Advertisement

Remediation of Pesticides Through Microbial and Phytoremediation Techniques

  • Sartaj Ahmad Bhat
  • Humaira Qadri
  • Guangyu Cui
  • Fusheng Li
Chapter

Abstract

Pesticides contamination in the environment presents a real hazard to human beings and other aquatic and terrestrial life. If not controlled, the contamination can lead to serious problems to the environment. In order to keep this contamination at a low level, some sustainable and cost-effective alternatives methods are required. Remediation techniques, such as microbial remediation and phytoremediation are reliable and efficient methods that utilize microbes and plants to eliminate the pesticide residues in the environment. These techniques offer useful and effective alternatives to physical and chemical remediation processes for being economically and ecologically sustainable. This chapter discusses present remediation techniques for the removing of pesticides from the natural environment.

Keywords

Microbes Pesticides Plants Pollution 

References

  1. AbdulWaheed, A., Awang, S., & Sarva, P. (2014). The comparison of phytoremediation abilities of water mimosa and water hyacinth. ARPN Journal of Science and Technology, 4(12), 722–731.Google Scholar
  2. Abhilash, P. C., & Nandita, C. (2010). Withania somnifera Dunal-mediated dissipation oflindane from simulated soil: Implications for rhizoremediation of contaminated soil. Journal of Soils and Sediments, 10, 272–282.CrossRefGoogle Scholar
  3. Abhilash, P. C., Singh, B., Srivastava, P., Schaeffer, A., & Singh, N. (2013). Remediation of lindaneby Jatropha curcas L.: Utilization of multipurpose species for rhizoremediation. Biomass and Bioenergy, 51, 189–193.CrossRefGoogle Scholar
  4. Ahmed-Ali, R. (2014). Phytoremediation of cyanophos insecticide by Plantago major L. in water. Journal of Environmental Health Science and Engineering, 12, 38.CrossRefGoogle Scholar
  5. Al-Qurainy, F., & Abdel-Megeed, A. (2009). Phytoremediation and detoxification of two organophosphorous pesticides residues in Riyadh area. World Applied Sciences Journal, 6(7), 987–998.Google Scholar
  6. Bhat, S. A., Bhatti, S. S., Singh, J., Sambyal, V., Nagpal, A., & Vig, A. P. (2016). Vermiremediation and phytoremediation: Eco approaches for soil stabilization. Austin Environmental Sciences, 1(2), 1006.Google Scholar
  7. Biswas, K., Paul, D., & Sinha, S. N. (2015). Biological agents of bioremediation: A concise review. Frontiers Environmental Microbiology, 1, 39–43.Google Scholar
  8. Briceno, G., Schalchli, H., Rubilar, O., Tortella, G. R., Mutis, A., Benimeli, C. S., Palma, G., & Diez, M. C. (2016). Increased diazinon hydrolysis to 2-isopropyl-6-methyl-4-pyrimidinol in liquid medium by as specific Streptomyces mixed culture. Chemosphere, 156, 195–203.CrossRefGoogle Scholar
  9. Buyan, C., Janjit, I., and Jae, S.R (2009). Phytoremediation of organophosphorus and organochlorine pesticides by Acorus gramineus. Environmental Engineering Research, 14(4), 226–236.CrossRefGoogle Scholar
  10. Byrne, F. J., & Toscano, N. C. (2005). Uptake and persistence of imidacloprid in grapevines treated by chemigation. Crop Protection 2006, 25, 831–834.CrossRefGoogle Scholar
  11. Carter, A. D., & Heather, A. I. J. (1995). Pesticides in groundwater. In G. A. Best & A. D. Ruthven (Eds.), Pesticides – developments, impacts, and controls (pp. 113–123). London: The Royals Society of Chemistry.Google Scholar
