Advertisement

Wonders of Nanotechnology for Remediation of Polluted Aquatic Environs

  • Dig Vijay Singh
  • Rouf Ahmad Bhat
  • Moonisa Aslam Dervash
  • Humaira Qadri
  • Mohammad Aneesul Mehmood
  • Gowhar Hamid Dar
  • Mehvish Hameed
  • Nowsheeba Rashid
Chapter

Abstract

On earth, all forms of life wholly and solely depend upon the clean water sources for their survival. The freshwater ecosystems are home for large number of organisms from microscopic to macroscopic species. However, water pollution has changed the history of freshwater ecosystems due to addition of variety of pollutants. The problem of water pollution is getting worsened year after year which ultimately affects the limited freshwater resources. The anthropogenic activities have created a situation that may, in the coming years, cause permanent damage to the balanced structure of freshwater ecosystems. There are numerous techniques available for wastewater treatment prior to its discharge into recipient water bodies. But, due to one or other reasons, these conventional techniques fail to meet the demands of treating the wastewaters. Besides, efficiency of these available conventional techniques is also a matter of concern. The literature cited in this chapter suggests that nanotechnology could be a valuable, efficient and clean technology to treat the wastewaters. It is not selective to cleanup only organic based pollutants but efficient to remediate heavy metals (Cd2+, Pb2+, Zn2+, Hg2+ and Cr3+) and pesticides in wastewaters. Furthermore, due to an excellent adsorption and catalytic properties of nanomaterials, it has proven to have marvellous antimicrobial activity, pathogen detection and disinfectant quality for the treatment wastewaters.

Keywords

Water pollution Heavy metals Nanotechnology TiO2 Adsorption Antimicrobial Disinfectant 

References

  1. Agnihotri, S., Mota, J. P. B., Rostam-Abadi, M., & Rood, M. J. (2006). Structural characterization of single-walled carbon nanotube bundles by experiment and molecular simulation. Langmuir, 21, 896–904.CrossRefGoogle Scholar
  2. Alalm, M. G., Tawfik, A., & Ookawara, S. (2015). Comparison of solar TiO2 photocatalysis and solar photo-Fenton for treatment of pesticides industry wastewater: Operational conditions, kinetics, and costs. Journal of Water Process Engineering, 8, 55–63.CrossRefGoogle Scholar
  3. Amin, M. T., Alazba, A. A., & Manzoor, U. (2014). A review of removal of pollutants from water/wastewater using different types of nanomaterials. Advances in Materials Science and Engineering, 2014.  https://doi.org/10.1155/2014/825910.CrossRefGoogle Scholar
  4. Aragon, M., Kottenstette, R., Dwyer, B., Aragon, A., Everett, R., Holub, W., Siegel, M., & Wright, J. (2007). Arsenic pilot plant operation and results. Anthony: Sandia National Laboratories.Google Scholar
  5. Arora, J., & Mathur, A. (2017). Role of Nano-technology in water and waste-water management. Internation Journal of Advance Research in Science and Engineering, 6(10), 161–168.Google Scholar
  6. Auffan, M., Rose, J., Proux, O., Borschneck, D., Masion, A., Chaurand, P., Hazemann, J. L., Chaneac, C., Jolivet, J. P., Wiesner, M. R., Van Geen, A., & Bottero, J. Y. (2008). Enhanced adsorption of arsenic onto maghemites nanoparticles: As (III) as a probe of the surface structure and heterogeneity. Langmuir, 24(7), 3215–3222.CrossRefGoogle Scholar
  7. Auffan, M., Rose, J., Bottero, J. Y., Lowry, G. V., Jolivet, J. P., & Wiesner, M. R. (2009). Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nature Nanotechnology, 4(10), 634–641.CrossRefGoogle Scholar
  8. Ayanda, O. S., & Petrik, L. F. (2014). Nanotechnology: The breakthrough in water and wastewater treatment. Internatioanl Journal of Chemical, Materijal and Enviromnmental Research, 1, 1–2.Google Scholar
  9. Baumgarten, E., & Dusing, U. K. (1994). Sorption of metal ions on alumina. Journal of Colloid and Interface Science, 194, 1–9.CrossRefGoogle Scholar
  10. Bellona, C., & Drewes, J. E. (2007). Viability of a low-pressure nanofilter in treating recycled water for water reuse applications: A pilot-scale study. Water Research, 41, 3948–3958.CrossRefGoogle Scholar
  11. Binks P (2007) Nanotechnology & water: Opportunities and challenges. Victorian water sustainability seminar.Google Scholar
  12. Bora, T., & Dutta, J. (2014). Applications of nanotechnology in wastewater treatment – A review. Journal of Nanoscience and Nanotechnology, 613–626.  https://doi.org/10.1166/jnn.2014.8898.CrossRefGoogle Scholar
  13. Bottino, A., Capannelli, G., D’Asti, V., & Piaggio, P. (2001). Preparation and properties of novel organic-inorganic porous membranes. Separation and Purification Technology, 22(23), 269–275.CrossRefGoogle Scholar
