Advertisement

Correlation Between Pollution Trends of Freshwater Bodies and Bacterial Disease of Fish Fauna

  • Gowhar Hamid Dar
  • Rouf Ahmad Bhat
  • Azra N. Kamili
  • Mohammad Z. Chishti
  • Humaira Qadri
  • Rubiya Dar
  • Mohammad Aneesul Mehmood
Chapter

Abstract

Fish diseases are major challenges now-a-days which disrupt the stable supply of fishes around the world. Fish diseases are caused by bacterial and fungal infection and other environmental factors (poor water quality) are generally responsible for mass mortalities both in cultured as well as in wild fishes. Bacterial infection produces septicaemia, ulcerative and haemorrhagic diseases causing significant mortality in fishes of different habitats and affects the economy of the aquaculture sector. Polluted environs contains always disease spreading pathogens in addition to facultative microbes. The current review suggests that the incidences of bacterial infection in fishes have increased significantly, with new pathogens regularly recognized. Furthermore, the accounts of the whole genomes of various bacterial species over the years have allowed the identification of an important number of virulence genes that affect the pathogenic potential of these bacteria. The literature over review provides the most relevant information derived from the available bacterial genomes in relation to virulence and on the diverse virulence factors. Thus an attempt is made in the current review to portray the importance of profiling and evaluation of effect of the pathogenic bacteria in the fish fauna.

Keywords

Fish Pathogen Bacteria Profiling Environmental pollution 

References

  1. Aberoum, A., & Jooyandeh, H. (2010). A review on occurrence and characterization of the Aeromonas species from marine fishes. World Journal of Fish and Marine Sciences, 2(6), 519–523.Google Scholar
  2. Abowei, J. F. N., & Briyai, O. F. (2011). A review of some bacteria diseases in Africa culture fisheries. Asian Journal of Medical Sciences, 3(5), 206–217.Google Scholar
  3. Al-Bahry, S. N., Mahmoud, I. Y., Al-Belushi, K. I. A., Elshafie, A. E., Al-Harthy, A., & Bakheit, C. K. (2009). Coastal sewage discharge and its impact on fish with reference to antibiotic resistant enteric bacteria and enteric pathogens as bio-indicators of pollution. Chemosphere, 77, 1534–1539.CrossRefGoogle Scholar
  4. Arkoosh, M. R., Casillas, E., Clemons, E., Kagley, A. N., Olson, R., Reno, P., & Stein, J. E. (1998). Effect of pollution on fish diseases: Potential impacts on salmonid populations. Journal of Aquatic Animal Health, 1, 182–190.CrossRefGoogle Scholar
  5. Austin, B. (1999). The effects of pollution on fish health. Journal of Applied Microbiology, Symposium Supplement, 85, 234–242.CrossRefGoogle Scholar
  6. Austin, B. (2011). Taxonomy of bacterial fish pathogens. Austin Veterinary Research, 42, 20p. http://www.veterinaryresearch.org/content/42/1/20.CrossRefGoogle Scholar
  7. Austin, B., & Austin, D. A. (1993). Bacterial fish pathogens. Disease in farmed fish and wild fish (2nd ed.). Chichester: Ellis Horwood.Google Scholar
  8. Austin, B., Austin, D. A., Dalsgaard, I., et al. (1998). Characterization of a typical Aerumonus sulmunrcidu by different methods. Systemuri und Applied Microbiulogy, 21, 50–64.CrossRefGoogle Scholar
