Advertisement

Biotechnological Intervention as an Aquatic Clean Up Tool

  • Moonisa Aslam Dervash
  • Rouf Ahmad Bhat
  • Sadiqa Shafiq
  • Dig Vijay Singh
  • Nighat Mushtaq
Chapter

Abstract

Although three quarters of Earth is occupied by water but quantity of available fresh water is limited. In a vast arena of environmental issues during the present era, aquatic pollution is one of the major problems. In order to curb the growing concern of aquatic pollution, biotechnological interventions provide distinguished avenues in the form of novel techniques of remediation (biodegradation, biostimulation, blastofiltration, cyanoremediation, biosparging and mycoremediation). And in order to hold back effluence of pollutants into aquatic environs, biotechnological gadgets (biological fuel cells and biosensors) are quite helpful to achieve sustainable development.

Keywords

Biosensor Heavy metals Remediation Biosorption Blast filtration Biofuels 

References

  1. Adams, J. A., & Reddy, K. R. (2003). Extent of benzene biodegradation in saturated soil column during air sparging. Ground Water Monitoring and Remediation, 23(3), 85–94.CrossRefGoogle Scholar
  2. Aulenta, F., Reale, P., Canosa, A., Rossetti, S., Panero, S., & Majone, M. (2010). Characterization of an electro-active biocathode capable of dechlorinating trichloroethene and cis-dichloroethene to ethane. Biosensors & Bioelectronics, 25, 1796–1802.  https://doi.org/10.1016/j.bios.2009.12.033.CrossRefGoogle Scholar
  3. Azouaou, N., Sadaoui, Z., & Mokaddem, H. (2008). Removal of Cadmium from aqueous solution by adsorption on vegetable wastes. Journal of Applied Sciences, 8(24), 4638–4643.CrossRefGoogle Scholar
  4. Baldwin, B. R., Peacock, A. D., Park, M., Ogles, D. M., et al. (2008). Multilevel samplers as microcosms to assess microbial response to biostimulation. Ground Water, 46, 295–304.CrossRefGoogle Scholar
  5. Barron, N., Brady, D., Love, G., Marchant, R., Nigam, P., McHale, L., & McHale, A. P. (1996). Alginate immobilized thermotolerant yeast for conversion of cellulose to ethanol. In R. H. Wijffels, R. M. Buitelaar, C. Bucke, & J. Tramper (Eds.), Progress in biotechnology e immobilized cells: Basics and applications (pp. 379–383). Amsterdam: Elsevier Science BV.Google Scholar
  6. Bhat, R. A., Dar, G. H., Jehangir, A., Bhat, B. A., & Yousuf, A. R. (2012). Municipal solid waste generation and present scenario of waste management during Yatra season in Pahalgam: A tourist health resort of Kashmir valley. International Journal of Current Research, 4, 004–009.Google Scholar
  7. Bhat, R. A., Nazir, R., Ashraf, S., Ali, M., Bandh, S. A., et al. (2014). Municipal solid waste generation rates and its management at Yusmarg forest ecosystem, a tourist resort in Kashmir. Waste Management and Research, 32, 165–169.CrossRefGoogle Scholar
  8. Bhat, R. A., Dervash, M. A., Mehmood, M. A., Skinder, B. M., Rashid, A., Bhat, J. I. A., Singh, D. V., & Lone, R. (2017a). Mycorrhizae: A sustainable industry for plant and soil environment. In A. Varma et al. (Eds.), Mycorrhiza – Nutrient uptake, biocontrol, ecorestoration (pp. 473–502).  https://doi.org/10.1007/978-3-319-68867-1_25.CrossRefGoogle Scholar
  9. Bhat, R. A., Shafiq-ur-Rehman, Dervash, M. A., Mushtaq, N., Bhat, J. I. A., & Dar, G. H. (2017b). Current status of nutrient load in Dal Lake of Kashmir Himalaya. Journal of Pharmacognosy and Phytochemistry, 6(6), 165–169.Google Scholar
  10. Bhat, R. A., Dervash, M. A., Mehmood, M. A., & Hakeem, K. R. (2018). Municipal solid waste generation and its management, a growing threat to fragile ecosystem in Kashmir 756 Himalaya. American Journal of Environmental Sciences, 2(11), 145–167.Google Scholar