  14. Buzea, C., Blandino, I. I. P., & Robbie, K. (2007). Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases, 2(4), MR17–MR172.CrossRefGoogle Scholar
  15. Cai, Y. Q., Jiang, G. B., Liu, J. F., & Zhou, Q. X. (2003). Multiwalled carbon nanotubes as a solid-phase extraction adsorbent for the determination of bisphenol a, 4-n-nonylphenol, and 4-tertoctylphenol. Analytical Chemistry, 75(10), 2517–2521.CrossRefGoogle Scholar
  16. Chatuverdi, S., Dave, P. N., & Shah, N. K. (2012). Applications of nanocatalyst in new era. Journal of Saudi Chemical Society, 16, 307–325.CrossRefGoogle Scholar
  17. Chen, W., Duan, L., & Zhu, D. Q. (2007). Adsorption of polar and nonpolar organic chemicals to carbon nanotubes. Environmental Science and Technology, 41(24), 8295–8300.CrossRefGoogle Scholar
  18. Chen, Z. P., Li, Y., Guo, M., et al. (2016). One-pot synthesis of Mn-doped TiO2 grown on graphene and the mechanism for removal of Cr(VI) and Cr(III). Journal of Hazardous Materials, 310, 188–198.CrossRefGoogle Scholar
  19. Chin, S. S., Chiang, K., & Fane, A. G. (2006). The stability of polymeric membranes in a TiO2 photocatalysis process. Journal of Membrane Science, 275(1–2), 202–211.CrossRefGoogle Scholar
  20. Choi, H., Stathatos, E., & Dionysiou, D. D. (2006). Sol-gel preparation of mesoporous photocatalytic TiO2 films and TiO2/Al2O3 composite membranes for environmental applications. Applied Catalysis B-Environmental, 63(1–2), 60–67.CrossRefGoogle Scholar
  21. Chorawala, K. K., & Mehta, M. J. (2015). Applications of nanotechnology in wastewater treatment. International Journal of Innovative and Emerging Research in Engineering, 2(1), 21–26.Google Scholar
  22. Cloete, T. E., de Kwaadsteniet, M., Botes, M., & Lopez-Romero, J. M. (2010). Nanotechnology in water treatment applications. Wymondham: Caister Academic Press.Google Scholar
  23. Crane, R. A., & Scott, T. B. (2012). Nanoscale zero-valent iron: Future prospects for an emerging water treatment technology. Journal of Hazardous Materials, 211–212, 112–125.CrossRefGoogle Scholar
  24. Crooks, R. M., Zhao, M. Q., Sun, L., Chechik, V., & Yeung, L. K. (2001). Dendrimer-encapsulated metal nanoparticles: Synthesis, characterization, and applications to catalysis. Accounts of Chemical Research, 34(3), 181–190.CrossRefGoogle Scholar
  25. da Silva, B. F., Perez, S., Gardinalli, P., Singhal, R. K., Mozeto, A. A., & Barcelo, D. (2011). Analytical chemistry of metallic nanoparticles in natural environments. TrAC Trends in Analytical Chemistry, 30(3), 528–540.CrossRefGoogle Scholar
  26. De Gusseme, B., Hennebel, T., Christiaens, E., Saveyn, H., Verbeken, K., Fitts, J. P., Boon, N., & Verstraete, W. (2011). Virus disinfection in water by biogenic silver immobilized in polyvinylidene fluoride membranes. Water Research, 45(4), 1856–1864.CrossRefGoogle Scholar
  27. Deliyanni, E. A., Bakoyannakis, D. N., Zouboulis, A. I., & Matis, K. A. (2003). Sorption of As(V) ions by akaganeite-type nanocrystals. Chemosphere, 50(1), 155–163.CrossRefGoogle Scholar
  28. Diallo, M. S., Christie, S., Swaminathan, P., Johnson, J. H., & Goddard, W. A. (2005). Dendrimer enhanced ultrafiltration. 1. Recovery of Cu (II) from aqueous solutions using PAMAM dendrimers with ethylenediamine core and terminal NH2 groups. Environmental Science and Technology, 39(5), 1366–1377.CrossRefGoogle Scholar
  29. Duhan, J. S., Kumar, R., Kumar, N., Kaur, P., Nehra, K., & Duhan, S. (2017). Nanotechnology: The new perspective in precision agriculture. Biotechnology Report, 15, 11–23.CrossRefGoogle Scholar
  30. Duran, A., Tuzen, M., & Soylak, M. (2009). Preconcentration of some trace elements via using multiwalled carbon nanotubes as solid phase extraction adsorbent. Journal of Hazardous Materials, 169(1e3), 466–471.CrossRefGoogle Scholar
  31. Ebert, K., Fritsch, D., Koll, J., & Tjahjawiguna, C. (2004). Influence of inorganic fillers on the compaction behaviour of porous polymer based membranes. Journal of Membrane Science, 233(1e2), 71–78.CrossRefGoogle Scholar
  32. El Saliby, I. J., Shon, H. K., Kandasamy, J., & Vigneswaran, S. (2009). Nanotechnology for wastewater treatment: In brief. In Vigneswaran S. (Ed.), Water and wastewater treatment technologies (1 pp).Google Scholar
  33. Fathizadeh, M., Aroujalian, A., & Raisi, A. (2011). Effect of added NaXnano-zeolite into polyamide as a top thin layer of membrane on water flux and salt rejection in a reverse osmosis process. Journal of Membrane Science, 375, 88–95.CrossRefGoogle Scholar
  34. Feng, Q. L., Wu, J., Chen, G. Q., Cui, F. Z., Kim, T. N., & Kim, J. O. (2000). A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. Journal of Biomedical Materials Research, 52(4), 662–668.CrossRefGoogle Scholar
