Res 48:9061–9067CrossRefGoogle Scholar
  20. 20.
    Maceiras R, Alvarez E, Angeles Cancela M (2008) Effect of temperature on carbon dioxide absorption in monoethanolamine solutions. Chem Eng J 138(1–3):295–300.  https://doi.org/10.1016/j.cej.2007.05.049CrossRefGoogle Scholar
  21. 21.
    Barzagli Francesco, Lai Sarah, Mani Fabrizio, Stoppioni Piero (2014) Novel non-aqueous amine solvents for biogas upgrading. Energy Fuels 28:5252–5258.  https://doi.org/10.1021/ef501170dCrossRefGoogle Scholar
  22. 22.
    Brettschneider O, Thiele R, Faber R, Thielert H, Woznya G (2004) Experimental investigation and simulation of the chemical absorption in a packed column for the system NH3 - CO2 - H2S - NaOH - H2O. Sep Purif Technol 39(3):139–159.  https://doi.org/10.1016/S1383-5866(03)00165-5CrossRefGoogle Scholar
  23. 23.
    Bang JH, Jang YN (2013) Method of producing carbonate using carbon dioxide microbubbles and carbonate thereforGoogle Scholar
  24. 24.
    Tippayawong N, Thanompongchart P (2010) Biogas quality upgrade by simultaneous removal of CO2 and H2S in a packed column reactor. Energy 35:4531–4535.  https://doi.org/10.1016/j.energy.2010.04.014CrossRefGoogle Scholar
  25. 25.
    Diao Yong-Fa, Zheng Xian-Yu, He Bo-Shu, Chen Chang-He, Xu-Chang Xu (2004) Experimental study on capturing CO2 greenhouse gas by ammonia scrubbing. Energy Convers Manag 45(13–14):2283–2296CrossRefGoogle Scholar
  26. 26.
    Kapoor Rimika, Ghosh Pooja, Kumar Madan, Vijay Virendra (2019) Evaluation of biogas upgrading technologies and future perspectives: a review. Environ Sci Pollut Res 26:11631–11661CrossRefGoogle Scholar
  27. 27.
    Gomez-Diaz D, Navaza JM, Sanjurjo B, Vazquez-Orgeira L (2006) Carbon dioxide absorption in glucosamine aqueous solutions. Chem Eng J 122:81–86CrossRefGoogle Scholar
  28. 28.
    Hoyer K, Hulteberg C, Svensson M, Jernberg J, Norregard O (2016) Biogas upgrading - technical review. Technical report, ENERGIFORSKGoogle Scholar
  29. 29.
    Sanders DF, Smith ZP, Guo R, Robeson LM, McGrath JE, Paul DR, Freeman BD (2013) Energy-efficient polymeric gas separation membranes for a sustainable future: a review. Polymer 54:4729–4761CrossRefGoogle Scholar
  30. 30.
    ERDI (2013) Final report for biogas promotion from livestock and industrial waste. Technical report, Energy Research and Development Institute, Chiang Mai (in Thai)Google Scholar
  31. 31.
    Beil M, Beyrich W (2013) The Biogas Handbook, Chapter 15, pp 342–378. Woodhead Publishing Limited, Sawston.  https://doi.org/10.1533/9780857097415.3.342CrossRefGoogle Scholar
  32. 32.
    Cucchiella Federica, D’Adamo Idiano, Gastaldi Massimo (2019) An economic analysis of biogas-biomethane chain from animal residues in Italy. J Clean Prod 230:888–897CrossRefGoogle Scholar
  33. 33.
    Kohl Arthur L, Nielsen Richard B (1997) Gas Purification, 5th edn. Gulf Professional Publishing, Houston. ISBN 978-0-88415-220-0CrossRefGoogle Scholar
  34. 34.
    Bahadori Alireza, Vuthaluru Hari B (2009) Simple methodology for sizing of absorbers for TEG (triethylene glycol) gas dehydration systems. Energy 34:1910–1916CrossRefGoogle Scholar
  35. 35.
    Technical Committee (2013) Natural gas - organic components used as odorants - Requirements and test methodsGoogle Scholar
  36. 36.
    ERDI (2014) A study on the potential of biogas from energy crops as a replacement of LPG. Technical report, Energy Research and Development Institute, Chiang Mai (in Thai)Google Scholar
  37. 37.
    ASME (2019) Bpvc section viii-rules for construction of pressure vessels division 1Google Scholar
  38. 38.
    ASME (2017) Process pipingGoogle Scholar
  39. 39.
    American Water Works Association (2008) Horizontal and vertical line-shaft pumpsGoogle Scholar
  40. 40.
    American Petroleum Institute (2010) Centrifugal pumps for petroleum, petrochemical and natural gas industriesGoogle Scholar
  41. 41.
    American Petroleum Institute (2008) Reciprocating compressors for petroleum, chemical and gas industry servicesGoogle Scholar
  42. 42.
    American National Standards Institute (2017) Compressed natural gas vehicle (NGV) fueling connection devicesGoogle Scholar
  43. 43.
    Gas Processors Association (2004) GPSA engineering data book. Gas Processors Suppliers Association, 12 edn,6526 E. 60th St. Tulsa, Oklahoma 74145Google Scholar
  44. 44.
    Jones JH, Froning HR, Claytor EE Jr (1954) Solubility of acidic gases in aqueous monoethanolamine. Chem Eng Data 4(1):85–92.  https://doi.org/10.1021/je60001a012CrossRefGoogle Scholar
  45. 45.
    McCabe WL, Thiele EW (1925) Graphical design of fractionating columns. Ind Eng Chem 17:605–611.  https://doi.org/10.1021/ie50186a023CrossRefGoogle Scholar
  46. 46.
    Seader JD, Henley EJ, Keith D (2010) Separation process principles, 3 edn. Wiley, New York. ISBN 978-0470481837Google Scholar
  47. 47.
    Sherwood TK, Shipley GH, Holloway FL (1938) Flooding velocities in packed columns. Ind Eng Chem 30(7):765–769CrossRefGoogle Scholar
  48. 48.
    American Concrete Institute (2001) Code requirements for environmental engineering concrete structuresGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Sirichai Koonaphapdeelert
    • 1
    Email author
  • Pruk Aggarangsi
    • 2
  • James Moran
    • 3
  1. 1.Department of Environmental EngineeringChiang Mai UniversityChiang MaiThailand
  2. 2.Department of Mechanical EngineeringChiang Mai UniversityChiang MaiThailand
  3. 3.Department of Mechanical EngineeringChiang Mai UniversityChiang MaiThailand

Personalised recommendations