  11. Bhatti, A. A., Haq, S., & Bhat, R. A. (2017). Actinomycetes benefaction role in soil and plant health. Microbial Pathogenesis, 111, 458–467.CrossRefGoogle Scholar
  12. Bond, D. R., & Lovley, D. R. (2003). Electricity production by Geobacter sulfurreducens attached to electrodes. Applied and Environmental Microbiology, 69, 1548–1555.  https://doi.org/10.1128/AEM.69.3.1548-1555.2003.CrossRefGoogle Scholar
  13. Bulgariu, L., Lupea, M., Bulgariu, D., Rusu, C., & Macoveanu, M. (2013). Equilibrium study of Pb (II) and Cd (II) biosorption from aqueous solution on marine green algae biomass. Environmental Engineering and Management Journal, 12, 183–190.CrossRefGoogle Scholar
  14. Celekli, A., Yavuzatmaca, M., & Bozkurt, H. (2010). An eco-friendly process: Predictive modelling of copper adsorption from aqueous solution on Spirulina platensis. Journal of Hazardous Materials, 173, 123–129.CrossRefGoogle Scholar
  15. Chaudhuri, S. K., & Lovley, D. R. (2003). Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nature Biotechnology, 21, 1229–1232.  https://doi.org/10.1038/nbt867.CrossRefGoogle Scholar
  16. Chauhan, A., & Jain, R. K. (2010). Biodegradation: Gaining insight through proteomics. Biodegradation, 21, 861–879.CrossRefGoogle Scholar
  17. Cheng, S. S., Hsieh, T. L., Pan, P. T., Gaop, C. H., Chang, L. H., Whang, L. M., & Chang, T. C. (2009). Study on biomonitoring of aged TPHcontaminated soil with bioaugmentation and biostimulation (Conference paper). 10th International in situ and on-site bioremediation symposium, Baltimore MD, May 5–8, 2009.Google Scholar
  18. Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25, 294–306.  https://doi.org/10.1016/j.biotechadv.2007.02.001.CrossRefGoogle Scholar
  19. Conesa, H. M., Michael, W., Evangelou, H., Robinson, B. H., & Schulin, R. A. (2012). Critical view of current state of phytotechnologies to remediate soils: Still a promising tool? ScientificWorldJournal, 2012, 173829.CrossRefGoogle Scholar
  20. Cournet, A., Délia, M. L., Bergel, A., Roques, C., & Bergé, M. (2010). Electrochemical reduction of oxygen catalyzed by a wide range of bacteria including Gram-positive. Electrochemistry Communications, 12, 505–508.  https://doi.org/10.1016/j.elecom.2010.01.026.CrossRefGoogle Scholar
  21. Cui, Y., Rashid, N., Hu, N., Rehman, M. S. U., & Han, J. I. (2014). Electricity generation and microalgae cultivation in microbial fuel cell using microalgae-enriched anode and bio-cathode. Energy Conversion and Management, 79, 674–680.  https://doi.org/10.1016/j.enconman.2013.12.032.CrossRefGoogle Scholar
  22. Dursun, A. Y. (2006). A comparative study on determination of the equilibrium, kinetic and thermodynamic parameters of biosorption of copper (II) and lead (II) ions onto pretreated Aspergillus niger. Biochemical Engineering Journal, 28, 187–195.CrossRefGoogle Scholar
  23. Fan, T., Liu, Y., Feng, B., Zeng, G., Yang, C., et al. (2008). Biosorption of cadmium(II), zinc(II) and lead(II) by Penicillium simplicissimum: Isotherms, kinetics and thermodynamics. Journal of Hazardous Materials, 160, 655–661.CrossRefGoogle Scholar
  24. Fiset, J. F., Blais, J. F., & Riverso, P. A. (2008). Review on the removal of metal ions from effluents using seaweeds, alginate derivatives and other sorbents. Revue des Sciences de l’Eau, 21(3), 283–308.CrossRefGoogle Scholar
  25. Freitas, O. M., Martins, R. J., Delerue-Matos, C. M., & Boaventura, R. A. (2008). Removal of Cd (II), Zn (II) and Pb (II) from aqueous solutions by brown marine macro algae: Kinetic modelling. Journal of Hazardous Materials, 153, 493–501.CrossRefGoogle Scholar