  35. Feng, C., Khulbe, K. C., Matsuura, T., Tabe, S., & Ismail, A. F. (2013). Preparation and characterization of electro-spun nanofiber membranes and their possible applications in water treatment. Separation and Purification Technology, 102, 118–135.CrossRefGoogle Scholar
  36. Fujishima, A., & Honda, K. (1972). Electrochemical photolysis of water at a semiconductor electrode. Nature, 238, 37–38.CrossRefGoogle Scholar
  37. Gao, W., Majumder, M., Alemany, L. B., Narayanan, T. N., Ibarra, M. A., Pradhan, B. K., & Jayan, P. M. (2011). Engineered graphite oxide materials for application in water purification. ACS Applied Materials & Interfaces, 3(6), 1821–1826.CrossRefGoogle Scholar
  38. Gehrke, I., Keuter, V., & Groß, F. (2012). Development of nanocomposite membranes with photocatalytic surfaces. Journal of Nanoscience and Nanotechnology, 12, 9163–9168.CrossRefGoogle Scholar
  39. Guesh, K., Mayoral, A., Alvarez, C. M. C. Y., & Diaz, I. (2016). Enhanced photocatalytic activity of TiO2 supported on zeolites tested in real wastewaters from the textile industry of Ethiopia. Microporous and Mesoporous Materials, 225, 88–97.CrossRefGoogle Scholar
  40. Guo, M., Song, W., Wang, T., Li, Y., Wang, X., & Du, X. (2015). Phenyl-functionalization of titanium dioxide-nanosheets coating fabricated on a titanium wire for selective solid-phase microextraction of polycyclic aromatic hydrocarbons from environment water samples. Talanta, 144, 998–1006.CrossRefGoogle Scholar
  41. Gupta, V. K., & Saleh, T. A. (2013). Sorption of pollutants by porous carbon, carbon nanotubes and fullerene – An overview. Environmental Science and Pollution Research, 20, 2828–2843.CrossRefGoogle Scholar
  42. Gupta, V. K., Ali, I., Saleh, T. A., Nayak, A., & Agarwal, S. (2012). Chemical treatment technologies for waste-water recycling – An overview. RSC Advances, 2, 6380–6388.CrossRefGoogle Scholar
  43. Hristovski, K., Baumgardener, A., & Westerhoff, P. (2007). Selecting metal oxide nanomaterials for arsenic removal in fixed bed columns: From nanoparticles to aggregated nanoparticles media. Journal of Hazardous Materials, 147, 265–274.CrossRefGoogle Scholar
  44. Hristovski, K. D., Nguyen, H., & Westerhoff, P. K. (2009a). Removal of arsenate and 17-ethinyl estradiol (EE2) by iron oxide modified activated carbon fibers. Journal of Environmental Science and Health Part A-Toxic/Hazardous Substances & Environmental Engineering, 44(4), 354–361.Google Scholar
  45. Hristovski, K. D., Westerhoff, P. K., Moller, T., & Sylvester, P. (2009b). Effect of synthesis conditions on nano-iron (hydr)oxide impregnated granulated activated carbon. Chemical Engineering Journal, 146(2), 237–243.CrossRefGoogle Scholar
  46. Hu, E. L., & Shaw, D. T. (1998). Synthesis and assembly. In R. W. Siegel, E. Hu, & M. C. Roco (Eds.), Nanostructure science and technology. Dordrecht: Kluwer academic publishers.Google Scholar
  47. Hu, J., Chen, G., & Lo, I. M. C. (2005). Removal and recovery of Cr(VI) from wastewater by maghemite nanoparticles. Water Research, 39, 4528–4536.CrossRefGoogle Scholar
  48. Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature, 354, 56–58.CrossRefGoogle Scholar
  49. Inoue, Y., Hoshino, M., Takahashi, H., et al. (2002). Bactericidal activity of Ag-zeolite mediated by reactive oxygen species under aerated conditions. Journal of Inorganic Biochemistry, 92(1), 37–42, 2002.CrossRefGoogle Scholar
  50. Issabayeva, G., Aroua, M. K., & Sulaiman, N. M. (2007). Continuous adsorption of lead ions in a column packed with palm shell activated carbon. Journal of Hazardous Materials, 155(1–2), 109–113.Google Scholar
  51. Jayavarthanan, R., Nanda, A., & Bhat, M. A. (2017). The impact of nanotechnology on environment. In B. K. Nayak, A. Nanda, & M. Bhat (Eds.), Integrating biologically-inspired nanotechnology into medical practice (167p). Hershey: IGI Global.Google Scholar
  52. Jeong, B. H., Hoek, E. M. V., Yan, Y. S., Subramani, A., Huang, X. F., Hurwitz, G., Ghosh, A. K., & Jawor, A. (2007). Interfacial polymerization of thin film nanocomposites: A new concept for reverse osmosis membranes. Journal of Membrane Science, 294(1–2), 1–7.CrossRefGoogle Scholar
  53. Ji, L. L., Chen, W., Duan, L., & Zhu, D. Q. (2009). Mechanisms for strong adsorption of tetracycline to carbon nanotubes: A comparative study using activated carbon and graphite as adsorbents. Environmental Science and Technology, 43(7), 2322–2327.CrossRefGoogle Scholar
  54. Jose, A. J., Jacob, A. M., Manjush, K. C., & Kappen, J. (2018). Chitosan in water purification technology. In S. Ahmad & C. M. Hussain (Eds.), Green and sustainable advanced materials: Applications.Google Scholar
  55. Kanchi, S. (2014). Nanotechnology for water treatment. International Journal of Environmental Analytical Chemistry, 1(2).  https://doi.org/10.4172/jreac.1000e102.