  12. Cheng, S., Jin, X., Huiping, X., Liping, Z., & Zhenbin, W. (2007). Phytoremediation of triazophos by canna indicalinn. in a hydroponic system. International Journal of Phytoremediation, 9, 453–463.CrossRefGoogle Scholar
  13. Chrinside, A. E., Ritter, W. F., & Radosevich, M. (2011). Biodegradation of aged residues of atrazine and alachlor in a mix-load site soil by fungal enzymes. Applied and Environmental Soil Science, 2011, 1–10.  https://doi.org/10.1155/2011/658569.CrossRefGoogle Scholar
  14. Dosnon-Olette, R., Couderche, M., El Arfaoui, A., Sayen, S., & Eullaffroy, P. (2010). Influence of initial pesticide concentrations and plant population density on dimethomorph toxicity and removal by two duckweed species. Science of the Total Environment, 408(10), 2254–2259.CrossRefGoogle Scholar
  15. Dubey, K. K., & Fulekar, M. H. (2013). Investigation of potential rhizospheric isolate forcypermethrin degradation. Biotech, 3, 33–43.Google Scholar
  16. Ellegaard-Jensen, L., Knudsen, B. E., Johansen, A., Albers, C. N., Aamand, J., & Rosendahl, S. (2014). Fungal–bacterial consortia increase diuron degradation in water-unsaturated systems. Science of the Total Environment, 466, 699–705.CrossRefGoogle Scholar
  17. Fuentes, M. S., Raimondo, E. E., Amoroso, M. J., & Benimeli, C. S. (2017). Removal of a mixture of pesticides by a Streptomyces consortium: Influence of different soil systems. Chemosphere, 173, 359–367.CrossRefGoogle Scholar
  18. Gent, M. P. N., White, J. C., Parrish, Z., Isleyen, M., Eitzer, B., & Incorvia Mattina, M. J. (2007). Uptake and translocation of p,p′-dichlorodiphenyldichloroethylene supplied in hydroponics solution to Cucurbita. Environmental Toxicology and Chemistry, 26(12), 2467–2475.CrossRefGoogle Scholar
  19. Goda, S. K., Elsayed, I. M., Khodair, T. A., El-Sayed, W., & Mohamed, M. E. (2010). Screening for and isolation and identification of malathion-degrading bacteria: Cloning and sequencing agene that potentially encodes the malathion-degrading enzyme, carboxylestrase in soil bacteria. Biodegradation, 21, 903–913.CrossRefGoogle Scholar
  20. Guimarães, F. P., Aguiar, R., Karam, D., Oliveira, J. A., Silva, J. A. A., Santos, C. L., Sant’anna-Santos, B. F., & Lizieri-Santos, C. (2011). Potential of macrophytes for removing atrazine from aqueous solution. Planta daninha, 29 (no.spe Viçosa), 1137–1147.Google Scholar
  21. Kabra, A. N., Ji, M. K., Choi, J., Kim, J. R., Govindwar, S. P., & Jeon, B. H. (2014). Toxicity of atrazine and itsbioaccumulation and biodegradation in a green microalga, Chlamydomonas mexicana. Environmental Science and Pollution Research, 21, 12270–12278.CrossRefGoogle Scholar
  22. Karunya, S. K., & Saranraj, P. (2014). Toxic effects of pesticide pollution and its biological control by microorganisms: A review. Applied Journal of Hygiene, 3, 1–10.Google Scholar
  23. Khan, N. U., Bhavya, V., Nazeeb, I., & Paddu, K. S. (2011). Phytoremediation using an indigenous crop plant (wheat): The uptake of methyl parathion and metabolism of p-nitrophenol. Indian Journal of Science and Technology, 4, 1661–1667.Google Scholar
  24. Kharabsheh, H. A., Han, S., Allen, S., & Chao, S. L. (2017). Metabolism of chlorpyrifos by Pseudomonas aeruginosa increases toxicity in adult zebrafish (Danio rerio). International Biodeterioration & Biodegradation, 121, 114–121.CrossRefGoogle Scholar
  25. Kong, L., Zhu, S., Zhu, L., Xie, H., Su, K., Yan, T., Wang, J., Wang, J., Wang, F., & Sun, F. (2013). Biodegradation of organochlorine pesticide endosulfan by bacterial strain Alcaligenes faecalisJBW4. Journal of Environmental Sciences, 25, 2257–2264.CrossRefGoogle Scholar