  9. Beaz-Hidalgo, R., & Figueras, M. J. (2013). Aeromonas spp. whole genomes and virulence factors implicated in fish disease. Journal of Fish Diseases, 36, 371–388.CrossRefGoogle Scholar
  10. Bhat, R. A., Shafiq-ur-Rehman, D. M. A., Mushtaq, N., Bhat, J. I. A., & Dar, G. H. (2017). Current status of nutrient load in Dal Lake of Kashmir Himalaya. Journal of Pharmacognosy and Phytochemistry, 6(6), 165–169.Google Scholar
  11. Bohl, M. (1989). Optimal water quality-basis of fish health and economical production. Current trends in fish therapy (pp. 18–32). Giessen: Deutsche Veterinärmedizinische Gesellschaft e. V..Google Scholar
  12. Briede, I. (2010). The prevalent bacterial fish diseases in fish hatcheries of Latvia. Environmental and Experimental Biology, 8, 103–106.Google Scholar
  13. Cahill, M. M. (1990). Bacterial flora of fishes: A review. Microbial Ecology, 19, 21–41.CrossRefGoogle Scholar
  14. Chalkoo, S. R., Najar, A. M., Qureshit, T. A., & Shafit, A. (2007). Furunculosis in snow trout (Schizothoracinae) in Kashmir: First report. Journal of Indian Fisheries Association, 34, 59–73.Google Scholar
  15. Chan, X. Y., Chang, C. Y., Hong, K. W., Tee, K. K., Yin, W. F., & Chan, K. G. (2013). Insights of biosurfactant producing Serratia marcescens strain W2.3 isolated from diseased tilapia fish: A draft genome analysis. Gut Pathogens, 5, 29p. http://www.gutpathogens.com/content/5/1/29.CrossRefGoogle Scholar
  16. Choresca-Jr, S. H., Gomez, D. K., Shin, S. P., Kim, J. H., Han, J. E., Jun, J. W., & Park, S. C. (2011). Molecular detection of Edwardsiella tarda with gyrB gene isolated from pirarucu, Arapaima gigas which is exhibited in an indoor private commercial aquarium. African Journal of Biotechnology, 10(5), 848–850.Google Scholar
  17. Dalsgaard, I., & Madsen, L. (2000). Bacterial pathogens in rainbow trout, Oncorhynchus mykiss (Walbaum), reared at Danish freshwater farms. Journal of Fish Diseases, 23, 199–209.CrossRefGoogle Scholar
  18. Dar, G. H., Dar, S. A., Kamili, A. N., Chishti, M. Z., & Ahmad, F. (2015). Detection and characterization of potentially pathogenic Aeromonas sobria isolated from fish Hypophthalmichthys molitrix (Cypriniformes: Cyprinidae). Microbial Pathogenesis, 91, 136–140.CrossRefGoogle Scholar
  19. Dar, G. H., Kamili, A. N., Chishti, M. Z., Dar, S. A., Tantry, T. A., & Ahmad, F. (2016). Characterization of Aeromonas sobria isolated from fish Rohu (Labeo rohita) collected from polluted pond. Journal of Bacteriology and Parasitology, 7, 273p.  https://doi.org/10.4172/2155-9597.1000273.CrossRefGoogle Scholar
  20. Das, A., Vinayasree, V., Santhosh, C. R., & Hari, S. S. (2012). Surveillance of Aeromonas sobria and Aeromonas hydrophila from commercial food stuffs and environmental sources. Journal of Experimental Sciences, 3(9), 36–42.Google Scholar
  21. Declercq, M. A., Haesebrouck, F., Den-Broeck, W. V., Bossier, P., & Decostere, A. (2013). Columnaris disease in fish: A review with emphasis on bacterium-host interactions. Veterinary Research, 44, 27.CrossRefGoogle Scholar
  22. Decostere, A., Haesebrouck, F., Turnbull, J. F., & Charlier, G. (1999). Influence of water quality and temperature on adhesion of high and low virulence Flavobacterium columnare strains to isolated Gill arches. Journal of Fish Diseases, 22, 1–11.CrossRefGoogle Scholar