  56. Kanel, S. R., Charlet, B., & Choi, L. (2005). Removal of As(III) from groundwater by nanoscale zerovalent iron. Environmental Science & Technology, 39, 1291–1298.CrossRefGoogle Scholar
  57. Khan, I., Saeed, K., & Khan, I. (2017). Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry.  https://doi.org/10.1016/j.arabjc.2017.05.011.
  58. Kim, E. S., & Deng, B. (2011). Fabrication of polyamide thin-film nano-composite (PA-TFN) membrane with hydrophilized ordered mesoporous carbon (H-OMC) for water purifications. Journal of Membrane Science, 375, 46–54.CrossRefGoogle Scholar
  59. Kim, E. S., Hwang, G., El-Din, M. G., & Liu, Y. (2012). Development of nanosilver and multi-walled carbon nanotubes thin-film nanocomposite membrane for enhanced water treatment. Journal of Membrane Science, 394, 37–48.CrossRefGoogle Scholar
  60. Kim, S. H., Lee SW Lee, G. M., Lee, B. T., Yun, S. T., & Kim, S. O. (2016). Monitoring of TiO2-catalytic UV-LED photo-oxidation of cyanide contained in mine wastewater and leachate. Chemosphere, 143, 106–114.CrossRefGoogle Scholar
  61. Koeppenkastrop, D., & Decarlo, E. H. (1993). Uptake of rare-earth elements from solution by metal-oxides. Environmental Science and Technology, 27(9), 1796–1802.CrossRefGoogle Scholar
  62. Kolpin, D. W., Furlong, E. T., Meyer, M. T., Thurman, E. M., Zaugg, S. D., Barber, L. B., & Buxton, H. T. (2002). Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. Streams, 1999–2000: A National Reconnaissance. Environmental Science & Technology, 36(6), 1202–1211.CrossRefGoogle Scholar
  63. Koyuncu, I., Kural, E., & Topacik, D. (2001). Pilot scale nanofiltration membrane separation for waste management in textile industry. Water Science and Technology, 43(10), 233–240.CrossRefGoogle Scholar
  64. Kumar, V. S., Nagaraja, B. M., Shashikala, V., et al. (2004). Highly efficient Ag/C catalyst prepared by electro-chemical deposition method in controlling microorganisms in water. Journal of Molecular Catalysis A: Chemical, 223(1–2), 313–319, 2004.CrossRefGoogle Scholar
  65. Lee, Y., Kim, S., Venkateswaran, P., Jang, J., Kim, H., & Kim, J. (2008). Anion co-doped Titania for solar photocatalytic degradation of dyes. Carbon letters, 9, 131–136.CrossRefGoogle Scholar
  66. Lei, Y., Chen, F., Luo, Y., & Zhang, L. (2014). Three-dimensional magnetic graphene oxide foam/Fe3O4 nanocomposite as an efficient absorbent for Cr(VI) removal. Journal of Materials Science, 49(12), 4236–4245.CrossRefGoogle Scholar
  67. Lens, P. N. L., Virkutye, J., Jegatheesan, V., Kim, S. H., & Al-Abed, S. (2013). Nanotechnology for water and wastewater treatment. IWA Publishing.Google Scholar
  68. Li, Y. H., Ding, J., Luan, Z. K., Di, Z. C., Zhu, Y. F., Xu, C. L., Wu, D. H., & Wei, B. Q. (2003). Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon, 41, 2787–2792.CrossRefGoogle Scholar
  69. Li, L., Fan, M., Brown, R. C., Leeuwen, J. V., Wang, J., Wang, W., Wang, W., Song, Y., & Zhang, P. (2006a). Synthesis, properties and environmental application of nanoscale iron-based materials: A review. Critical Reviews in Environmental Science and Technology, 36, 405–431.CrossRefGoogle Scholar
  70. Li, X. Q., Elliot, D. W., & Zhang, W. X. (2006b). Zerovalent iron nanoparticles for abatement of environmental pollutants: Materials and engineering aspects. Critical Reviews in Solid State and Materials Sciences, 31, 111–122.CrossRefGoogle Scholar
  71. Li, Q., Mahendra, S., Lyon, D. Y., Brunet, L., Liga, M. V., Li, D., & Alvarez, P. J. J. (2008). Antimicrobial nanomaterials for water disinfection and microbial control: Potential applications and implications. Water Research, 42, 4591–4602.  https://doi.org/10.1016/j.watres.2008.08.015.CrossRefGoogle Scholar
  72. Li, X., Xu, H., Chen, Z., & Chen, G. (2011). Biosynthesis of nanoparticles by microorganisms and their applications. Journal of Nanomaterials, 2011.  https://doi.org/10.1155/2011/270974.Google Scholar
  73. Li, J., Liu, H., & Chen, J. P. (2018). Microplastics in freshwater systems: A review on occurrence, environmental effects, and methods for microplastics detection. Water Research, 137(15), 362–374.CrossRefGoogle Scholar