  26. Kumar, P. S., Carolin, C. F., & Varjani, S. J. (2018). Pesticides bioremediation. In S. J. Varjani et al. (Eds.), Bioremediation: Applications for environmental protection and management. Energy, environment, and sustainability. Singapore: Springer.  https://doi.org/10.1007/978-981-10-7485-1_10.CrossRefGoogle Scholar
  27. Kurade, M. B., Kim, J. R., Govindwar, S. P., & Jeon, B. (2016). Insights into microalgae mediated biodegradation of diazinon by Chlorella vulgaris: Microalgal tolerance to xenobiotic pollutants and metabolism. Algal Research, 20, 126–134.CrossRefGoogle Scholar
  28. Li, F. B., Li, X. M., Zhou, S. G., Zhuang, L., Cao, F., Huang, D. Y., Xu, W., Liu, T. X., & Feng, C. H. (2010). Enhanced reductive dechlorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide. Environmental Pollution, 158, 1733–1740.CrossRefGoogle Scholar
  29. Li, S., Feng-Ying, Z., Yang, H., & Jian-Cong, N. (2011). Thorough removal of inorganic and organic mercury from aqueous solutions by adsorption on Lemna minor powder. Journal of Hazardous Materials, 186(1), 423–429.CrossRefGoogle Scholar
  30. Lin, C., & Lin, K. S. (2007). Photocatalytic oxidation of toxic organohalides with TiO2/UV: The effects of humic substances and organic mixtures. Chemosphere, 66, 1872–1877.CrossRefGoogle Scholar
  31. London, L., & Myers, J. E. (1995). General patterns of agricultural chemical usage in the southern regions of South Africa. The South African Journal of Science, 91, 508.Google Scholar
  32. Maqbool, Z., Hussain, S., Imran, M., Mahmood, F., Shahzad, T., Ahmed, Z., Azeem, F., & Muzammil, S. (2016). Perspectives of using fungi as bioresource for bioremediation of pesticides in the environment: A critical review. Environmental Science and Pollution Research, 23, 16904–16925.CrossRefGoogle Scholar
  33. Mattina, M. J. I., Lannucci-Berger, W., Musante, C., & White, J. C. (2003). Concurrent plant uptake of heavy metals and persistent organic pollutants from soil. Environmental Pollution, 124, 375–378.CrossRefGoogle Scholar
  34. Mitton, F. M., Miglioranza, K. S. B., Gonzalez, M., Shimabukuro, V. M., & Monserrat, J. M. (2014). Assessment of tolerance and efficiency of crop species in the phytoremediation of DDT polluted soils. Ecological Engineering, 71, 501–508.CrossRefGoogle Scholar
  35. Mitton, F. M., Gonzalez, M., Monserrat, J. M., & Miglioranza, K. S. B. (2016). Potential use of edible crops in the phytoremediation of endosulfan residues in soil. Chemosphere, 148, 300–306.CrossRefGoogle Scholar
  36. Mohamed, A. T., El-Hussain, A. A., El-Siddig, M. A., & Osman, A. G. (2011). Degradation of oxyfluorfen herbicide by soil microorganism biodegradation of herbicides. Biotechnology, 10, 274–279.CrossRefGoogle Scholar
  37. Mohany, M., Badr, G., Refaat, I., & El-Feki, M. (2011). Immunological and histological effects of exposure to imidacloprid insecticide in male albino rats. African Journal of Pharmacy and Pharmacology, 5, 2106–2114.CrossRefGoogle Scholar
  38. Moore, M. T., & Locke, M. A. (2012). Phytotoxicity of atrazine, S-metolachlor, and permethrin to Typha latifolia (Linnaeus) germination and seedling growth. Bulletin of Environmental Contamination and Toxicology, 89, 292–295.CrossRefGoogle Scholar
  39. Mori, T., Wang, J., Tanaka, Y., Nagai, K., Kawagishi, H., & Hirai, H. (2017). Bioremediation of the neonicotinoid insecticide clothianidin by the white-rot fungus Phanerochaete sordida. Journal of Hazardous Materials, 321, 586–590.CrossRefGoogle Scholar