  23. Deen, A. E. N. E., Dorgham, S. M., Hassan, A. H. M., & Hakim, A. S. (2014). Studies on Aeromonas hydrophila in cultured Oreochromis niloticus at Kafr El Sheikh Governorate, Egypt with reference to histopathological alterations in some vital organs. World Journal of Fish and Marine Sciences, 6(3), 233–240.Google Scholar
  24. Dhanasekaran, D., Saha, S., Thajuddin, N., Rajalakshmi, M., & Panneerselvam, A. (2010). Probiotic effect of Lactobacillus isolates against bacterial pathogens in fresh water fish. Journal of Coastal Development, 13, 103–112.Google Scholar
  25. Dixon, P. F., Smail, D. A., Algot, M., Hastings, T. S., Bayley, A., Byrne, H., Dodge, M., Garden, A., Joiner, C., Roberts, E., Verner-Jeffreys, D., & Thompson, F. (2012). Studies on the effect of temperature and pH on the inactivation of fish viral and bacterial pathogens. Journal of Fish Diseases, 35, 51–64.CrossRefGoogle Scholar
  26. El-Barbary, M. I. (2010). Some clinical, microbiological and molecular characteristics of Aeromonas hydrophila isolated from various naturally infected fishes. Aquaculture International, 18, 943–954.CrossRefGoogle Scholar
  27. El-Hady, M. A., & Samy, A. A. (2011). Molecular typing of Pseudomonas species isolated from some cultured fishes in Egypt. Global Veterinaria, 7(6), 576–580.Google Scholar
  28. Elliot, D. G., Pascho, R. J., & Bullock, G. L. (1989). Developments in the control of bacterial kidney disease of salmonid fishes. Diseases of Aquatic Organisms, 6, 201–215.CrossRefGoogle Scholar
  29. El-Sayyad, H. I., Zaki, V. H., El-Shebly, A. M., & El-Badry, D. A. (2010). Studies on the effects of bacterial diseases on skin and gill structure of Clarias gariepinus in Dakahlia Province, Egypt. Annals of Biological Research, 1(4), 106–118.Google Scholar
  30. Frans, I., Michiels, C. W., Bossier, P., Willems, K. A., Lievens, B., & Zediers, H. (2011). Vibrio anguillarum as a fish pathogen: Virulence factors, diagnosis and prevention. Journal of Fish Diseases, 34, 643–661.CrossRefGoogle Scholar
  31. Garcia-Lopez, I., Otero, A., Garcia-Lopez, M. L., & Santos, J. A. (2004). Molecular and phenotypic characterization of nonmotile Gram negative bacteria associated with spoilage of freshwater fish. Journal of Applied Microbiology, 96, 878–886.CrossRefGoogle Scholar
  32. Good, C., Davidson, J., Wiens, J. D., Welch, T. J., & Summerfelt, S. (2015). Flavobacterium branchiophilum and F. succinicans associated with bacterial gill disease in rainbow trout Oncorhynchus mykiss (Walbaum) in water recirculation aquaculture systems. Journal of Fish Diseases, 38, 409–413.CrossRefGoogle Scholar
  33. Han, B. C., Jeng, W. L., Jeng, I. L. I. S., Kao, L. T., Hleng, P. J., & Huang, Y. L. (1997). Rock-shells (Thair clurigera) as an indicator of As, Cu, and Zn contamination on the Putai Coast of the Black-Foot disease area in Taiwan. Archives of Environmental Contamination and Toxicolgy, 32, 456–461.CrossRefGoogle Scholar
  34. Harikrishnan, R., & Balasundaram, C. (2015). Modern trends in Aeromonas hydrophila disease management with fish. Reviews in Fisheries Science, 13, 281–320.CrossRefGoogle Scholar
  35. Hossain, M. (2008). Isolation of pathogenic bacteria from the skin ulcerous symptomatic gourami (Colisa lalia) through 16S rDNA analysis. University Journal of Zoology Rajshahi University, 27, 21–24.CrossRefGoogle Scholar