  74. Lin, Y. H., & Tseng, W. L. (2010). Ultrasensitive sensing of Hg(2þ) and CH(3)Hg(þ) based on the fluorescence quenching of lysozyme type VI-stabilized gold nanoclusters. Analytical Chemistry, 82(22), 9194–9200.CrossRefGoogle Scholar
  75. Lin, D. H., & Xing, B. S. (2008). Adsorption of phenolic compounds by carbon nanotubes: Role of aromaticity and substitution of hydroxyl groups. Environmental Science and Technology, 42(19), 7254–7259.CrossRefGoogle Scholar
  76. Lind, M. L., Ghosh, A. K., Jawor, A., Huang, X. F., Hou, W., Yang, Y., & Hoek, E. M. V. (2009a). Influence of zeolite crystal size on zeolitepolyamide thin film nanocomposite membranes. Langmuir, 25(17), 10139–10145.CrossRefGoogle Scholar
  77. Lind, M. L., Jeong, B. H., Subramani, A., Huang, X. F., & Hoek, E. M. V. (2009b). Effect of mobile cation on zeolite-polyamide thin film nanocomposite membranes. Journal of Materials Research, 24(5), 1624–1631.CrossRefGoogle Scholar
  78. Lind, M. L., Suk, D. E., Nguyen, T. V., & Hoek, E. M. V. (2010). Tailoring the structure of thin film nanocomposite membranes to achieve seawater RD membrane performance. Environmental Science and Technology, 44(21), 8230–8235.CrossRefGoogle Scholar
  79. Lisha, K. P., & Anshup Pradeep, T. (2009). Enhanced visual detection of pesticides using gold nanoparticles. Journal of Environmental Science and Health Part B-Pesticides Food Contaminants and Agricultural Wastes, 44(7), 697–705.Google Scholar
  80. Liu, F., Zhang, G., Meng, Q., & Zhang, H. (2008). Performance of nanofiltration and reverse osmosis membranes in metal effluent treatment. Chinese Journal of Chemical Engineering, 16(3), 441–445.CrossRefGoogle Scholar
  81. Liu, S. B., Zeng, T. H., Hofmann, M., Burcombe, E., Wei, J., Jiang, R. R., Kong, J., & Chen, Y. (2011a). Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: Membrane and oxidative stress. ACS Nano, 5(9), 6971–6980.CrossRefGoogle Scholar
  82. Liu, S. W., Yu, J. G., & Jaroniec, M. (2011b). Anatase TiO(2) with dominant high-energy {001} facets: Synthesis, properties, and applications. Chemistry of Materials, 23(18), 4085–4093.CrossRefGoogle Scholar
  83. Liu, Z. Y., Bai, H. W., Lee, J., & Sun, D. D. (2011c). A low-energy forward osmosis process to produce drinking water. Energy & Environmental Science, 4(7), 258–2585.CrossRefGoogle Scholar
  84. Lu, C., & Su, F. (2007). Adsorption of natural organic matter by carbon nanotubes. Separation and Purification Technology, 58, 113–121.CrossRefGoogle Scholar
  85. Lu, C. S., Chiu, H., & Liu, C. T. (2006). Removal of zinc (II) from aqueous solution by purified carbon nanotubes: Kinetics and equilibrium studies. Industrial & Engineering Chemistry Research, 45(8), 2850–2855.CrossRefGoogle Scholar
  86. Lucas, E., Decker, S., Khaleel, A., Seitz, A., Fultz, S., Ponce, A., Li, W. F., Carnes, C., & Klabunde, K. J. (2001). Nanocrystalline metal oxides as unique chemical reagents/sorbents. Chemistry-A European Journal, 7(12), 2505–2510.CrossRefGoogle Scholar
  87. Mauter, M. S., & Elimelech, M. (2008). Environmental applications of carbon-based nanomaterials. Environmental Science and Technology, 42(16), 5843–5859.CrossRefGoogle Scholar
  88. Mauter, M. S., Wang, Y., Okemgbo, K. C., Osuji, C. O., Giannelis, E. P., & Elimelech, M. (2011). Antifouling ultrafiltration membranes via post-fabrication grafting of biocidal nanomaterials. ACS Applied Materials & Interfaces, 3(8), 2861–2868.CrossRefGoogle Scholar
  89. Maximous, N., Nakhla, G., Wong, K., & Wan, W. (2010). Optimization of Al(2)O(3)/PES membranes for wastewater filtration. Separation and Purification Technology, 73(2), 294–301.CrossRefGoogle Scholar
  90. Mayo, J. T., Yavuz, C., Yean, S., Cong, L., Shipley, H., Yu, W., Falkner, J., Kan, A., Tomson, M., & Colvin, V. L. (2007). The effect of nanocrystalline magnetite size on arsenic removal. Science and Technology of Advanced Materials, 8(1e2), 71–75.CrossRefGoogle Scholar
  91. Miklos, D. B., Zemy, C., Jekel, M., Linden, K. G., Drewes, J. E., & Hübner, U. (2018). Evaluation of advanced oxidation processes for water and wastewater treatment – A critical review. Water Research, 139, 118–131.CrossRefGoogle Scholar
  92. Mohan, D., & Pittman, C. U. (2007). Arsenic removal from water/wastewater using adsorbents – A critical review. Journal of Hazardous Materials, 142, 1–53.CrossRefGoogle Scholar