  40. Moschet, C., Wittmer, I., Simovic, J., Junghans, M., Piazzoli, A., Singer, H., Stamm, C., Leu, C., & Hollender, J. (2014). How a complete pesticide screening changes the assessment of surface water quality. Environmental Science & Technology, 48, 5423–5432.CrossRefGoogle Scholar
  41. Mukherjee, I., & Kumar, A. (2012). Phytoextraction of endosulfan: A remediation technique. Bulletin of Environmental Contamination and Toxicology, 88, 250–254.CrossRefGoogle Scholar
  42. Pan, X., Xu, T., Xu, H., Fang, H., & Yu, Y. (2017). Characterization and genome functional analysis of the DDT-degrading bacterium Ochrobactrum sp. DDT-2. Science of the Total Environment, 592, 593–599.CrossRefGoogle Scholar
  43. Paul, D., Pandey, G., Meier, C., van-der-Meer, J. R., & Jain, R. K. (2006). Bacterial community structure of a pesticide-contaminated site and assessment of changes induced in community structure during bioremediation. FEMS Microbiology Ecology, 57, 116–127.CrossRefGoogle Scholar
  44. Peng, X., Huang, J., Liu, C., Xiang, Z., Zhou, J., & Zhong, G. (2012). Biodegradation of bensulphuron-methyl by a novel Penicillium pinophilum strain BP-H-02. Journal of Hazardous Materials, 213, 216–221.CrossRefGoogle Scholar
  45. Plangklang, P., & Reungsang, A. (2010). Bioaugmentation of carbofuran by Burkholderia cepacia pcl 3 in a bioslurry phase sequencing batch reactor. Process Biochemistry, 45(2), 230–238.CrossRefGoogle Scholar
  46. Prasertsup, P., & Ariyakanon, N. (2011). Removal of Chlorpyrifos by water lettuce (Pistia stratiotes L.) and duckweed (Lemna minor L.). The International Journal of Phytoremediation, 13(4), 383–395.CrossRefGoogle Scholar
  47. Prasertsup, P., & Naiyanan, A. (2011). Removal of chlorpyrifos by water lettuce (Pistia stratiotes l.) and duckweed (Lemna minor L.). International Journal of Phytoremediation, 13, 383–395.CrossRefGoogle Scholar
  48. Priyadarshani, I., Sahu, D., & Rath, B. (2011). Microalgal bioremediation: Current practices and perspectives. Journal of Biochemical Technology, 3, 299–304.Google Scholar
  49. Rachel, O., Michel, C., & Philippe, E. (2009). Phytoremediation of fungicides by aquatic macrophytes: Toxicity and removal rate. Ecotoxicology and Environmental Safety, 72(8), 2096–2101.CrossRefGoogle Scholar
  50. Rani, K., & Dhania, G. (2014). Bioremediation and biodegradation of pesticide from contaminated soil and water—A noval approach. International Journal of Current Microbiology and Applied Sciences, 3, 23–33.Google Scholar
  51. Rani, M., Shanker, U., & Jassal, V. (2017). Recent strategies for removal and degradation of persistent and toxic organochlorine pesticides using nanoparticles: A review. Journal of Environmental Management, 190, 208–222.CrossRefGoogle Scholar
  52. Riaz, G., Amtul Bari, T., Shakir, I., Abdullah, Y., Mateen, A., Khan, A. M., Mahfooz, Y., & Baqar, M. (2017). Phytoremediation of organochlorine and pyrethroid pesticides by aquatic macrophytes and algae in freshwater systems. The International Journal of Phytoremediation, 19(10), 894–898.CrossRefGoogle Scholar
  53. Rodante, F., Marrosu, G., & Catalani, G. (1992). Thermal-analysis and kinetic-study of decomposition processes of some pesticides. Journal of Thermal Analysis and Calorimetry, 38, 2669–2682.CrossRefGoogle Scholar
  54. Roman, M., Wojciech, B., Paweł, C., Łukasz, Ł., & Łukasz, C. (2012). Phytoremediation potential of three wetland plant species toward atrazine in environmentally relevant concentrations. Polish Journal of Environmental Studies, 21(3), 697–702.Google Scholar