  26. Fulekar, M. H., Sharma, J., & Tendulkar, A. (2012). Bioremediation of heavy metals using biostimulation in laboratory bioreactor. Environmental Monitoring and Assessment, 184(12), 7299–7307.CrossRefGoogle Scholar
  27. Gadd, G. M. (2010). Metals, minerals and microbes: Geomicrobiology and bioremediation. Microbiology, 156, 609–643.CrossRefGoogle Scholar
  28. Ghosh, A., Ghosh Dastidar, M., & Sreekrishnan, T. (2016). Recent advances in bioremediation of heavy metals and metal complex dyes: Review. Journal of Environmental Engineering, 142(9), C4015003.  https://doi.org/10.1061/(ASCE)EE.1943-7870.0000965.CrossRefGoogle Scholar
  29. González del Campo, A., Cañizares, P., Rodrigo, M., Fernández, F. J., & Lobato, J. (2013). Microbial fuel cell with an algae-assisted cathode: A preliminary assessment. Journal of Power Sources, 242, 638–645.  https://doi.org/10.1016/j.jpowsour.2013.05.110.CrossRefGoogle Scholar
  30. Gorby, Y. A., Yanina, S., McLean, J. S., Rosso, K. M., Moyles, D., Dohnalkova, A., Beveridge, T. J., Chang, I. S., Kim, B. H., Kim, K. S., Culley, D. E., Reed, S. B., Romine, M. F., Saffarini, D. A., Hill, E. A., Shi, L., Elias, D. A., Kennedy, D. W., Pinchuk, G., Watanabe, K., Ishii, S., Logan, B., Nealson, K. H., & Fredrickson, J. K. (2006). Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proceedings of the National Academy of Sciences of the United States of America, 103, 11358–11363.  https://doi.org/10.1073/pnas.0604517103.CrossRefGoogle Scholar
  31. Gupta, R., & Mahapatra, H. (2003). Microbial biomass: An economical alternative for removal of heavy metals from wastewater. Indian Journal of Experimental Biology, 41, 945–966.Google Scholar
  32. Huang, C., Zong, M. H., Hong, W., & Liu, Q. P. (2009). Microbial oil production from rice straw hydrolysate by Trichosporon fermentans. Bioresource Technology, 100, 4535–4538.CrossRefGoogle Scholar
  33. Hubenova, Y., & Mitov, M. (2010). Potential application of Candida melibiosica in biofuel cells. Bioelectrochemistry, 78, 57–61.  https://doi.org/10.1016/j.bioelechem.2009.07.005.CrossRefGoogle Scholar
  34. Infante, J., De Arco, R., & Angulo, M. (2014). Removal of lead, mercury and nickel using the yeast Saccharomyces cerevisiae. Revista MVZ Córdoba, 19, 4141–4149.CrossRefGoogle Scholar
  35. Inglesby, A. E., Beatty, D. A., & Fisher, A. C. (2012). Rhodopseudomonas palustris purple bacteria fed Arthrospira maxima cyanobacteria: Demonstration of application in microbial fuel cells. RSC Advances, 2, 4829–4838.  https://doi.org/10.1039/C2RA20264F.CrossRefGoogle Scholar
  36. Jayapriya, J., & Ramamurthy, V. (2012). Use of non-native phenazines to improve the performance of Pseudomonas aeruginosa MTCC 2474 catalysed fuel cells. Bioresource Technology, 124, 23–28.  https://doi.org/10.1016/j.biortech.2012.08.034.CrossRefGoogle Scholar
  37. Jeffries, T. C., Seymour, J. R., Newton, K., Smith, R. J., Seuront, L., & Mitchell, J. G. (2012). Increases in the abundance of microbial genes encoding halotolerance and photosynthesis along a sediment salinity gradient. Biogeosciences, 9(2), 815–825.CrossRefGoogle Scholar
  38. Kang, C. S., Eaktasang, N., Kwon, D. Y., & Kim, H. S. (2014). Enhanced current production by Desulfovibrio desulfuricans biofilm in a mediator-less microbial fuel cell. Bioresource Technology, 165, 27–30.  https://doi.org/10.1016/j.biortech.2014.03.148.CrossRefGoogle Scholar
  39. Kanmani, P., Aravind, J., & Preston, D. (2012). Remediation of chromium contaminants using bacteria. International journal of Environmental Science and Technology, 9, 183–193.CrossRefGoogle Scholar