  93. Moon, G., Kim, D., Kim, H., Bokare, A. D., & Choi, W. (2014). Platinum-like behavior of reduced graphene oxide as a cocatalyst on TiO2 for the efficient photocatalytic oxidation of arsenite. Environmental Science & Technology Letters, 1(2), 185–190.CrossRefGoogle Scholar
  94. Ngomsik, A. F., Bee, A., Talbot, D., & Cote, G. (2012). Magnetic solid-liquid extraction of Eu(III), La(III), Ni(II) and Co(II) with maghemite nanoparticles. Separation and Purification Technology, 86, 1–8.CrossRefGoogle Scholar
  95. Nguyen, A. T., Hsieh, C. T., & Juang, R. S. (2016). Substituent effectsm on photodegradation of phenols in binary mixtures by hybrid H2O2 and TiO2 suspensions under UV irradiation. Journal of the Taiwan Institute of Chemical Engineers, 62, 68–75.CrossRefGoogle Scholar
  96. Nora, S., & Mamadou, S. D. (2005). Nanomaterials and water purification: Opportunities and challenges. Journal of Nanoparticle Research, 7, 331–342.CrossRefGoogle Scholar
  97. Nouri, J., Khorasani, N., Lorestani, B., Karami, M., Hassani, A. H., & Yousefi, N. (2009). Accumulation of heavy metals in soil and uptake by plant species with phytoremediation potential. Environment and Earth Science, 59(2), 315–323.CrossRefGoogle Scholar
  98. Nowack, B., Krug, H. F., & Height, M. (2011). 120 years of nanosilver history: Implications for policy makers. Environmental Science & Technology, 45, 1177–1183.CrossRefGoogle Scholar
  99. Ohsaka, T., Shinozaki, K., Tsuruta, K., & Hirano, K. (2008). Photoelectrochemical degradation of some chlorinated organic compounds on n-TiO2 electrode. Chemosphere, 73(8), 1279–1283.CrossRefGoogle Scholar
  100. Onundi, Y. B., Mamun, A. A., Al Khatib, M. F., & Ahmed, Y. M. (2010). Adsorption of copper, nickel and lead ions from synthetic semiconductor industrial wastewater by palm Shell activated carbon. International Journal of Environmental Science and Technology, 7(4), 751–758.CrossRefGoogle Scholar
  101. Pacheco, S., & Rodriguez, R. (2001). Adsorption properties of metal ions using alumina nano particles in aqueous and alcoholic solution. Journal of Sol-Gel Science and Technology, 20, 263–273.CrossRefGoogle Scholar
  102. Pan, B., Lin, D. H., Mashayekhi, H., & Xing, B. S. (2008). Adsorption and hysteresis of bisphenol A and 17 alpha-ethinyl estradiol on carbon nanomaterials. Environmental Science and Technology, 42(15), 5480–5485.CrossRefGoogle Scholar
  103. Pan, B., & Xing, B. S. (2008). Adsorption mechanisms of organic chemicals on carbon nanotubes. Environmental Science and Technology, 42(24), 9005–9013.CrossRefGoogle Scholar
  104. Pendergast, M. T. M., Nygaard, J. M., Ghosh, A. K., & Hoek, E. M. V. (2010). Using nanocomposite materials technology to understand and control reverse osmosis membrane compaction. Desalination, 261(3), 255–263.CrossRefGoogle Scholar
  105. Ponder, S. M., & Darab, J. G. (2000). Remediation of Cr(VI) and Pb(II) aqueous solutions using nanoscale zerovalent iron. Environmental Science & Technology, 34, 2564–2569.CrossRefGoogle Scholar
  106. Ponder, S. M., Darab, J. G., Bucher, J. D., Craig, C. I., Davis, L., Stein, N. E., Lukens, W., Nitsche, H., Rao, L. F., Shuh, D. K., & Mallouk, T. E. (2001). Surface chemistry and electrochemistry of supported zerovalent iron nanoparticles in the remediation of aqueous metal contaminants. Chemistry of Materials, 13, 479.CrossRefGoogle Scholar
  107. Qu, X., Alvarez, P. J. J., & Li, Q. (2013). Application of nanotechnology in wastewater treatment. Wastewater Research, 47, 3931–3946.CrossRefGoogle Scholar
  108. Quang, D. V., Pradi, B., Sarawade, S. J., et al. (2013). Effective water disinfection using silver nanoparticle containing silica beads. Applied Surface Science, 287, 84–90.CrossRefGoogle Scholar
  109. Radwan, H., Elattar, S., & Khmes, R. (2011). Global water resources. In M. Aufleger & W. Rauch (Eds.), Handshake across the Jordan: Water and understanding international conference 26.9. – 28.9.2010, Pella, Jordanien (pp. 7–26).Google Scholar
  110. Ramakrishna, S., Fujihara, K., Teo, W. E., Yong, T., Ma, Z. W., & Ramaseshan, R. (2006). Electrospun nanofibers: Solving global issues. Materials Today, 9(3), 40–50.CrossRefGoogle Scholar