  36. Hossian, M. M. M., Rahman, M. A., Mondal, S., Mondal, A. S. M. S., & Chowdhury, M. B. R. (2011). Isolation of some emergent bacterial pathogens recovered from capture and culture fisheries in Bangladesh. Bangladesh Research Publication, 6, 77–90.Google Scholar
  37. Huicab-Pech, Z. G., Chavez, C. M. R., & Reynoso, F. L. (2017). Pathogenic bacteria in Oreochromis Niloticus Var. stirling tilapia culture. Fisheries and Aquaculture Journal, 8, 197.  https://doi.org/10.4172/2150-3508.1000197.CrossRefGoogle Scholar
  38. Huizinga, H. W., Esch, G. W., & Hazen, T. C. (1979). Histopathology of red-sore disease (Aeromonas hydrophila) in naturally and experimentally infected largemouth bass Micropterus salmoides (Lacepede). Journal of Fish Diseases, 2, 263–277.CrossRefGoogle Scholar
  39. Ibrahim, B. U., Baba, J., & Sheshi, M. S. (2014). Isolation and identification of bacteria associated with fresh and Smoked Fish (Clarias gariepinus), in Minna Metropolis, Niger State. Nigeria. Journal of Applied and Environmental Microbiology, 2, 81–85.Google Scholar
  40. Idowu, T. A., Adedeji, H. A., & Sogbesan, O. A. (2017). Fish disease and health management in aquaculture production. International Journal Environmental & Agricultural Science, 1, 2–6.Google Scholar
  41. Khan, R. A., & Thulin, J. (1991). Influence of pollution on parasites of aquatic animals. Advances in Parasitology, 30, 202–238.Google Scholar
  42. Koskivaara, M., & Valtonen, E. T. (1992). Dactylogyrus (Monogenea) communities in three lakes in central Finland. Parasitology, 104, 263–272.CrossRefGoogle Scholar
  43. Koskivaara, M., Valtonen, E. T., & Prost, M. (1991). Seasonal occurrence of gyrodactylid monogeneans on the roach (Rutilus rutilus) and variations between four lakes of differing water quality in Finland. Aqua Fennica, 21, 47–55.Google Scholar
  44. Kozinska, A., & Pekala, A. (2012). Characteristics of disease spectrum in relation to species, serogroups, and adhesion ability of motile aeromonads in fish. The Scientific World Journal.  https://doi.org/10.1100/2012/949358.CrossRefGoogle Scholar
  45. Lanno, R. P., & Dixon, D. G. (1996). Chronic toxicity of waterborne thiocyanate to rainbow trout (Oncorhynchus mykiss). Canadian Journal of Fisheries and Aquatic Sciences, 53, 2137–2146.Google Scholar
  46. Larsen, J. L., & Pedersen, K. (1996). Atypical Aeromonas salmonicida isolated from diseased turbot (Scophthalmus maximus). Acta Veterinaria Scandinavia, 37, 139–146.Google Scholar
  47. Loch, T. P., & Faisal, M. (2015). Emerging flavobacterial infections in fish: A review. Journal of Advanced Research, 6, 283–300.CrossRefGoogle Scholar
  48. Majtán, J., Černy, J., Ofúkaná, A., Takáč, P., & Kozánek, M. (2012). Mortality of therapeutic fish Garra rufa caused by Aeromonas sobria. Asian Pacific Journal of Tropical Biomedicine, 2(2), 85–87.CrossRefGoogle Scholar
  49. Majumdar, T., Ghosh, S., Pal, J., & Mazumder, S. (2006). Possible role of a plasmid in the pathogenesis of a fish disease caused by Aeromonas hydrophila. Aquaculture, 256, 95–104.CrossRefGoogle Scholar
  50. Nakatsugawa, T. (1994). Atypical Aeromonas salmonrcida isolated from cultured shotted halibut. Fish Pathology, 29, 193–198. New Delhi.CrossRefGoogle Scholar
  51. Noor, R., Acharjee, M., Ahmed, T., Das, K. K., & Paul, L. (2013). Microbiological study of major sea fish available in local markets of Dhaka city, Bangladesh. Journal of Microbiology, Biotechnology and Food Sciences, 2(4), 2420–2430.Google Scholar