  40. Katsumata, H., Kaneco, S., Inomata, K., Itoh, K., Funasaka, K., et al. (2003). Removal of heavy metals in rinsing wastewater from plating factory by adsorption with economical viable materials. Journal of Environmental Management, 69, 187–191.CrossRefGoogle Scholar
  41. Khanday, M., Bhat, R. A., Haq, S., Dervash, M. A., Batti, A. A., Nissa, M., & Mir, M. R. (2016). Arbuscular mycorrhizal fungi boon for plant nutrition and soil health. In K. R. Hakeem et al. (Eds.), Soil science: Agricultural and environmental prospectives (pp. 317–332).  https://doi.org/10.1007/978-3-319-34451-5_14.CrossRefGoogle Scholar
  42. Kiyono, M., Oka, Y., Sone, Y., Tanaka, M., Nakamura, R., Sato, M. H., Pan-Hou, H., Sakabe, K., & Inoue, K. (2012). Expression of bacterial heavy metal transporter MerC fused with a plant SNARE, SYP121 in Arabidopsis thaliana increases cadmium accumulation and tolerance. Planta, 235, 841–850.CrossRefGoogle Scholar
  43. Kumar, A., & Singh, J. S. (2017). Cyanoremediation: A green-clean tool for decontamination of synthetic pesticides from agro- and aquatic ecosystems. In J. Singh & G. Seneviratne (Eds.), Agro-environmental sustainability. Cham: Springer.  https://doi.org/10.1007/978-3-319-49727-3_4.CrossRefGoogle Scholar
  44. Kumar, R., Sharma, A. K., Singh, P., Dhir, B., & Mehta, D. (2014). Potential of some fungal and bacterial species in bioremediation of heavy metals. Journal of Nuclear Physics, Material Sciences, Radiation and Applications, 1, 213–223.CrossRefGoogle Scholar
  45. Leitão, A. L. (2009). Potential of Penicillium species in the bioremediation field. International Journal of Environmental Research and Public Health, 6, 1393–1417.CrossRefGoogle Scholar
  46. Li, J., Lin, Q., & Zhang, X. (2010). Mechanism of electron transfer in the bioadsorption of hexavalent chromium within Leersia hexandra Swartz granules by X-ray photoelectron spectroscopy. Journal of Hazardous Materials, 182, 598–602.CrossRefGoogle Scholar
  47. Li, X., Li, A., Long, M., & Tian, X. (2015). Equilibrium and kinetic studies of copper biosorption by dead Ceriporia lacerata biomass isolated from the litter of an invasive plant in China. Journal of Environmental Health Science and Engineering, 13, 37.CrossRefGoogle Scholar
  48. Lifang, D., Frang, L., Shungui, Z., Yin, H. D., & Jinren, N. I. (2010). A study of electron-shuttle mechanism in Klebsiella pneumoniae based microbial fuel cells. Environmental Science & Technology, 55, 99–104.  https://doi.org/10.1007/s11434-009-0563-y.CrossRefGoogle Scholar
  49. Lin, Q. U. R., Sen, L. D., Qian, D. U. R., & Yao, J. M. (2002). Phytoremediation for heavy metal pollution in water II. The blastofiltration of Pb from water. Journal of Agro-Environment Science. http://en.cnki.com.cn/Article_en/CJFDTOTAL-NHBH200206005.htm
  50. Logan, B. E., & Rabaey, K. (2012). Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science, 337, 686–690.  https://doi.org/10.1126/science.1217412.CrossRefGoogle Scholar
  51. Loukidou, M. X., Matis, K. A., Zouboulis, A. I., & Liakopoulou-Kyriakidou, M. (2003). Removal of As(V) from wastewaters by chemically modified fungal biomass. Water Research, 37(18), 4544–4552.CrossRefGoogle Scholar
  52. Lu, W. B., Shi, J. J., Wang, C. H., & Chang, J. S. (2006). Biosorption of lead, copper and cadmium by an indigenous isolate Enterobacter sp. J1 possessing high heavy-metal resistance. Journal of Hazardous Materials, 134, 80–86.CrossRefGoogle Scholar
  53. Lynd, L. R., VanZyl, W. H., McBride, J. E., & Laser, M. (2005). Consolidated bioprocessing of cellulosic biomass: An update. Current Opinion in Biotechnology, 16, 577–583.CrossRefGoogle Scholar