  111. Rao, G. P., Lu, C., & Su, F. (2007). Sorption of divalent metal ions from aqueous solution by carbon nanotubes: A review. Separation and Purification Technology, 58(1), 224–231.CrossRefGoogle Scholar
  112. Rawal, S. B., Bera, S., Lee, D., Jang, D. J., & Lee, W. I. (2013). Design of visible-light photocatalysts by coupling of narrow bandgap semiconductors and TiO2: Effect of their relative energy band positions on the photocatalytic efficiency. Catalysis Science and Technology, 3(7), 1822–1830.CrossRefGoogle Scholar
  113. Ren, X., Chen, C., Nagatsu, M., & Wang, X. (2011). Carbon nanotubes as adsorbents in environmental pollution management: A review. Chemical Engineering Journal, 170, 395–410.CrossRefGoogle Scholar
  114. Rengaraj, S., Jei-Won, Y., Younghun, K., & Won-Ho, K. (2007). Application of Mg-mesoporous alumina prepared by using magnesium stearate as a template for the removal of nickel: Kinetics, isotherm and error analysis. Industrial and Engineering Chemistry Research, 46, 2834–2842.CrossRefGoogle Scholar
  115. Roco, M. C. (1999). Nanotechnology, shaping the world atom by atom. National Science and Technology Council, Committee on Technology, The Interagency Working Group on Nanoscience, Engineering and Technology, Washington, DC, USA.Google Scholar
  116. Savage, N., Wentsel, R., et al. (2008). Draft nanomaterial research strategy (NRS) (pp. 1–2). Washington, DC: Environmental Protection Agency.Google Scholar
  117. Sharma, V., & Sharma, A. (2012). Nanotechnology: An emerging future trend in wastewater treatment with its innovative products and processes. International Journal of Enhanced Research in Science Technology and Engineering, 1, 121–128.Google Scholar
  118. Sharma, V., & Sharma, A. (2013). Nanotechnology: An emerging future trend in wastewater treatment with its innovative products and processes. International Journal of Enhanced Research in Science Technology & Engineering, 1, 2.Google Scholar
  119. Sharma, V. K., Yngard, R. A., & Lin, Y. (2009). Silver nanoparticles: Green synthesis and their antimicrobial activities. Advances in Colloid and Interface Science, 145, 83–96.CrossRefGoogle Scholar
  120. Smith, A. (2009). Nanotechnology: An answer to the World’s water crisis? Chemistry International, 31(4), 137–139.Google Scholar
  121. Smith, A. D. (1997). Oxford dictionary of biochemistry and molecular biology. Oxford: Oxford University Press.Google Scholar
  122. Sylvester, P., Westerhoff, P., Mooller, T., Badruzzaman, M., & Boyd, O. (2007). A hybrid sorbent utilizing nanoparticles of hydrous iron oxide for arsenic removal from drinking water. Environmental Engineering Science, 24(1), 104–112.CrossRefGoogle Scholar
  123. Sze, M. F. F., Lee, V. K. C., & McKay, G. (2008). Simplified fixed bed column model for adsorption of organic pollutants using tapered activated carbon columns. Desalination, 218, 323–333.CrossRefGoogle Scholar
  124. Tarun, K. N., Ashim, K. B., & Sudip, K. D. (2009). Adsorption of Cd(II) and Pb(II) from aqueous solutions on activated alumina. Journal of Colloid and Interface Science, 333, 14–26.CrossRefGoogle Scholar
  125. Tchobanoglous, G., Stensel, H. D., Tsuchihashi, R., & Burton, F. (2014). Wastewater engineering: Treatment and resource recovery (5th ed.). New York: McGraw-Hill.Google Scholar
  126. Terronesa, M., Botello-Méndezb, A. R., Campos-Delgadoc, J., et al. (2010). Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications. Nano Today, 5(4), 351–372.CrossRefGoogle Scholar
  127. Theron, J., Walker, J. A., & Cloete, T. E. (2008). Nanotechnology and water treatment: Applications and emerging opportunities. Critical Reviews in Microbiology, 34, 43–69.CrossRefGoogle Scholar
  128. Tiraferri, A., Vecitis, C. D., & Elimelech, M. (2011). Covalent binding of single-walled carbon nanotubes to polyamide membranes for antimicrobial surface properties. ACS Applied Materials & Interfaces, 3(8), 2869–2877.CrossRefGoogle Scholar
  129. Trivedi, P., & Axe, L. (2000). Modeling Cd and Zn sorption to hydrous metal oxides. Environmental Science and Technology, 34(11), 2215–2223.CrossRefGoogle Scholar
  130. Ursino, C., Castro-Muñoz, R., Drioli, E., Gzara, L., Albeirutty, M. H., & Figoli, A. (2018). Progress of nanocomposite membranes for water treatment. Membranes (Basel), 8(2).  https://doi.org/10.3390/membranes8020018.CrossRefGoogle Scholar