  52. Olayemi, A. B., Adedayo, O., & Ojo, A. O. (1990). Microbiological studies on freshwater fishes from the Asa River, Ilorin, Nigeria. Journal of Aquaculture in the Tropics, 5, 139–139.Google Scholar
  53. Pascoe, D., & Cram, P. (1977). The effect of parasitism on the toxicity of cadmium to the three-spined stickleback, Gasterosteus aculeatus L. Journal of Fish Biology, 10, 467–472.CrossRefGoogle Scholar
  54. Pedersen, K., Kofod, H., Dalsgaard, I., & Larsen, J. L. (1994). Isolation of oxidase-negative Aeromonas sulmonrrida from diseased turbot Scophthalmus maximus. Diseases of Aquatic Organisms, 18, 149–154.CrossRefGoogle Scholar
  55. Rahman, M., Colque-Navarro, P., Kuhn, I., Huys, G., Swings, J., & Mollby, R. (2002). Identification and characterization of pathogenic Aeromonas veronii Biovar Sobria associated with Epizootic Ulcerative Syndromein Fish in Bangladesh. Applied and Environmental Microbiology, 68(2), 650–655.CrossRefGoogle Scholar
  56. Sandstrom, O. (1994). Incomplete recovery in a coastal fish community exposed to effluent from a modernized Swedish kraft mill. Canadian Journal of Fisheries, 51, 2195–2202.CrossRefGoogle Scholar
  57. Sankar, G. P., Saravanan, J., Krishnamurthy, P., Chandrakala, N., & Rajendran, K. (2012). Isolation and identification of Vibrio spp. in diseased Channa punctatus from aquaculture fish farm. Indian Journal of Geo-Marine Sciences, 41(2), 159–163.Google Scholar
  58. Santos, D. M. S., Cruz, C. F., Pereira, D. P., Alves, L. M. C., & de-Moraes, F. R. (2012). Microbiological water quality and gill histopathology of fish from fish farming in Itapecuru-Mirim County, Maranhão State. Maringá, 34, 199–205.Google Scholar
  59. Schäperclaus, W. (1991). Fish diseases (Vol. 1 and 2). New Delhi: Oxonian Press Pvt. Ltd.Google Scholar
  60. Shayo, S. D., Mwita, C. J., & Hosea, K. (2012). Ulcerative Aeromonas infections in Tilapia (Cichlidae: Tilapiini) from Mtera Hydropower Dam, Tanzania. Open Access Scientific Reports, 1, 1–4.Google Scholar
  61. Shinkafi, S. A., & Ukwaja, V. C. (2010). Bacteria associated with fresh tilapia fish (Oreochromis niloticus) sold at Sokoto Central Market in Sokoto, Nigeria. Nigerian Journal of Basic and Applied Science, 18(2), 217–221.Google Scholar
  62. Sichewo, P. R., Gono, R. K., Muzvondiwa, J. V., & Sizanobuhle, N. (2013). Isolation and identification of pathogenic bacteria in edible fish: A case study of Fletcher Dam in Gweru, Zimbabwe. International Journal of Science and Research, 9, 269–273.Google Scholar
  63. Snieszko, S. F. (1974). The effects of environmental stress on outbreaks of infectious diseases of fish. Journal of Fish Biology, 6, 197–208.CrossRefGoogle Scholar
  64. Sovenyi, J., & Szakolczai, J. (1993). Studies on the toxic and immunosuppressive effects of cadmium on the common carp. Acta Veterinaria Hungaricu, 41, 415–426.Google Scholar
  65. Speare, D. J., Markham, R. J. F., Despres, B., Whitman, K., & MacNair, N. (1995). Examination of gills from salmonids with bacterial gill disease using monoclonal antibody probes for Flavobacterium branchiophilum and Cytophaga columnaris. Journal of Veterinary Diagnostic Investigation, 7, 500–505.CrossRefGoogle Scholar
  66. Starliper, C. E. (2011). Bacterial Coldwater disease of fishes caused by Flavobacterium psychrophilum. Journal of Advanced Research, 2, 97–108.CrossRefGoogle Scholar