  54. Ma, X., Nonvak, P. J., Ferguson, J., Sadowsky, M., et al. (2007). The impact of H2 addition or dechlorinating microbial communities. Bioremediation Journal, 11, 45–55.CrossRefGoogle Scholar
  55. Machackova, J., Wittlingerova, Z., Vlk, K., & Zima, J. (2012). Major factors affecting in situ biodegradation rates of jet-fuel during largescale biosparging project in sedimentary bedrock. Journal of Environmental Science and Health, Part A, 47(8), 1152–1165.CrossRefGoogle Scholar
  56. Malvankar, N. S., & Lovley, D. R. (2012). Microbial nanowires: A new paradigm for biological electron transfer and bioelectronics. Chem Sus Chem, 5, 1039–1046.  https://doi.org/10.1002/cssc.201100733.CrossRefGoogle Scholar
  57. Mane, P. C., & Bhosle, A. B. (2012). Bioremoval of some metals by living Algae Spirogyra sp. and Spirullina sp. from aqueous solution. International Journal of Environmental Research, 6(2), 571–576.Google Scholar
  58. Mehmood, M. A., Qadri, H., Bhat, R. A., Rashid, A., Ganie, S. A., Dar, G. H., & Shafiq-ur-Rehman. (2019). Heavy metal contamination in two commercial fish species of a trans-Himalayan freshwater ecosystem. Environmental Monitoring and Assessment Environ, 191, 104.  https://doi.org/10.1007/s10661-019-7245-2.CrossRefGoogle Scholar
  59. Mustapha, M. U., & Halimoon, N. (2015). Microorganisms and biosorption of heavy metals in the environment: A review paper. Journal of Microbial and Biochemical Technology, 7, 253–256.  https://doi.org/10.4172/1948-5948.1000219.CrossRefGoogle Scholar
  60. Nandy, A., Kumar, V., & Kundu, P. P. (2013). Utilization of proteinaceous materials for power generation in a mediatorless microbial fuel cell by a new electrogenic bacteria Lysinibacillus sphaericus VA5. Enzyme and Microbial Technology, 53, 339–344.  https://doi.org/10.1016/j.enzmictec.2013.07.006.CrossRefGoogle Scholar
  61. Nigam, V. K., & Shukla, P. (2015). Enzyme based biosensors for detection of environmental pollutants – A review. Journal of Microbiology and Biotechnology, 11, 1773–1781.CrossRefGoogle Scholar
  62. Nigam, P. S., & Singh, A. (2011). Production of liquid biofuels from renewable resources. Progress in Energy and Combustion Science, 37, 52–68.CrossRefGoogle Scholar
  63. Park, H. S., Kim, B. H., Kim, H. S., Kim, H. J., Kim, G. T., Kim, M., Chang, I. S., Park, Y. K., & Chang, H. I. (2001). A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell. Anaerobe, 7, 297–306.  https://doi.org/10.1006/anae.2001.0399.CrossRefGoogle Scholar
  64. Prasad, D., Arun, S., Murugesan, M., Padmanaban, S., Satyanarayanan, R. S., Berchmans, S., & Yegnaraman, V. (2007). Direct electron transfer with yeast cells and construction of a mediatorless microbial fuel cell. Biosensors & Bioelectronics, 22, 2604–2610.  https://doi.org/10.1016/j.bios.2006.10.028.CrossRefGoogle Scholar
  65. Qiao, Y., Li, C. M., Bao, S. J., Lu, Z., & Hong, Y. (2008). Direct electrochemistry and electrocatalytic mechanism of evolved Escherichia coli cells in microbial fuel cells. Chemical Communications, 11, 1290–1292.  https://doi.org/10.1039/B719955D.CrossRefGoogle Scholar
  66. Quintelas, C., Rocha, Z., Silva, B., Fonseca, B., Figueiredo, H., et al. (2009). Removal of Cd (II), Cr (VI), Fe (III) and Ni (II) from aqueous solutions by an E. coli biofilm supported on kaolin. Chemical Engineering Journal, 149, 319–324.CrossRefGoogle Scholar
  67. Rabaey, K., Boon, N., Siciliano, S. D., Verhaege, M., & Verstraete, W. (2004). Biofuel cells select for microbial consortia that self-mediate electron transfer. Applied and Environmental Microbiology, 70, 5373–5382.  https://doi.org/10.1128/AEM.70.9.5373-5382.2004.CrossRefGoogle Scholar