  55. Romeh, A. A. (2015a). Enhancing agents for phytoremediation of soil contaminated by cyanophos. Ecotoxicology and Environmental Safety, 117, 124–131.CrossRefGoogle Scholar
  56. Romeh, A. A. (2015b). Evaluation of the phytoremediation potential of three plant species for azoxystrobin-contaminated soil. International Journal for Environmental Science and Technology, 12, 3509–3518.CrossRefGoogle Scholar
  57. Romeh, A. A., & Hendawi, M. Y. (2013). Chlorpyrifos insecticide uptake by plantain from polluted water and soil. Environmental Chemistry Letters, 11, 163–170.CrossRefGoogle Scholar
  58. Romeh, A. A., & Hendawi, M. Y. (2017). Biochemical interactions between Glycine max L. silicondi-oxide (SiO2) and plant growth-promoting bacteria (PGPR) for improving phytoremediation of soil contaminated with fenamiphos and its degradation products. Pesticide Biochemistry and Physiology, 142, 32–43.  https://doi.org/10.1016/j.pestbp.2017.01.001.CrossRefGoogle Scholar
  59. Saez, J. M., Alvareza, A., Benimeli, C. S., & Amoroso, M. J. (2014). Enhanced lindane removal from soil slurry by immobilized Streptomyces consortium. International Biodeterioration & Biodegradation, 93, 63–69.CrossRefGoogle Scholar
  60. Sahu, O. (2014). Reduction of organic and inorganic pollutant from waste water by algae. International Letters of Natural Sciences, 8, 1–8.CrossRefGoogle Scholar
  61. Sasmaz, M., Obek, E., & Sasmaz, A. (2017). The accumulation of La, Ce and Y by Lemna minor and Lemna gibba in the Keban gallery water, Elazig Turkey. Water Environment Journal, 13(4), 383–395.Google Scholar
  62. Semple, K. T., Ronald, B. C., & Stefan, S. (1999). Biodegradation of aromatic compounds by microalgae. Mini review. FEMS Microbiology Letters, 170, 291–300.CrossRefGoogle Scholar
  63. Sharma, P., Chopra, A., Cameotra, S. S., & Suri, C. R. (2010). Efficient biotransformation of herbicide diuron by bacterial strain Micrococcus sp. PS-1. Biodegradation, 21, 979–987.CrossRefGoogle Scholar
  64. Singh, B., & Mandal, K. (2013). Environmental impact of pesticides belonging to newer chemistry. In A. K. Dhawan, B. Singh, M. Brar-Bhullar, & R. Arora (Eds.), Integrated pest management (pp. 152–190). Jodhpur: Scientific Publishers.Google Scholar
  65. Smith, E., Smith, J., Naidu, R., & Juhasz, A. L. (2004). Desorption of DDT from a contaminated soil using cosolvent and surfactant washing in batch experiments. Water, Air, and Soil Pollution, 151, 71–86.CrossRefGoogle Scholar
  66. Somtrakoon, K., Kruatrachue, M., & Lee, H. (2014). Phytoremediation of endosulfansulfate-contaminated soil by single and mixed plant cultivations. Water, Air, and Soil Pollution, 225, 1886.CrossRefGoogle Scholar
  67. Sun, H., Xu, J., Yang, S., Liu, G., & Dai, S. (2004). Plant uptake of aldicarb from contaminated soil and its enhanced degradation in the rhizosphere. Chemosphere, 54, 569–574.CrossRefGoogle Scholar
  68. Suresh, B., Sherkane, P., Kale, S., Eapen, S., & Ravishankar, G. (2005). Uptake and degradation of DDT by hairy root cultures of Cichorium intybus and Brassica juncea. Chemosphere, 61, 1288–1292.CrossRefGoogle Scholar
  69. Thengodkar, R. R., & Sivakami, S. (2010). Degradation of Chlorpyrifos by an alkaline phosphatase from the cyanobacterium Spirulina platensis. Biodegradation, 21, 637–644.CrossRefGoogle Scholar
  70. Varsha, Y. M., Naga, D. C. H., & Chenna, S. (2011). An emphasis on xenobiotic degradation in environmental cleanup, review article. Journal of Bioremediation & Biodegradation, 4, 1–10.Google Scholar