  131. Valente, S., Bokhimi, X., & Toledo, J. A. (2004). Synthesis and catalytic properties of nanostructured aluminas obtained by sol-gel method. Appl Catal A, 264, 175–181.CrossRefGoogle Scholar
  132. Vaseashta, V., Vaclavikova, M., Vaseashta, V., Gallios, G., Roy, P., & Pummakarnchana, O. (2007). Nanostructures in environmental pollution detection, monitoring and remediation. Science and Technology of Advanced Materials, 8, 47–59.CrossRefGoogle Scholar
  133. Vijayageetha, V. A., Annamalai, V., & Pandiarajan, A. (2018). A study on the nanotechnology in water and waste water treatment. IOSR Journal of Applied Physics (IOSR-JAP), 10(4), 28–31.Google Scholar
  134. Wang, S. G., Gong, W. X., Liu, X. W., Yao, Y. W., Gao, B. Y., & Yue, Q. Y. (2007). Removal of lead (II) from aqueous solution by adsorption onto manganese oxide-coated carbon nanotubes. Separation and Purification Technology, 58, 17–23.CrossRefGoogle Scholar
  135. Watlington, K. (2005). Emerging nanotechnologies for site remediation and wastewater treatment. National network for environmental management studies fellow, North Carolina State University.Google Scholar
  136. WHO. (2012). Progress on drinking water and sanitation. 2012 Update.Google Scholar
  137. Wu, M. K., Windeler, R. S., Steiner, C. K., Bros, T., & Friedlander, S. K. (1993). Controlled synthesis of nanosized particles by aerosol processes. Aerosol Science and Technology, 19, 527–548.CrossRefGoogle Scholar
  138. Yamanaka, M., Hara, K., & Kudo, J. (2005). Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis. Applied and Environmental Microbiology, 71(11), 7589–7593.CrossRefGoogle Scholar
  139. Yang, K., & Xing, B. S. (2010). Adsorption of organic compounds by carbon nanomaterials in aqueous phase: Polanyi theory and its application. Chemical Reviews, 110(10), 5989–6008.CrossRefGoogle Scholar
  140. Yang, K., Wu, W. H., Jing, Q. F., & Zhu, L. Z. (2008). Aqueous adsorption of aniline, phenol, and their substitutes by multi-walled carbon nanotubes. Environmental Science and Technology, 42(21), 7931–7936.CrossRefGoogle Scholar
  141. Yang, L. X., Chen, B. B., Luo, S. L., Li, J. X., Liu, R. H., & Cai, Q. Y. (2010a). Sensitive detection of polycyclic aromatic hydrocarbons using CdTe quantum dot-modified TiO(2) nanotube array through fluorescence resonance energy transfer. Environmental Science and Technology, 44(20), 7884–7889.CrossRefGoogle Scholar
  142. Yano, H., Omura, H., Honma, Y., Okumura, H., Sano, H., & Nakatsubo, F. (2018). Designing cellulose nanofiber surface for high density polyethylene reinforcement. Cellulose, 25(6), 3351–3362.CrossRefGoogle Scholar
  143. Yean, S., Cong, L., Yavuz, C. T., Mayo, J. T., Yu, W. W., Kan, A. T., Colvin, V. L., & Tomson, M. B. (2005). Effect of magnetite particle size on adsorption and desorption of arsenite and arsenate. Journal of Materials Research, 20(12), 3255–3264.CrossRefGoogle Scholar
  144. Zekić, E., Vuković, Z., & Halkijević, I. (2018). Application of nanotechnology in wastewater treatment. Građevinar, 70(4), 315–323.Google Scholar
  145. Zodrow, K., Brunet, L., Mahendra, S., Li, D., Zhang, A., Li, Q., & Alvarez, P. J. J. (2009). Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal. Water Research, 43(3), 715–723.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Dig Vijay Singh
    • 1
  • Rouf Ahmad Bhat
    • 2
  • Moonisa Aslam Dervash
    • 2
  • Humaira Qadri
    • 3
  • Mohammad Aneesul Mehmood
    • 3
  • Gowhar Hamid Dar
    • 3
  • Mehvish Hameed
    • 4
  • Nowsheeba Rashid
    • 5
  1. 1.School of Environmental Science, DESBabasaheb Bhimrao Ambedkar UniversityLucknowIndia
  2. 2.Division of Environmental ScienceSher-e-Kashmir University of Agricultural Sciences and TechnologyShalimarIndia
  3. 3.Department of Environmental Sciences, School of SciencesSri Pratap College Campus, Cluster University of SrinagarSrinagarIndia
  4. 4.College of Agricultural Engineering, Division of Soil and Water EngineeringSher-e-Kashmir University of Agricultural Sciences and TechnologyShalimarIndia
  5. 5.Amity Institute of Food TechnologyAmity UniversityNoidaIndia

Personalised recommendations