  68. Raghavulu, S. V., Goud, R. K., Sarma, P. N., & Mohan, S. V. (2011). Saccharomyces cerevisiae as anodic biocatalyst for power generation in biofuel cell: Influence of redox condition and substrate load. Bioresource Technology, 102, 2751–2757.  https://doi.org/10.1016/j.biortech.2010.11.048.CrossRefGoogle Scholar
  69. Ramasamy, R. K., Congeevaram, S., & Thamaraiselvi, K. (2011). Evaluation of isolated fungal strain from e-waste recycling facility for effective sorption of toxic heavy metals Pb(II) ions and fungal protein molecular characterization-a Mycoremediation approach. Asian Journal of Experimental Biological Sciences, 2(2), 342–347.Google Scholar
  70. Rayu, S., Karpouzas, D. G., & Singh, B. K. (2012). Emerging technologies in bioremediation: Constraints and opportunities. Biodegradation, 23, 917–926.CrossRefGoogle Scholar
  71. Rhodes, C. (2014). Mycoremediation (bioremediation with fungi) – Growing mushrooms to clean the earth. Chemical Speciation and Bioavailability, 26, 196–198.  https://doi.org/10.3184/095422914X14047407349335.CrossRefGoogle Scholar
  72. Saunders, R. J., Paul, N. A., Hu, Y., & de Nys, R. (2012). Sustainable sources of biomass for bioremediation of heavy metals in wastewater derived from coal-fired power generation. PLoS One, 7(5), e36470.  https://doi.org/10.1371/journal.pone.0036470.CrossRefGoogle Scholar
  73. Saxena, A., Garg, S. K., & Verma, J. (1992). Simultaneous saccharification and fermentation of waste newspaper to ethanol. Bioresource Technology, 39, 13–15.CrossRefGoogle Scholar
  74. Say, R., Yimaz, N., & Denizli, A. (2003). Removal of heavy metal ions using the fungus Penicillium canescens. Adsorption Science and Technology, 21, 643–650.CrossRefGoogle Scholar
  75. Schiewer, S., & Patil, S. B. (2008). Pectin-rich fruit wastes as biosorbents for heavy metal removal: Equilibrium and kinetics. Bioresource Technology, 99(6), 1896–1903.CrossRefGoogle Scholar
  76. Sud, D., Mahajan, G., & Kaur, M. P. (2008). Agricultural waste material as potential adsorbent for sequestering heavy metals ions from aqueous solutions: A review. Bioresource Technology, 99(14), 6017–6027.CrossRefGoogle Scholar
  77. Tan, T. W., Hu, B., & Su, H. (2004). Adsorption of Ni2+ on amine-modified mycelium of Penicillium chrysogenum. Enzyme and Microbial Technology, 35, 508–513.CrossRefGoogle Scholar
  78. Tang, C. Y., Criddle, Q. S., Fu, C. S., & Leckie, J. O. (2007). Effect of flux (Transmembrane pressure) and membranes properties on fouling and rejection of reverse osmosis and nanofiltration membranes treating perfluorooctane sulfonate containing wastewater. Environmental Science & Technology, 41, 2008–2014.CrossRefGoogle Scholar
  79. Tastan, B. E., Ertuğrul, S., & Dönmez, G. (2010). Effective bioremoval of reactive dye and heavy metals by Aspergillus versicolor. Bioresource Technology, 101(3), 870–876.CrossRefGoogle Scholar
  80. Thrash, J. C., Van Trump, I. V., Weber, K. A., Miller, E., Achenbach, L. A., & Coates, J. D. (2007). Electrochemical stimulation of microbial perchlorate reduction. Environmental Science & Technology, 41, 1740–1746.  https://doi.org/10.1021/es062772m.CrossRefGoogle Scholar
  81. Tian, J., Peng, X. W., Li, X., Sun, Y. J., Feng, H. M., et al. (2014). Isolation and characterization of two bacteria with heavy metal resistance and phosphate solubilizing capability. Huan Jing Ke Xue, 35, 2334–2340.Google Scholar
  82. Tyagi, M., Fonseca, M. M. R. D., & Carvalho, C. C. C. R. D. (2011). Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation, 22, 231–241.CrossRefGoogle Scholar