  71. Verardo, E., Atteia, O., & Prommer, H. (2017). Elucidating the fate of a mixed toluene, DHM, methanol, and i-propanol plume during in situ bioremediation. Journal of Contaminant Hydrology, 201, 6–18.  https://doi.org/10.1016/j.jconhyd.2017.04.002.CrossRefGoogle Scholar
  72. Vijayakumar, S. (2012). Potential applications of cyanobacteria in industrial effluents—A review. Journal of Bioremediation & Biodegradation, 3, 1–6.Google Scholar
  73. Villaverde, J., Rubio-Bellido, M., Merchan, F., & Morillo, E. (2017). Bioremediation of diuron contaminated soils by a novel degrading microbial consortium. Journal of Environmental Management, 188, 379–386.CrossRefGoogle Scholar
  74. Wang, F. Y., Tong, R. J., Shi, Z. Y., Xu, X. F., & He, X. H. (2011). Inoculations with arbuscular mycorrhizal fungi increase vegetable yields and decrease phoxim concentrations in carrot and green onion and their soils. PLoS One, 6(2), e16949.CrossRefGoogle Scholar
  75. Wang, Q., Zhang, W. X., Li, C., & Xiao, B. (2012). Phytoremediation of atrazine by three emergent hydrophytes in a hydroponic system. Water Science and Technology, 66(6), 1282–1288.CrossRefGoogle Scholar
  76. Warsaw, A. L., Fernandez, R. T., Kort, D. R., Cregg, B. M., Rowe, B., & Vandervoort, C. (2012). Remediation of metalaxyl, trifluralin, and nitrate from nursery runoff using container-grown woody ornamentals and phytoremediation areas. Ecological Engineering, 47, 254–263.CrossRefGoogle Scholar
  77. White, J. C., Parrish, Z., Isleyen, M., Gent, M., Iannucci-Berger, W., Eitzer, B., & Mattina, M. (2005). Uptake of weathered p,p′-DDE by plant species effective at accumulating soil elements. Microchemical Journal, 81, 148–155.CrossRefGoogle Scholar
  78. Xia, H., & Ma, X. (2006). Phytoremediation of ethion by water hyacinth (Eichhornia crassipes) from water. Bioresource Technology, 97(8), 1050–1054.CrossRefGoogle Scholar
  79. Xiao, P., Mori, T., Kamei, I., Kiyota, H., Takagi, K., & Kondo, R. (2011). Novel metabolic pathways of organochlorine pesticides dieldrin and aldrin by the white rot fungi of the genus Phlebia. Chemosphere, 85, 218–224.CrossRefGoogle Scholar
  80. Xu, X. J., Sun, J. Q., Nie, Y., & Wu, X. L. (2015). Spirodela polyrhiza stimulates the growth of its endophytes but differentially increases their fenpropathrin-degradation capabilities. Chemosphere, 125, 33–40.CrossRefGoogle Scholar
  81. Yu, Y. L., Chen, Y. X., Luo, Y. M., Pan, X. D., He, Y. F., & Wong, M. H. (2003). Rapid degradation of butachlor in wheat rhizosphere soil. Chemosphere, 50, 771–774.CrossRefGoogle Scholar
  82. Zhang, S., Qiu, C. B., Zhou, Y., Jin, Z. P., & Yang, H. (2011). Bioaccumulation and degradation of pesticide fluroxypyr are associated with toxic tolerance in green alga Chlamydomonas reinhardtii. Ecotoxicology, 20, 337–347.CrossRefGoogle Scholar
  83. Zhou, Y., Tigane, T., Li, X., Truu, M., Truu, J., & Mander, U. (2013). Hexachlorobenzene dechlorination in constructed wetland mecocosms. Water Research, 47, 102–110.CrossRefGoogle Scholar
  84. Zinovyev, S. S., Shinkova, N. A., Perosa, A., & Tundo, P. (2005). Liquid phase hydrodechlorination of dieldrin and DDT over Pd/C and Raney-Ni. Applied Catalysis B: Environmental, 55, 39–48.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Sartaj Ahmad Bhat
    • 1
  • Humaira Qadri
    • 2
  • Guangyu Cui
    • 3
  • Fusheng Li
    • 1
  1. 1.River Basin Research CenterGifu UniversityGifuJapan
  2. 2.Department of Environmental Sciences, School of SciencesSri Pratap College Campus, Cluster University of SrinagarSrinagarIndia
  3. 3.Graduate School of EngineeringGifu UniversityGifuJapan

Personalised recommendations