  67. Sved, D. W., Roberts, M. H., Jr., & Van, V. P. A. (1997). Toxicity of sediments contaminated with fractions of creosote. Water Research, 31, 294–300.CrossRefGoogle Scholar
  68. Toranzo, E., Magarinos, B., & Romalde, L. (2005). A review of the main bacterial fish diseases in mariculture systems. Aquaculture, 246(4), 37–61.CrossRefGoogle Scholar
  69. Vethaak, A. D. (1992). Diseases of flounder (Platichthys flesus L.) in the Dutch Wadden Sea, and their relation to stress factors. Netherlands Journal of Sea Research, 29, 257–272.CrossRefGoogle Scholar
  70. Vethaak, A. D., Bucke, D., Lang, T., Wester, P., Johl, J., & Carr, M. (1992). Fish disease monitoring along a pollution transect: A case study using dab Limanda limanda in the German Bight, North Sea. Marine Ecology Progress Series, 91, 173–192.CrossRefGoogle Scholar
  71. Wedemeyer, G. A. (1976). Physiology of fish in intensive culture systems. London: Chapman and Hall.Google Scholar
  72. Wedemeyer, G. A., & McLeay, O. J. (1981). Methods for determining the tolerance of fishes to enviromental stressors. In Pickering: Stress and fish (pp. 247–275). London/Toronto/Sydney/San Francisco: Academic Press.Google Scholar
  73. White, M. R., Wu, C. C., & Albregts, S. R. (1995). Comparison of diagnostic tests for bacterial kidney disease in juvenile steelhead trout (Oncorhynchus mykiss). Journal of Veterinary Diagnostic Investigation, 7, 494–499.CrossRefGoogle Scholar
  74. White, M. R., Albregts, S. R., Wu, C. C., & Breidert, B. (1996). The use of kidney biopsy of broodstock steelhead trout (Oncorhyncus mykiss) to determine the status of bacterial kidney disease infection. Journal of Veterinary Diagnostic Investigation, 8, 519–522.CrossRefGoogle Scholar
  75. Wiklund, T. (1995). Virulence of ‘atypical’ Aeromonas salmonicida isolated from ulcerated flounder Platichthys Jesus. Diseases of Aquatic Organisms, 21, 145–150.CrossRefGoogle Scholar
  76. Wiklund, T., & Bylund, G. (1993). Skin ulcer disease of flounder Platichthys Jesus in the northern Baltic Sea. Diseases of Aquatic Organisms, 17, 165–174.CrossRefGoogle Scholar
  77. Wiklund, T., & Dalsgaard, I. (1995). Atypical Aeromonas salmonicida associated with ulcerated flatfish species in the Baltic Sea and the North Sea. Journal of Aquatic Animal Health, 7, 218–224.CrossRefGoogle Scholar
  78. Wiklund, T., Dalsgaard, I., Erola, E., & Olivier, G. (1994). Characteristics of ‘atypical’, cytochrome oxidase-negative Aeromonas salmonicida isolated from ulcerated flounders (Platichthyspesus (L.)). Journal of Applied Bacteriology, 76, 511–520.CrossRefGoogle Scholar
  79. Wood, J. (1974). Diseases of pacific Salmon, their prevention and treatment (2nd ed.). Olympia: State of Washington, Dept. of. Fisheries.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Gowhar Hamid Dar
    • 1
  • Rouf Ahmad Bhat
    • 1
  • Azra N. Kamili
    • 2
  • Mohammad Z. Chishti
    • 3
  • Humaira Qadri
    • 1
  • Rubiya Dar
    • 2
  • Mohammad Aneesul Mehmood
    • 1
  1. 1.Department of Environmental Sciences, School of SciencesSri Pratap College Campus, Cluster University of SrinagarSrinagarIndia
  2. 2.Centre of Research for DevelopmentUniversity of KashmirSrinagarIndia
  3. 3.School of Life SciencesCentral University of KashmirSrinagarIndia

Personalised recommendations