  83. Uzel, A., & Ozdemir, G. (2009). Metal biosorption capacity of the organic solvent tolerant Pseudomonas fluorescens TEM08. Bioresource Technology, 100, 542–548.CrossRefGoogle Scholar
  84. Vangronsveld, J., Herzig, R., Weyens, N., Boulet, J., et al. (2009). Phytoremediation of contaminated soils and groundwater: Lessons from the field. Environmental Science and Pollution Research, 16, 765–794.CrossRefGoogle Scholar
  85. Viggi, C. C., Pagnanelli, F., Cibati, A., Uccelletti, D., Palleschi, C., & Toro, L. (2010). Biotreatment and bioassessment of heavy metal removal by sulphate reducing bacteria in fixed bed reactors. Water Research, 44(1), 151–158.CrossRefGoogle Scholar
  86. Wang, J., & Chen, C. (2009). Biosorbents for heavy metals removal and their future. Biotechnology Advances, 27, 195–226.CrossRefGoogle Scholar
  87. Wang, H., & Ren, Z. J. (2013). A comprehensive review of microbial electrochemical systems as a platform technology. Biotechnology Advances, 31, 1796–1807.  https://doi.org/10.1016/j.biotechadv.2013.10.001.CrossRefGoogle Scholar
  88. Wrighton, K. C., Thrash, J. C., Melnyk, R. A., Bigi, J. P., Byrne-Bailey, K. G., Remis, J. P., Schichnes, D., Auer, M., Chang, C. J., & Coates, J. D. (2011). Evidence for direct electron transfer by a Gram-positive bacterium isolated from a microbial fuel cell. Applied and Environmental Microbiology, 77, 7633–7639.  https://doi.org/10.1128/AEM.05365-11.CrossRefGoogle Scholar
  89. Wu, L., Li, Z., Akahane, I., Liu, L., et al. (2012). Effects of organic amendments on Cd, Zn and Cu bioavailability in soil with repeated phytoremediation by Sedum plumbizincicola. International Journal of Phytoremediation, 14(10), 1024–1038.CrossRefGoogle Scholar
  90. Xin, L., Guo-Zhen, Z., Yan, Q., Jing, H., Weihua, H., Xing-Guo, W., & Changming, L. (2014). A high performance xylose microbial fuel cell enabled by Ochrobactrum sp.575 cells. RSC Advances, 4, 39839–39843.  https://doi.org/10.1039/C4RA05077K.CrossRefGoogle Scholar
  91. Xiong, W., Li, X., Xiang, J., & Wu, O. (2008). High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbiodiesel production. Applied Microbiology and Biotechnology, 78, 29–36.CrossRefGoogle Scholar
  92. Xu, S., & Liu, H. (2011). New exoelectrogen Citrobacter sp. SX-1 isolated from a microbial fuel cell. Journal of Applied Microbiology, 111, 1108–1115.  https://doi.org/10.1111/j.1365-2672.2011.05129.x.CrossRefGoogle Scholar
  93. Yin, X. X., Wang, L. H., Bai, R., Huang, H., & Sun, G. X. (2012). Accumulation and transformation of arsenic in the blue-green alga Synechocysis sp. PCC6803. Water, Air, and Soil Pollution, 223(3), 1183–1190.CrossRefGoogle Scholar
  94. Zeng, X., Wei, S., Sun, L., Jacques, D. A., Tang, J., et al. (2015). Bioleaching of heavy metals from contaminated sediments by the Aspergillus niger strain SY1. Journal of Soils and Sediments, 15, 1029–1038.CrossRefGoogle Scholar
  95. Zhu, L. Y., Zong, M. H., & Wu, H. (2008). Efficient lipid production with T. fermentas and its use for biodiesel preparation. Bioresource Technology, 99, 7881–7885.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Moonisa Aslam Dervash
    • 1
  • Rouf Ahmad Bhat
    • 1
  • Sadiqa Shafiq
    • 2
  • Dig Vijay Singh
    • 3
  • Nighat Mushtaq
    • 4
  1. 1.Division of Environmental ScienceSher-e-Kashmir University of Agricultural Sciences and TechnologyShalimarIndia
  2. 2.Institute of Home ScienceUniversity of KashmirSrinagarIndia
  3. 3.School of Environmental Science, DESBabasaheb Bhimrao Ambedkar UniversityLucknowIndia
  4. 4.Division of Vegetable ScienceSher-e-Kashmir University of Agricultural Sciences and TechnologyShalimarIndia

Personalised recommendations